Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,857)

Search Parameters:
Keywords = reaction layers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1449 KB  
Article
Enhanced Cycling Stability of High-Voltage Sodium-Ion Batteries via DFEC-Driven Fluorinated Interface Engineering
by Xin Li, Yali Yao and Xinying Liu
Reactions 2025, 6(4), 52; https://doi.org/10.3390/reactions6040052 - 1 Oct 2025
Abstract
With their considerable capacity and structurally favorable characteristics, layered transition metal oxides have become strong contenders for cathode use in sodium-ion batteries (SIBs). Nevertheless, their practical deployment is challenged by pronounced capacity loss, predominantly induced by unstable cathode–electrolyte interphase (CEI) at elevated voltages. [...] Read more.
With their considerable capacity and structurally favorable characteristics, layered transition metal oxides have become strong contenders for cathode use in sodium-ion batteries (SIBs). Nevertheless, their practical deployment is challenged by pronounced capacity loss, predominantly induced by unstable cathode–electrolyte interphase (CEI) at elevated voltages. In this study, difluoroethylene carbonate (DFEC) is introduced as a functional electrolyte additive to engineer a robust and uniform CEI. The fluorine-enriched CEI effectively suppresses parasitic reactions, mitigates continuous electrolyte decomposition, and facilitates stable Na+ transport. Consequently, Na/NaNi1/3Fe1/3Mn1/3O2 (Na/NFM) cells with 2 wt.% DFEC retain 78.36% of their initial capacity after 200 cycles at 1 C and 4.2 V, demonstrating excellent long-term stability. Density functional theory (DFT) calculations confirm the higher oxidative stability of DFEC compared to conventional solvents, further supporting its interfacial protection role. This work offers valuable insights into electrolyte additive design for high-voltage SIBs and provides a practical route to significantly improve long-term electrochemical performance. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2025)
Show Figures

Figure 1

13 pages, 3844 KB  
Article
Atypical Analysis of a Graphite-Based Anode Prepared Using Aqueous Processes
by Kuan-Yi Liao, Chia-Chin Chang, Yuh-Lang Lee and Ten-Chin Wen
Molecules 2025, 30(19), 3947; https://doi.org/10.3390/molecules30193947 - 1 Oct 2025
Abstract
In order to form a solid electrolyte interphase (SEI) layer using aqueous processes, a graphite anode called MG-AQP was designed by wrapping and crosslinking graphite particles with aqueous composites (AQCs), which contained zwitterionic polymer, zwitterion molecules, and lithium salts. First, MG-AQP was used [...] Read more.
In order to form a solid electrolyte interphase (SEI) layer using aqueous processes, a graphite anode called MG-AQP was designed by wrapping and crosslinking graphite particles with aqueous composites (AQCs), which contained zwitterionic polymer, zwitterion molecules, and lithium salts. First, MG-AQP was used to fabricate a full lithium-ion battery (LIB) cell with Li[Ni0.8Mn0.1Co0.1]O2 (NMC811) as the cathode, denoted as LIB-MG-AQP//NMC811, to demonstrate its performance via a 0.5 C-rate break-in and 1 C-rate cycling. Accordingly, this showed that LIB-MG-AQP exhibits outstanding cyclic stability. To evaluate its electrochemical performance, MG-AQP and lithium metal were used to fabricate a half cell named LIBs-MG-AQP. According to the initial cyclic voltammetry curve, almost no surface reaction for forming an SEI layer exists in LIBs-MG-AQP, illustrating its high initial coulombic efficiency of 92% at a 0.5 C-rate break-in. These outstanding results are due to the fact that the AQC has fewer cracks, thus blocking solvent molecules from passing from the electrolyte into the graphite anode. This study provides new insights to optimize graphite anodes via 0.5 C-rate break-in rather than conventional SEI formation to save time and energy. Full article
(This article belongs to the Special Issue Carbon-Based Electrochemical Materials for Energy Storage)
Show Figures

