Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,877)

Search Parameters:
Keywords = re-integration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2295 KB  
Article
Vehicle Wind Noise Prediction Using Auto-Encoder-Based Point Cloud Compression and GWO-ResNet
by Yan Ma, Jifeng Wang, Zuofeng Pan, Hongwei Yi, Shixu Jia and Haibo Huang
Machines 2025, 13(10), 920; https://doi.org/10.3390/machines13100920 (registering DOI) - 5 Oct 2025
Abstract
In response to the inability to quickly assess wind noise performance during the early stages of automotive styling design, this paper proposes a method for predicting interior wind noise by integrating automotive point cloud models with the Gray Wolf Optimization Residual Network model [...] Read more.
In response to the inability to quickly assess wind noise performance during the early stages of automotive styling design, this paper proposes a method for predicting interior wind noise by integrating automotive point cloud models with the Gray Wolf Optimization Residual Network model (GWO-ResNet). Based on wind tunnel test data under typical operating conditions, the point cloud model of the test vehicle is compressed using an auto-encoder and used as input features to construct a nonlinear mapping model between the whole vehicle point cloud and the wind noise level at the driver’s left ear. Through adaptive optimization of key hyperparameters of the ResNet model using the gray wolf optimization algorithm, the accuracy and generalization of the prediction model are improved. The prediction results on the test set indicate that the proposed GWO-ResNet model achieves prediction results that are consistent with the actual measured values for the test samples, thereby validating the effectiveness of the proposed method. A comparative analysis with traditional ResNet models, GWO-LSTM models, and LSTM models revealed that the GWO-ResNet model achieved Mean Absolute Percentage Error (MAPE) and mean squared error (MSE) of 9.72% and 20.96, and 9.88% and 19.69, respectively, on the sedan and SUV test sets, significantly outperforming the other comparison models. The prediction results on the independent validation set also demonstrate good generalization ability and stability (MAPE of 10.14% and 10.15%, MSE of 23.97 and 29.15), further proving the reliability of this model in practical applications. The research results provide an efficient and feasible technical approach for the rapid evaluation of wind noise performance in vehicles and provide a reference for wind noise control in the early design stage of vehicles. At the same time, due to the limitations of the current test data, it is impossible to predict the wind noise during the actual driving of the vehicle. Subsequently, the wind noise during actual driving can be predicted by the test data of multiple working conditions. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

19 pages, 1381 KB  
Article
MAMGN-HTI: A Graph Neural Network Model with Metapath and Attention Mechanisms for Hyperthyroidism Herb–Target Interaction Prediction
by Yanqin Zhou, Xiaona Yang, Ru Lv, Xufeng Lang, Yao Zhu, Zuojian Zhou and Kankan She
Bioengineering 2025, 12(10), 1085; https://doi.org/10.3390/bioengineering12101085 (registering DOI) - 5 Oct 2025
Abstract
The accurate prediction of herb–target interactions is essential for the modernization of traditional Chinese medicine (TCM) and the advancement of drug discovery. Nonetheless, the inherent complexity of herbal compositions and diversity of molecular targets render experimental validation both time-consuming and labor-intensive. We propose [...] Read more.
The accurate prediction of herb–target interactions is essential for the modernization of traditional Chinese medicine (TCM) and the advancement of drug discovery. Nonetheless, the inherent complexity of herbal compositions and diversity of molecular targets render experimental validation both time-consuming and labor-intensive. We propose a graph neural network model, MAMGN-HTI, which integrates metapaths with attention mechanisms. A heterogeneous graph consisting of herbs, efficacies, ingredients, and targets is constructed, where semantic metapaths capture latent relationships among nodes. An attention mechanism is employed to dynamically assign weights, thereby emphasizing the most informative metapaths. In addition, ResGCN and DenseGCN architectures are combined with cross-layer skip connections to improve feature propagation and enable effective feature reuse. Experiments show that MAMGN-HTI outperforms several state-of-the-art methods across multiple metrics, exhibiting superior accuracy, robustness, and generalizability in HTI prediction and candidate drug screening. Validation against literature and databases further confirms the model’s predictive reliability. The model also successfully identified herbs with potential therapeutic effects for hyperthyroidism, including Vinegar-processed Bupleuri Radix (Cu Chaihu), Prunellae Spica (Xiakucao), and Processed Cyperi Rhizoma (Zhi Xiangfu). MAMGN-HTI provides a reliable computational framework and theoretical foundation for applying TCM in hyperthyroidism treatment, providing mechanistic insights while improving research efficiency and resource utilization. Full article
Show Figures