Figure 1

27 pages, 2502 KB  
Review
Recent Advances in Transition Metal Dichalcogenide-Based Electrodes for Asymmetric Supercapacitors
by Tianyi Gao, Yue Li, Chin Wei Lai, Ping Xiang, Irfan Anjum Badruddin, Pooja Dhiman and Amit Kumar
Catalysts 2025, 15(10), 945; https://doi.org/10.3390/catal15100945 - 1 Oct 2025
Abstract
The global transition toward renewable energy sources has intensified in response to escalating environmental challenges. Nevertheless, the inherent intermittency and instability of renewable energy necessitate the development of reliable energy storage technologies. Supercapacitors are particularly notable for their high specific capacitance, rapid charge [...] Read more.
The global transition toward renewable energy sources has intensified in response to escalating environmental challenges. Nevertheless, the inherent intermittency and instability of renewable energy necessitate the development of reliable energy storage technologies. Supercapacitors are particularly notable for their high specific capacitance, rapid charge and discharge capability, and exceptional cycling stability. Concurrently, the increasing demand for efficient and sustainable energy storage systems has stimulated interest in multifunctional electrode materials that integrate electrocatalytic activity with electrochemical energy storage. Two-dimensional transition metal dichalcogenides (TMDs), owing to their distinctive layered structures, large surface areas, phase state, energy band structure, and intrinsic electrocatalytic properties, have emerged as promising candidates to achieve dual functionality in electrocatalysis and electrochemical energy storage for asymmetric supercapacitors (ASCs). Specifically, their unique electronic properties and catalytic characteristics promote reversible Faradaic reactions and accelerate charge transfer kinetics, thus markedly enhancing charge storage efficiency and energy density. This review highlights recent advances in TMD-based multifunctional electrodes. It elucidates mechanistic correlations between intrinsic electronic properties and electrocatalytic reactions that influence charge storage processes, guiding the rational design of high-performance ASC systems. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

18 pages, 3305 KB  
Article
Removal of Cu(II) from Aqueous Medium with LDH-Mg/Fe and Its Subsequent Application as a Sustainable Catalyst
by Edgar Oswaldo Leyva Cruz, Ricardo Lopez-Medina, Deyanira Angeles-Beltrán and Refugio Rodríguez-Vázquez
Catalysts 2025, 15(10), 930; https://doi.org/10.3390/catal15100930 - 1 Oct 2025
Abstract
In this work, the removal of Cu(II) ions from an aqueous effluent was studied using an Mg/Fe layered double hydroxide (LDH) as the adsorbent. The material was synthesized and characterized before and after the adsorption process to identify structural and morphological changes induced [...] Read more.
In this work, the removal of Cu(II) ions from an aqueous effluent was studied using an Mg/Fe layered double hydroxide (LDH) as the adsorbent. The material was synthesized and characterized before and after the adsorption process to identify structural and morphological changes induced by copper uptake. Techniques such as X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), ultraviolet-visible spectroscopy (UV-Vis), Raman spectroscopy, and nitrogen physisorption (BET) were employed to confirm the interaction between the metal ions and the LDH surface. The LDH-Mg/Fe exhibited a high maximum adsorption capacity of 526 mg/g, and the adsorption kinetics followed a pseudo-second-order model, achieving over 90% removal of Cu(II) within 2.5 h. The Cu(II)-loaded material was subsequently evaluated as a sustainable catalyst in two applications: (i) an organic synthesis via “click” chemistry, reaching yields of up to 85%, and (ii) the decoloration of Congo Red via a Fenton-like process, achieving a decoloration efficiency of at least 84%. These dual uses demonstrate the potential of Cu(II)-loaded LDH as a cost-effective and environmentally friendly approach to simultaneous pollutant removal and catalytic valorization. Full article
Show Figures

Graphical abstract

12 pages, 2886 KB  
Article
Atomic-Scale Revelation of Voltage-Modulated Electrochemical Corrosion Mechanism in 4H-SiC Substrate
by Qiufa Luo, Dianlong Lin, Jing Lu, Congming Ke, Zige Tian, Feng Jiang, Jianhui Zhu and Hui Huang
Micromachines 2025, 16(10), 1129; https://doi.org/10.3390/mi16101129 - 30 Sep 2025
Abstract
Electrochemical mechanical polishing is a critical technology for improving the surface quality of silicon carbide (SiC) substrates. However, the fundamental electrochemical corrosion mechanism of the SiC substrate remains incompletely understood. In this study, the electrochemical corrosion behavior of the SiC substrate is explored [...] Read more.
Electrochemical mechanical polishing is a critical technology for improving the surface quality of silicon carbide (SiC) substrates. However, the fundamental electrochemical corrosion mechanism of the SiC substrate remains incompletely understood. In this study, the electrochemical corrosion behavior of the SiC substrate is explored through comprehensive experiments and molecular dynamics simulations. Key findings demonstrated that the 4H-0° SiC exhibited the highest corrosion rate in a 0.6 mol/L NaCl electrolyte. The corrosion rate increased as the voltage rose within the range of 2 to 20 V. When the voltage was between 20 and 25 V, the system entered the stable passivation region, while when the voltage was 25 to 30 V, partial dissolution of the surface oxide layer occurred. Molecular dynamics simulations further revealed that both amorphization degree and reaction depth on the SiC surface showed a decreasing trend at elevated voltages, suggesting a corresponding reduction in the corrosion rate when the voltage exceeded the optimal range. OH, O2−, and •OH generated by the electrolysis of water during electrochemical corrosion would rapidly react with the surface of the SiC anode, and subsequently form a SiO2 modified layer. Moreover, these atomistic insights establish a scientific foundation for achieving superior surface integrity in large-diameter SiC substrates through optimized electrochemical mechanical polishing processes. Full article
Show Figures

Figure 1

11 pages, 1486 KB  
Article
Study of the Iodine Fixation over High Surface Area Graphite (HSAG-100) Under Mild Conditions
by Angel Maroto-Valiente, Carla A. Blanco-Camus, Ana I. Mártir Bueno, Elena M. Mesa-Bribián and Jesús Alvarez-Rodríguez
C 2025, 11(4), 73; https://doi.org/10.3390/c11040073 - 30 Sep 2025
Abstract
The controlled incorporation of halogens into carbon materials remains a challenge, particularly under mild and scalable conditions. In this work, we investigate the fixation of iodine on high-surface-area graphite (HSAG-100) using green solvents and moderate temperatures. Commercial HSAG was treated with iodine in [...] Read more.
The controlled incorporation of halogens into carbon materials remains a challenge, particularly under mild and scalable conditions. In this work, we investigate the fixation of iodine on high-surface-area graphite (HSAG-100) using green solvents and moderate temperatures. Commercial HSAG was treated with iodine in aqueous and in organic media, with and without promoters, and characterized by XPS, LEIS, N2 physisorption, TGA/TPD, and XRD. The results reveal that iodine contents up to ~0.6 at% can be achieved, with incorporation strongly influenced by solvent and reaction time. XPS and LEIS confirmed the presence of C–I bonds, while BET analysis showed only moderate decreases in surface area and unchanged mesopore size distribution. Thermogravimetric and TPD analyses demonstrated the high thermal stability of C–I species, and XRD patterns ruled out intercalation between graphene layers. Collectively, these findings demonstrate that iodine can be covalently anchored to HSAG under mild conditions, preserving the graphitic structure and generating stable edge functionalities, thus opening a route for the design of halogen-doped carbons for catalytic and electrochemical applications. Full article
(This article belongs to the Section Carbon Materials and Carbon Allotropes)
Show Figures