Figure 1

22 pages, 5361 KB  
Article
LMVMamba: A Hybrid U-Shape Mamba for Remote Sensing Segmentation with Adaptation Fine-Tuning
by Fan Li, Xiao Wang, Haochen Wang, Hamed Karimian, Juan Shi and Guozhen Zha
Remote Sens. 2025, 17(19), 3367; https://doi.org/10.3390/rs17193367 (registering DOI) - 5 Oct 2025
Abstract
High-precision semantic segmentation of remote sensing imagery is crucial in geospatial analysis. It plays an immeasurable role in fields such as urban governance, environmental monitoring, and natural resource management. However, when confronted with complex objects (such as winding roads and dispersed buildings), existing [...] Read more.
High-precision semantic segmentation of remote sensing imagery is crucial in geospatial analysis. It plays an immeasurable role in fields such as urban governance, environmental monitoring, and natural resource management. However, when confronted with complex objects (such as winding roads and dispersed buildings), existing semantic segmentation methods still suffer from inadequate target recognition capabilities and multi-scale representation issues. This paper proposes a neural network model, LMVMamba (LoRA Multi-scale Vision Mamba), for semantic segmentation of remote sensing images. This model integrates the advantages of convolutional neural networks (CNNs), Transformers, and state-space models (Mamba) with a multi-scale feature fusion strategy. It simultaneously captures global contextual information and fine-grained local features. Specifically, in the encoder stage, the ResT Transformer serves as the backbone network, employing a LoRA fine-tuning strategy to effectively enhance model accuracy by training only the introduced low-rank matrix pairs. The extracted features are then passed to the decoder, where a U-shaped Mamba decoder is designed. In this stage, a Multi-Scale Post-processing Block (MPB) is introduced, consisting of depthwise separable convolutions and residual concatenation. This block effectively extracts multi-scale features and enhances local detail extraction after the VSS block. Additionally, a Local Enhancement and Fusion Attention Module (LAS) is added at the end of each decoder block. LAS integrates the SimAM attention mechanism, further enhancing the model’s multi-scale feature fusion capability and local detail segmentation capability. Through extensive comparative experiments, it was found that LMVMamba achieves superior performance on the OpenEarthMap dataset (mIoU 52.3%, OA 69.8%, mF1: 68.0%) and LoveDA (mIoU 67.9%, OA 80.3%, mF1: 80.5%) datasets. Ablation experiments validated the effectiveness of each module. The final results indicate that this model is highly suitable for high-precision land-cover classification tasks in remote sensing imagery. LMVMamba provides an effective solution for precise semantic segmentation of high-resolution remote sensing imagery. Full article
Show Figures