Figure 1

43 pages, 2854 KB  
Review
Strategies for Enhancing BiVO4 Photoanodes for PEC Water Splitting: A State-of-the-Art Review
by Binh Duc Nguyen, In-Hee Choi and Jae-Yup Kim
Nanomaterials 2025, 15(19), 1494; https://doi.org/10.3390/nano15191494 - 30 Sep 2025
Abstract
Bismuth vanadate (BiVO4) has attracted significant attention as a photoanode material for photoelectrochemical (PEC) water splitting due to its suitable bandgap (~2.4 eV), strong visible light absorption, chemical stability, and cost-effectiveness. Despite these advantages, its practical application remains constrained by intrinsic [...] Read more.
Bismuth vanadate (BiVO4) has attracted significant attention as a photoanode material for photoelectrochemical (PEC) water splitting due to its suitable bandgap (~2.4 eV), strong visible light absorption, chemical stability, and cost-effectiveness. Despite these advantages, its practical application remains constrained by intrinsic limitations, including poor charge carrier mobility, short diffusion length, and sluggish oxygen evolution reaction (OER) kinetics. This review critically summarizes recent advancements aimed at enhancing BiVO4 PEC performance, encompassing synthesis strategies, defect engineering, heterojunction formation, cocatalyst integration, light-harvesting optimization, and stability improvements. Key fabrication methods—such as solution-based, vapor-phase, and electrochemical approaches—along with targeted modifications, including metal/nonmetal doping, surface passivation, and incorporation of electron transport layers, are discussed. Emphasis is placed on strategies to improve light absorption, charge separation efficiency (ηsep), and charge transfer efficiency (ηtrans) through bandgap engineering, optical structure design, and catalytic interface optimization. Approaches to enhance stability via protective overlayers and electrolyte tuning are also reviewed, alongside emerging applications of BiVO4 in tandem PEC systems and selective solar-driven production of value-added chemicals, such as H2O2. Finally, critical challenges, including the scale-up of electrode fabrication and the elucidation of fundamental reaction mechanisms, are highlighted, providing perspectives for bridging the gap between laboratory performance and practical implementation. Full article
15 pages, 3391 KB  
Article
A Method of Analyzing the Component Reactions of an Overall Reaction: Autothermal Reforming of Acetic Acid Example
by James Manganaro, Yujia Liu, Jiazhun Huang, Bi Chen and Adeniyi Lawal
Processes 2025, 13(10), 3112; https://doi.org/10.3390/pr13103112 - 28 Sep 2025
Abstract
Using Excel and its Solver feature, a novel method of analyzing the component reactions of an overall reaction is outlined. As an example, autothermal reforming (300–700 °C) of acetic acid (AA), a significant component of pyrolysis oil, was considered. The overall reaction can [...] Read more.
Using Excel and its Solver feature, a novel method of analyzing the component reactions of an overall reaction is outlined. As an example, autothermal reforming (300–700 °C) of acetic acid (AA), a significant component of pyrolysis oil, was considered. The overall reaction can be viewed as comprising five individual reactions: reforming, oxidation, water–gas shift, reverse Boudouard, and methanation. A laboratory apparatus was set up in which acetic acid, air, and water were continuously fed to a BASF dual-layer catalytic reactor in plug flow at 1 atm. For this setup, it is easy to construct a material balance in Excel in which five factors, fi, are defined which represent the fraction of reactant going to each of the individual five reactions. Using the Solver feature of Excel, it can readily be determined which of the five factors fi produce the best match of the calculated exit gas composition with the measured gas concentrations for CO, CO2, H2, CH4, and O2. Furthermore, a program such as GasEq or Aspen can then be used to calculate the theoretical equilibrium gas composition at a given condition. Using this equilibrium gas composition and Solver, the individual (fi)equilb can be calculated. Thus, the ratio fi/(fi)equilb is an indication of how close each component reaction is to equilibrium. In this way, an idea is gained of which of the individual component reactions need to be improved or inhibited or if operating parameters should be adjusted. For the specific case of autothermal reforming of acetic acid, the steam reforming reaction requires at least 600 °C to approach equilibrium. In contrast, the oxidation reaction goes to equilibrium throughout the temperature range, completely consuming oxygen. The water–gas shift reaction appears to approach equilibrium to the extent of 71–90% throughout the temperature range. The reverse Boudouard reaction is favored at lower temperatures; in fact, coking was predicted and found at the low temperature of 300 °C. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

16 pages, 2916 KB  
Article
Synergistic Regulation of Solvation Shell and Anode Interface by Bifunctional Additives for Stable Aqueous Zinc-Ion Batteries
by Luo Zhang, Die Chen, Chenxia Zhao, Haibo Tian, Gaoda Li, Xiaohong He, Gengpei Xia, Yafan Luo and Dingyu Yang
Nanomaterials 2025, 15(19), 1482; https://doi.org/10.3390/nano15191482 - 28 Sep 2025
Abstract
Aqueous zinc-ion batteries (AZIBs) have attracted significant attention for large-scale energy storage owing to their high safety, low cost, and environmental friendliness. However, issues such as dendrite growth, hydrogen evolution, and corrosion at the zinc anode severely limit their cycling stability. In this [...] Read more.
Aqueous zinc-ion batteries (AZIBs) have attracted significant attention for large-scale energy storage owing to their high safety, low cost, and environmental friendliness. However, issues such as dendrite growth, hydrogen evolution, and corrosion at the zinc anode severely limit their cycling stability. In this study, a “synergistic solvation shell–interfacial adsorption regulation” strategy is proposed, employing potassium gluconate (KG) and dimethyl sulfoxide (DMSO) as composite additives to achieve highly reversible zinc anodes. DMSO integrates into the Zn2+ solvation shell, weakening Zn2+-H2O interactions and suppressing the activity of free water, while gluconate anions preferentially adsorb onto the zinc anode surface, inducing the formation of a robust solid electrolyte interphase (SEI) enriched in Zn(OH)2 and ZnCO3. Nuclear magnetic resonance(NMR), Raman, and Fourier transform infrared spectroscopy(FTIR) analyses confirm the reconstruction of the solvation structure and reduction in water activity, and X-ray photoelectron spectroscopy(XPS) verifies the formation of the SEI layer. Benefiting from this strategy, Zn||Zn symmetric cells exhibit stable cycling for over 1800 h at 1 mA cm−2 and 1 mAh cm−2, and Zn||Cu cells achieve an average coulombic efficiency of 96.39%, along with pronounced suppression of the hydrogen evolution reaction. This work provides a new paradigm for the design of low-cost and high-performance electrolyte additives. Full article
(This article belongs to the Topic Advanced Energy Storage in Aqueous Zinc Batteries)
Show Figures

Figure 1

19 pages, 8005 KB  
Article
Frictional Characteristics and Tribological Mechanisms of Ionic Liquid Lubricants in Ceramic Tribo-Systems
by Zehui Yang, Shujuan Li, Limu Cui and Congjun Cao
Materials 2025, 18(19), 4504; https://doi.org/10.3390/ma18194504 - 27 Sep 2025
Abstract
Due to their excellent mechanical stability, chemical stability, and environmentally friendly properties, ceramic materials have received extensive attention for years. Meanwhile, ionic liquids (ILs) have been found to effectively enhance tribological properties when applied as lubricants, which has become a distinctive example of [...] Read more.
Due to their excellent mechanical stability, chemical stability, and environmentally friendly properties, ceramic materials have received extensive attention for years. Meanwhile, ionic liquids (ILs) have been found to effectively enhance tribological properties when applied as lubricants, which has become a distinctive example of their wide exploration. Here, three novel proton-type ionic liquids containing different polar groups were designed and synthesized as pure lubricants for use on different ceramic friction couples (silicon nitride–silicon nitride, silicon nitride–silicon carbide, and silicon nitride–zirconium oxide contacts), and their lubrication effect was evident. The results indicate that the adsorption behavior and frictional characteristics of different polar groups on a ceramic friction interface differ, largely depending on tribochemical reactions and the formation of a double electric layer on the interface between the ILs and ceramic substrates, without obvious corrosion during sliding. The friction coefficient is reduced by more than 80%, and this excellent anti-friction effect demonstrates that the constructed ionic liquid–ceramic interface tribological system shows good application potential. Based on the analyses of SEM, EDS, and XPS, the tribochemical reaction on the sliding asperity and the film-forming effect were identified as the dominant lubrication mechanisms. Here, the high lubricity and anti-wear performance of ILs containing phosphorus elements on different ceramic contacts is emphasized, enriching the promising application of high-performance ILs for macroscale, high-efficiency lubrication and low wear, which is of significance for engineering and practical applications. Full article
Show Figures

Figure 1

21 pages, 5252 KB  
Article
Photoactive TiO2 Nanotubes and SILAR-Synthesized PbS/TiO2 Heterojunctions for Tetracycline Antibiotic Photodegradation
by Safa Jemai, Karim Choubani, Anouar Hajjaji, Syrine Sassi, Mohamed Ben Rabha, Mohammed A. Almeshaal, Bernabé Mari Soucase and Brahim Bessais
Inorganics 2025, 13(10), 320; https://doi.org/10.3390/inorganics13100320 - 27 Sep 2025
Abstract
Titanium dioxide nanotubes (TiO2 NTs) decorated with lead sulfide nanoparticles (PbS NPs) were synthesized using the Successive Ionic Layer Adsorption and Reaction (SILAR) method at different number (n) of cycles (where n = 3, 5, and 8) and evaluated for [...] Read more.
Titanium dioxide nanotubes (TiO2 NTs) decorated with lead sulfide nanoparticles (PbS NPs) were synthesized using the Successive Ionic Layer Adsorption and Reaction (SILAR) method at different number (n) of cycles (where n = 3, 5, and 8) and evaluated for tetracycline (TC) photodegradation under UV light. PbS NPs/TiO2 NTs heterojunctions prepared with 5 SILAR cycles showed optimal photocatalytic activity. Also, under optimized conditions, pure TiO2 NTs achieved complete TC photodegradation (99%) within 5 h under UV irradiation, with a proposed degradation mechanism based on holes (h+) and hydroxyl radicals (•OH) as dominant reactive species. Full article
Show Figures