Figure 1

16 pages, 244 KB  
Article
A Legal Analysis of Austria’s Cooperation Model for Interreligious and Religious Education in the School Context
by Michael Kramer
Religions 2025, 16(10), 1273; https://doi.org/10.3390/rel16101273 (registering DOI) - 5 Oct 2025
Abstract
This article examines the legal and practical dimensions of religious education (RE) in Austria with a particular focus on interreligious education as an emerging pedagogical and societal response to increasing religious and cultural diversity. It begins by situating the discussion within Austria’s historical [...] Read more.
This article examines the legal and practical dimensions of religious education (RE) in Austria with a particular focus on interreligious education as an emerging pedagogical and societal response to increasing religious and cultural diversity. It begins by situating the discussion within Austria’s historical and constitutional framework, in which RE is governed as a res mixta—a joint responsibility shared between the state and legally recognized churches and religious societies (CRSs). The analysis highlights how this model of power-sharing is enshrined in both constitutional and ordinary legislation, granting CRSs extensive autonomy in the organization, content, and supervision of denominational RE. Despite the absence of explicit legal provisions for interreligious education, the article demonstrates that interreligious teaching practices can be implemented through cooperative arrangements between CRSs, particularly when aligned with national educational goals and international commitments to tolerance, religious freedom, and other human rights. It further analyses curricular references to interreligiosity across various denominational RE programs and discusses the institutional potential for integrating interreligious competencies into teacher training and school practice. Drawing on the example of the project Integration through Interreligious Education at the University Graz, a cooperative initiative between the Catholic Church and the Islamic Religious Society in Austria (IGGÖ) from 2017 to 2023, the article outlines how interreligious education was legally contextualized and contractually formalized. The article concludes that interreligious education, though legally unregulated, is both feasible and desirable within Austria’s current legal and educational framework. It calls for greater normative clarity and policy support to ensure the sustainability and broader implementation of such models, which foster mutual understanding and peaceful coexistence in a pluralistic society. Full article
20 pages, 59706 KB  
Article
Learning Hierarchically Consistent Disentanglement with Multi-Channel Augmentation for Public Security-Oriented Sketch Person Re-Identification
by Yu Ye, Zhihong Sun and Jun Chen
Sensors 2025, 25(19), 6155; https://doi.org/10.3390/s25196155 (registering DOI) - 4 Oct 2025
Abstract
Sketch re-identification (Re-ID) aims to retrieve pedestrian photographs in the gallery dataset by a query sketch image drawn by professionals, which is crucial for criminal investigations and missing person searches in the field of public security. The main challenge of this task lies [...] Read more.
Sketch re-identification (Re-ID) aims to retrieve pedestrian photographs in the gallery dataset by a query sketch image drawn by professionals, which is crucial for criminal investigations and missing person searches in the field of public security. The main challenge of this task lies in bridging the significant modality gap between sketches and photos while extracting discriminative modality-invariant features. However, information asymmetry between sketches and RGB photographs, particularly the differences in color information, severely interferes with cross-modal matching processes. To address this challenge, we propose a novel network architecture that integrates multi-channel augmentation with hierarchically consistent disentanglement learning. Specifically, a multi-channel augmentation module is developed to mitigate the interference of color bias in cross-modal matching. Furthermore, a modality-disentangled prototype(MDP) module is introduced to decompose pedestrian representations at the feature level into modality-invariant structural prototypes and modality-specific appearance prototypes. Additionally, a cross-layer decoupling consistency constraint is designed to ensure the semantic coherence of disentangled prototypes across different network layers and to improve the stability of the whole decoupling process. Extensive experimental results on two public datasets demonstrate the superiority of our proposed approach over state-of-the-art methods. Full article
(This article belongs to the Special Issue Advances in Security for Emerging Intelligent Systems)
Show Figures