Figure 1

17 pages, 7055 KB  
Article
Studies on the Migration of Metal Ions in the Aquifer and the Seepage Prevention of Intercepting Walls in Lead–Zinc Mining Areas
by Shuangcheng Tang, Xuehai Fu, Haiyue Lin, Zexuan Liao, Baolei Xie, Zhiwen Xue, Guanyu Zhao, Wei Qiao and Qiqing Wang
Water 2025, 17(19), 2828; https://doi.org/10.3390/w17192828 - 26 Sep 2025
Abstract
As metal resource extraction increases, heavy metal ion pollution in the saturated zone intensifies. Hence, research on the migration of heavy metal ions in aquifers and the efficacy of protective measures is essential to inform pollution prevention and control engineering. This study focuses [...] Read more.
As metal resource extraction increases, heavy metal ion pollution in the saturated zone intensifies. Hence, research on the migration of heavy metal ions in aquifers and the efficacy of protective measures is essential to inform pollution prevention and control engineering. This study focuses on the slag pond and its surrounding area of a smelting plant. Utilizing field hydrological surveys and experiments, and data from previous studies, we employed FEFLOW7.0 simulation software to model the groundwater system of the boulder aquifer in this region. The model divides the domain based on natural topography: the eastern river serves as a constant-head boundary, while other areas are set as specified-flux boundaries. The impermeable layer at the bottom is treated as a no-flow boundary, with a maximum simulation period of 2500 days. The simulation examines the natural movement of zinc ions and how the construction of the wall impacts their migration, as well as the wall’s effectiveness in preventing seepage. Findings indicate that the movement of zinc ions is significantly influenced by the reaction coefficient. When the reaction coefficient exceeds 10−8 s−1, zinc ions decrease rapidly in the area. After the construction of the cutoff wall, the maximum migration distance of zinc ions within 2500 days decreased from 220 m to 77 m, demonstrating its effectiveness in controlling zinc transport in groundwater. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

20 pages, 9180 KB  
Article
Theaflavins as Electrolyte Additives for Inhibiting Zinc Dendrites and Hydrogen Evolution in Aqueous Zinc-Ion Batteries
by Xiao Zhang, Ting Cheng, Chen Chen, Fuqiang Liu, Fei Wu, Li Song, Baoxuan Hou, Yuan Tian, Xin Zhao, Safi Ullah and Rui Li
Int. J. Mol. Sci. 2025, 26(19), 9399; https://doi.org/10.3390/ijms26199399 - 26 Sep 2025
Abstract
The cycling stability and widespread practical implementation of aqueous zinc ion batteries (AZIBs) are impeded by dendrite growth and the hydrogen evolution reaction (HER). Herein, theaflavins, a low-cost organic bio-compounds and a major component of tea, were innovatively introduced as an electrolyte additive [...] Read more.
The cycling stability and widespread practical implementation of aqueous zinc ion batteries (AZIBs) are impeded by dendrite growth and the hydrogen evolution reaction (HER). Herein, theaflavins, a low-cost organic bio-compounds and a major component of tea, were innovatively introduced as an electrolyte additive for AZIBs to address these challenges. When added into the electrolyte, theaflavins, with their strong de-solvation capability, facilitated the more uniform and stable diffusion of zinc ions, effectively suppressing dendrite formation and HER. This, in turn, significantly enhanced the coulombic efficiency (>95% in Zn/Cu system) and the stability of the zinc deposition/stripping process in Zn/Zn system. The Zn/Zn symmetric battery system stably cycled for approximately 3000 h at current densities of 1 mA/cm2. Compared with H2O molecules, theaflavins exhibited a narrower LUMO and HOMO gap and higher adsorption energy on zinc surfaces. These properties enabled theaflavins to be preferentially adsorbed onto zinc anode surfaces, forming a protective layer that minimized direct contact between water molecules and the zinc surface. This layer also promoted the electron transfer associated with zinc ions, thereby greatly enhancing interfacial stability and significantly mitigating HER. When 10 mmol/L of theaflavins was present in the electrolyte, the system exhibited lower impedance activation energy, a smoother zinc ion deposition process, reduced corrosion current, and higher HER overpotential. Furthermore, incorporating theaflavins into the electrolyte enhanced the vanadium redox reaction and accelerated zinc ion diffusion, thereby significantly improving battery performance. This work explores the design of a cost-effective electrolyte additive, providing essential insights for the progress of practical AZIBs. Full article
Show Figures