Figure 1

25 pages, 2285 KB  
Article
Rationally Designed Molecularly Imprinted Polymer Electrochemical Biosensor with Graphene Oxide Interface for Selective Detection of Matrix Metalloproteinase-8 (MMP-8)
by Jae Won Lee, Rowoon Park, Sangheon Jeon, Sung Hyun Kim, Young Woo Kwon, Dong-Wook Han and Suck Won Hong
Biosensors 2025, 15(10), 671; https://doi.org/10.3390/bios15100671 (registering DOI) - 4 Oct 2025
Abstract
Molecularly imprinted polymer (MIP) biosensors offer an attractive strategy for selective biomolecule detection, yet imprinting proteins with structural fidelity remains a major challenge. In this work, we present a rationally designed electrochemical biosensor for matrix metal-loproteinase-8 (MMP-8), a key salivary biomarker of periodontal [...] Read more.
Molecularly imprinted polymer (MIP) biosensors offer an attractive strategy for selective biomolecule detection, yet imprinting proteins with structural fidelity remains a major challenge. In this work, we present a rationally designed electrochemical biosensor for matrix metal-loproteinase-8 (MMP-8), a key salivary biomarker of periodontal disease. By integrating graphene oxide (GO) with electropolymerized poly(eriochrome black T, EBT) films on screen-printed carbon electrodes, the partially reduced GO interface enhanced electrical conductivity and facilitated the formation of well-defined poly(EBT) films with re-designed polymerization route, while template extraction generated artificial antibody-like sites capable of specific protein binding. The MIP-based electrodes were comprehensively validated through morphological, spectroscopic, and electrochemical analyses, demonstrating stable and selective recognition of MMP-8 against structurally similar interferents. Complementary density functional theory (DFT) modeling revealed energetically favorable interactions between the EBT monomer and catalytic residues of MMP-8, providing molecular-level insights into imprinting specificity. These experimental and computational findings highlight the importance of rational monomer selection and nanomaterial-assisted polymerization in achieving selective protein imprinting. This work presents a systematic approach that integrates electrochemical engineering, nanomaterial interfaces, and computational validation to address long-standing challenges in protein-based MIP biosensors. By bridging molecular design with practical sensing performance, this study advances the translational potential of MIP-based electrochemical biosensors for point-of-care applications. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers-Based Biosensors)
Show Figures

Figure 1

21 pages, 4613 KB  
Article
Combining Neural Architecture Search and Weight Reshaping for Optimized Embedded Classifiers in Multisensory Glove
by Hiba Al Youssef, Sara Awada, Mohamad Raad, Maurizio Valle and Ali Ibrahim
Sensors 2025, 25(19), 6142; https://doi.org/10.3390/s25196142 (registering DOI) - 4 Oct 2025
Abstract
Intelligent sensing systems are increasingly used in wearable devices, enabling advanced tasks across various application domains including robotics and human–machine interaction. Ensuring these systems are energy autonomous is highly demanded, despite strict constraints on power, memory and processing resources. To meet these requirements, [...] Read more.
Intelligent sensing systems are increasingly used in wearable devices, enabling advanced tasks across various application domains including robotics and human–machine interaction. Ensuring these systems are energy autonomous is highly demanded, despite strict constraints on power, memory and processing resources. To meet these requirements, embedded neural networks must be optimized to achieve a balance between accuracy and efficiency. This paper presents an integrated approach that combines Hardware-Aware Neural Architecture Search (HW-NAS) with optimization techniques—weight reshaping, quantization, and their combination—to develop efficient classifiers for a multisensory glove. HW-NAS automatically derives 1D-CNN models tailored to the NUCLEO-F401RE board, while the additional optimization further reduces model size, memory usage, and latency. Across three datasets, the optimized models not only improve classification accuracy but also deliver an average reduction of 75% in inference time, 69% in flash memory, and more than 45% in RAM compared to NAS-only baselines. These results highlight the effectiveness of integrating NAS with optimization techniques, paving the way towards energy-autonomous wearable systems. Full article
(This article belongs to the Special Issue Feature Papers in Smart Sensing and Intelligent Sensors 2025)
24 pages, 9586 KB  
Article
Optimized Recognition Algorithm for Remotely Sensed Sea Ice in Polar Ship Path Planning
by Li Zhou, Runxin Xu, Jiayi Bian, Shifeng Ding, Sen Han and Roger Skjetne
Remote Sens. 2025, 17(19), 3359; https://doi.org/10.3390/rs17193359 (registering DOI) - 4 Oct 2025
Abstract
Collisions between ships and sea ice pose a significant threat to maritime safety, making it essential to detect sea ice and perform safety-oriented path planning for polar navigation. This paper utilizes an optimized You Only Look Once version 5 (YOLOv5) model, designated as [...] Read more.
Collisions between ships and sea ice pose a significant threat to maritime safety, making it essential to detect sea ice and perform safety-oriented path planning for polar navigation. This paper utilizes an optimized You Only Look Once version 5 (YOLOv5) model, designated as YOLOv5-ICE, for the detection of sea ice in satellite imagery, with the resultant detection data being employed to input obstacle coordinates into a ship path planning system. The enhancements include the Squeeze-and-Excitation (SE) attention mechanism, improved spatial pyramid pooling, and the Flexible ReLU (FReLU) activation function. The improved YOLOv5-ICE shows enhanced performance, with its mAP increasing by 3.5% compared to the baseline YOLOv5 and also by 1.3% compared to YOLOv8. YOLOv5-ICE demonstrates robust performance in detecting small sea ice targets within large-scale satellite images and excels in high ice concentration regions. For path planning, the Any-Angle Path Planning on Grids algorithm is applied to simulate routes based on detected sea ice floes. The objective function incorporates the path length, number of ship turns, and sea ice risk value, enabling path planning under varying ice concentrations. By integrating detection and path planning, this work proposes a novel method to enhance navigational safety in polar regions. Full article
Show Figures

Figure 1

23 pages, 548 KB  
Article
Symmetry- and Asymmetry-Aware Dual-Path Retrieval and In-Context Learning-Based LLM for Equipment Relation Extraction
by Mingfei Tang, Liang Zhang, Zhipeng Yu, Xiaolong Shi and Xiulei Liu
Symmetry 2025, 17(10), 1647; https://doi.org/10.3390/sym17101647 (registering DOI) - 4 Oct 2025
Abstract
Relation extraction in the equipment domain often exhibits asymmetric patterns, where entities participate in multiple overlapping relations that break the expected structural symmetry of semantic associations. Such asymmetry increases task complexity and reduces extraction accuracy in conventional approaches. To address this issue, we [...] Read more.
Relation extraction in the equipment domain often exhibits asymmetric patterns, where entities participate in multiple overlapping relations that break the expected structural symmetry of semantic associations. Such asymmetry increases task complexity and reduces extraction accuracy in conventional approaches. To address this issue, we propose a symmetry- and asymmetry-aware dual-path retrieval and in-context learning-based large language model. Specifically, the BGE-M3 embedding model is fine-tuned for domain-specific adaptation, and a multi-level retrieval database is constructed to capture both global semantic symmetry at the sentence level and local asymmetric interactions at the relation level. A dual-path retrieval strategy, combined with Reciprocal Rank Fusion, integrates these complementary perspectives, while task-specific prompt templates further enhance extraction accuracy. Experimental results demonstrate that our method not only mitigates the challenges posed by overlapping and asymmetric relations but also leverages the latent symmetry of semantic structures to improve performance. Experimental results show that our approach effectively mitigates challenges from overlapping and asymmetric relations while exploiting latent semantic symmetry, achieving an F1-score of 88.53%, a 1.86% improvement over the strongest baseline (GPT-RE). Full article
(This article belongs to the Special Issue Symmetry and Its Applications in Computer Vision)
Show Figures

Figure 1

21 pages, 4053 KB  
Article
Self-Attention-Enhanced Deep Learning Framework with Multi-Scale Feature Fusion for Potato Disease Detection in Complex Multi-Leaf Field Conditions
by Ke Xie, Decheng Xu and Sheng Chang
Appl. Sci. 2025, 15(19), 10697; https://doi.org/10.3390/app151910697 - 3 Oct 2025
Abstract
Potato leaf diseases are recognized as a major threat to agricultural productivity and global food security, emphasizing the need for rapid and accurate detection methods. Conventional manual diagnosis is limited by inefficiency and susceptibility to bias, whereas existing automated approaches are often constrained [...] Read more.
Potato leaf diseases are recognized as a major threat to agricultural productivity and global food security, emphasizing the need for rapid and accurate detection methods. Conventional manual diagnosis is limited by inefficiency and susceptibility to bias, whereas existing automated approaches are often constrained by insufficient feature extraction, inadequate integration of multiple leaves, and poor generalization under complex field conditions. To overcome these challenges, a ResNet18-SAWF model was developed, integrating a self-attention mechanism with a multi-scale feature-fusion strategy within the ResNet18 framework. The self-attention module was designed to enhance the extraction of key features, including leaf color, texture, and disease spots, while the feature-fusion module was implemented to improve the holistic representation of multi-leaf structures under complex backgrounds. Experimental evaluation was conducted using a comprehensive dataset comprising both simple and complex background conditions. The proposed model was demonstrated to achieve an accuracy of 98.36% on multi-leaf images with complex backgrounds, outperforming baseline ResNet18 (91.80%), EfficientNet-B0 (86.89%), and MobileNet_V2 (88.53%) by 6.56, 11.47, and 9.83 percentage points, respectively. Compared with existing methods, superior performance was observed, with an 11.55 percentage point improvement over the average accuracy of complex background studies (86.81%) and a 0.7 percentage point increase relative to simple background studies (97.66%). These results indicate that the proposed approach provides a robust, accurate, and practical solution for potato leaf disease detection in real field environments, thereby advancing precision agriculture technologies. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