Graphical abstract

22 pages, 2450 KB  
Article
Insights for the Impacts of Inclined Magnetohydrodynamics, Multiple Slips, and the Weissenberg Number on Micro-Motile Organism Flow: Carreau Hybrid Nanofluid Model
by Sandeep, Pardeep Kumar, Partap Singh Malik and Md Aquib
Symmetry 2025, 17(10), 1601; https://doi.org/10.3390/sym17101601 - 26 Sep 2025
Abstract
This study focuses on the analysis of the simultaneous impact of inclined magnetohydrodynamic Carreau hybrid nanofluid flow over a stretching sheet, including microorganisms with the effects of chemical reactions in the presence and absence of slip conditions for dilatant [...] Read more.
This study focuses on the analysis of the simultaneous impact of inclined magnetohydrodynamic Carreau hybrid nanofluid flow over a stretching sheet, including microorganisms with the effects of chemical reactions in the presence and absence of slip conditions for dilatant (n>1.0) and quasi-elastic hybrid nanofluid (n<1.0) limitations. Meanwhile, the transfer of energy is strengthened through the employment of heat sources and bioconvection. The analysis incorporates nonlinear thermal radiation, chemical reactions, and Arrhenius activation energy effects on different profiles. Numerical simulations are conducted using the efficient Bvp5c solver. Motile concentration profiles decrease as the density slip parameter of the motile microbe and Lb increase. The Weissenberg number exhibits a distinct nature depending on the hybrid nanofluid; the velocity profile, skin friction, and Nusselt number fall when (n>1.0) and increase when (n<1.0). For small values of inclination, the 3D surface plot is far the surface, while it is close to the surface for higher values of inclination but has the opposite behavior for the 3D plot of the Nusselt number. A detailed numerical investigation on the effects of important parameters on the thermal, concentration, and motile profiles and the Nusselt number reveals a symmetric pattern of boundary layers at various angles (α). Results are presented through tables, graphs, contour plots, and streamline and surface plots, covering both shear-thinning cases (n<1.0) and shear-thickening cases (n>1.0). Full article
Show Figures

Figure 1

18 pages, 5739 KB  
Article
Highly Active and Water-Resistant Mn-Loaded MgAlOx Catalysts for NH3-SCR at Low Temperature
by Ruolan Jiang, Ben Wang, Wei Liu, Jian Zhang, Liguo Wang and Zhongpeng Wang
Chemistry 2025, 7(5), 154; https://doi.org/10.3390/chemistry7050154 - 23 Sep 2025
Viewed by 114
Abstract
Advancing catalysts for low-temperature NH3-SCR enhances their viability as a terminal flue gas denitration solution across diverse operating regimes. A high-performance, hydrothermally stable catalyst for low-temperature SCR was synthesized by depositing MnOx onto MgAlOx composite oxide supports. These supports, [...] Read more.
Advancing catalysts for low-temperature NH3-SCR enhances their viability as a terminal flue gas denitration solution across diverse operating regimes. A high-performance, hydrothermally stable catalyst for low-temperature SCR was synthesized by depositing MnOx onto MgAlOx composite oxide supports. These supports, featuring varied Mg/Al ratios, originated from layered double hydroxide (LDH) precursors. The obtained catalyst with the Mg/Al ratio of 2 (Mn/Mg2AlOx) possesses relatively high concentrations of active oxygen species (Oα) and Mn4+ and exhibits remarkable catalytic performance. The Mn/Mg2AlOx catalyst exhibits a wide operating temperature range (100–300 °C) for denitration, achieving over 80% NOx conversion, along with robust water resistance. The temperature-programed surface reactions and NO oxidation reactions are performed to elucidate the promoting effect of water on N2 selectivity, which is not only due to inhibition of catalyst oxidation capacity at high temperature but also is related to the competing adsorption of water and NH3. In situ DRIFTS analysis confirmed that the NH3-SCR mechanism over Mn/Mg2AlOx adheres to the Eley–Rideal (E–R) pathway. These findings highlight the significant promise of Mn/MgAlOx catalysts for deployment as downstream denitration units within exhaust treatment systems. Full article
Show Figures

Graphical abstract

Back to TopTop