31 pages, 1452 KB  
Article
A User-Centric Context-Aware Framework for Real-Time Optimisation of Multimedia Data Privacy Protection, and Information Retention Within Multimodal AI Systems
by Ndricim Topalli and Atta Badii
Sensors 2025, 25(19), 6105; https://doi.org/10.3390/s25196105 - 3 Oct 2025
Abstract
The increasing use of AI systems for face, object, action, scene, and emotion recognition raises significant privacy risks, particularly when processing Personally Identifiable Information (PII). Current privacy-preserving methods lack adaptability to users’ preferences and contextual requirements, and obfuscate user faces uniformly. This research [...] Read more.
The increasing use of AI systems for face, object, action, scene, and emotion recognition raises significant privacy risks, particularly when processing Personally Identifiable Information (PII). Current privacy-preserving methods lack adaptability to users’ preferences and contextual requirements, and obfuscate user faces uniformly. This research proposes a user-centric, context-aware, and ontology-driven privacy protection framework that dynamically adjusts privacy decisions based on user-defined preferences, entity sensitivity, and contextual information. The framework integrates state-of-the-art recognition models for recognising faces, objects, scenes, actions, and emotions in real time on data acquired from vision sensors (e.g., cameras). Privacy decisions are directed by a contextual ontology based in Contextual Integrity theory, which classifies entities into private, semi-private, or public categories. Adaptive privacy levels are enforced through obfuscation techniques and a multi-level privacy model that supports user-defined red lines (e.g., “always hide logos”). The framework also proposes a Re-Identifiability Index (RII) using soft biometric features such as gait, hairstyle, clothing, skin tone, age, and gender, to mitigate identity leakage and to support fallback protection when face recognition fails. The experimental evaluation relied on sensor-captured datasets, which replicate real-world image sensors such as surveillance cameras. User studies confirmed that the framework was effective, with over 85.2% of participants rating the obfuscation operations as highly effective, and the other 14.8% stating that obfuscation was adequately effective. Amongst these, 71.4% considered the balance between privacy protection and usability very satisfactory and 28% found it satisfactory. GPU acceleration was deployed to enable real-time performance of these models by reducing frame processing time from 1200 ms (CPU) to 198 ms. This ontology-driven framework employs user-defined red lines, contextual reasoning, and dual metrics (RII/IVI) to dynamically balance privacy protection with scene intelligibility. Unlike current anonymisation methods, the framework provides a real-time, user-centric, and GDPR-compliant method that operationalises privacy-by-design while preserving scene intelligibility. These features make the framework appropriate to a variety of real-world applications including healthcare, surveillance, and social media. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

24 pages, 2319 KB  
Article
Droplet-Laden Flows in Multistage Compressors: An Overview of the Impact of Modeling Depth on Calculated Compressor Performance
by Silvio Geist and Markus Schatz
Int. J. Turbomach. Propuls. Power 2025, 10(4), 36; https://doi.org/10.3390/ijtpp10040036 - 2 Oct 2025
Abstract
There are various mechanisms through which water droplets can be present in compressor flows, e.g., rain ingestion in aeroengines or overspray fogging used in heavy-duty gas turbines to boost power output. For the latter, droplet evaporation within the compressor leads to a cooling [...] Read more.
There are various mechanisms through which water droplets can be present in compressor flows, e.g., rain ingestion in aeroengines or overspray fogging used in heavy-duty gas turbines to boost power output. For the latter, droplet evaporation within the compressor leads to a cooling of the flow as well as to a shift in the fluid properties, which is beneficial to the overall process. However, due to their inertia, the majority of droplets are deposited in the first stages of a multistage compressor. While this phenomenon is generally considered in CFD computations of droplet-laden flows, the subsequent re-entrainment of collected water, the formation of new droplets, and the impact on the overall evaporation are mostly neglected because of the additional computational effort required, especially with regard to the modeling of films formed by the deposited water. The work presented here shows an approach that allows for the integration of the process of droplet deposition and re-entrainment based on relatively simple correlations and experimental observations from the literature. Thus, the two-phase flow in multistage compressors can be modelled and analyzed very efficiently. In this paper, the models and assumptions used are described first, then the results of a study performed based on a generic multistage compressor are presented, whereby the various models are integrated step by step to allow an assessment of their impact on the droplet evaporation throughout the compressor and overall performance. It can be shown that evaporation becomes largely independent of droplet size when deposition on both rotor and stator and subsequent re-entrainment of collected water is considered. In addition, open issues with regard to the future improvement of models and correlations of two-phase flow phenomena are highlighted based on the results of the current investigation. Full article
44 pages, 7867 KB  
Article
Bridging AI and Maintenance: Fault Diagnosis in Industrial Air-Cooling Systems Using Deep Learning and Sensor Data
by Ioannis Polymeropoulos, Stavros Bezyrgiannidis, Eleni Vrochidou and George A. Papakostas
Machines 2025, 13(10), 909; https://doi.org/10.3390/machines13100909 - 2 Oct 2025
Abstract
This work aims towards the automatic detection of faults in industrial air-cooling equipment used in a production line for staple fibers and ultimately provides maintenance scheduling recommendations to ensure seamless operation. In this context, various deep learning models are tested to ultimately define [...] Read more.
This work aims towards the automatic detection of faults in industrial air-cooling equipment used in a production line for staple fibers and ultimately provides maintenance scheduling recommendations to ensure seamless operation. In this context, various deep learning models are tested to ultimately define the most effective one for the intended scope. In the examined system, four vibration and temperature sensors are used, each positioned radially on the motor body near the rolling bearing of the motor shaft—a typical setup in many industrial environments. Thus, by collecting and using data from the latter sources, this work exhaustively investigates the feasibility of accurately diagnosing faults in staple fiber cooling fans. The dataset is acquired and constructed under real production conditions, including variations in rotational speed, motor load, and three fault priorities, depending on the model detection accuracy, product specification, and maintenance requirements. Fault identification for training purposes involves analyzing and evaluating daily maintenance logs for this equipment. Experimental evaluation on real production data demonstrated that the proposed ResNet50-1D model achieved the highest overall classification accuracy of 97.77%, while effectively resolving the persistent misclassification of the faulty impeller observed in all the other models. Complementary evaluation confirmed its robustness, cross-machine generalization, and suitability for practical deployment, while the integration of predictions with maintenance logs enables a severity-based prioritization strategy that supports actionable maintenance planning.deep learning; fault classification; industrial air-cooling; industrial automation; maintenance scheduling; vibration analysis Full article
16 pages, 13271 KB  
Article
Smartphone-Based Estimation of Cotton Leaf Nitrogen: A Learning Approach with Multi-Color Space Fusion
by Shun Chen, Shizhe Qin, Yu Wang, Lulu Ma and Xin Lv
Agronomy 2025, 15(10), 2330; https://doi.org/10.3390/agronomy15102330 - 2 Oct 2025
Abstract
To address the limitations of traditional cotton leaf nitrogen content estimation methods, which include low efficiency, high cost, poor portability, and challenges in vegetation index acquisition owing to environmental interference, this study focused on emerging non-destructive nutrient estimation technologies. This study proposed an [...] Read more.
To address the limitations of traditional cotton leaf nitrogen content estimation methods, which include low efficiency, high cost, poor portability, and challenges in vegetation index acquisition owing to environmental interference, this study focused on emerging non-destructive nutrient estimation technologies. This study proposed an innovative method that integrates multi-color space fusion with deep and machine learning to estimate cotton leaf nitrogen content using smartphone-captured digital images. A dataset comprising smartphone-acquired cotton leaf images was processed through threshold segmentation and preprocessing, then converted into RGB, HSV, and Lab color spaces. The models were developed using deep-learning architectures including AlexNet, VGGNet-11, and ResNet-50. The conclusions of this study are as follows: (1) The optimal single-color-space nitrogen estimation model achieved a validation set R2 of 0.776. (2) Feature-level fusion by concatenation of multidimensional feature vectors extracted from three color spaces using the optimal model, combined with an attention learning mechanism, improved the validation R2 to 0.827. (3) Decision-level fusion by concatenating nitrogen estimation values from optimal models of different color spaces into a multi-source decision dataset, followed by machine learning regression modeling, increased the final validation R2 to 0.830. The dual fusion method effectively enabled rapid and accurate nitrogen estimation in cotton crops using smartphone images, achieving an accuracy 5–7% higher than that of single-color-space models. The proposed method provides scientific support for efficient cotton production and promotes sustainable development in the cotton industry. Full article
(This article belongs to the Special Issue Crop Nutrition Diagnosis and Efficient Production)
Show Figures

Figure 1

15 pages, 14001 KB  
Article
Single-Step Engineered Gelatin-Based Hydrogel for Integrated Prevention of Postoperative Adhesion and Promotion of Wound Healing
by Xinyu Wu, Lei Sun, Jianmei Chen, Meiling Su and Zongguang Liu
Gels 2025, 11(10), 797; https://doi.org/10.3390/gels11100797 - 2 Oct 2025
Abstract
Postoperative adhesion remains a major clinical challenge, often leading to chronic pain, functional disorders, and recurrent surgeries. Herein, we developed a multifunctional gelatin–polyphenol hydrogel (GPP20) featuring rapid gelation (within 5 min), strong tissue adhesion (lasting > 24 h under physiological conditions), and intrinsic [...] Read more.
Postoperative adhesion remains a major clinical challenge, often leading to chronic pain, functional disorders, and recurrent surgeries. Herein, we developed a multifunctional gelatin–polyphenol hydrogel (GPP20) featuring rapid gelation (within 5 min), strong tissue adhesion (lasting > 24 h under physiological conditions), and intrinsic wound healing capacity to achieve integrated prevention of postoperative adhesion. GPP20 was fabricated via dynamic crosslinking between gelatin and tea polyphenol, endowing it with injectability, self-healing, biodegradability, and excellent mechanical properties (shear stress of 14.2 N). In vitro studies demonstrated that GPP20 exhibited effective ROS scavenging (82% ABTS scavenging capability), which protects cells against oxidative stress, while possessing excellent hemocompatibility and in vivo safety. Notably, GPP20 significantly reduced postoperative cecum–abdominal wall adhesions through both physical barrier effects and modulation of inflammation and collagen deposition, demonstrating a comprehensive integrated prevention strategy. Furthermore, in full-thickness wound models, GPP20 accelerated tissue regeneration (85% wound closure rate on day 10) by promoting macrophage polarization toward the M2 phenotype and stimulating angiogenesis, thereby enhancing collagen deposition and re-epithelialization. Collectively, these findings demonstrate that GPP20 integrates anti-adhesion efficacy with regenerative support, offering a facile and clinically translatable strategy for postoperative care and wound healing. Full article
(This article belongs to the Special Issue Advances in Functional Gel (3rd Edition))
Show Figures

Figure 1

Back to TopTop