Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = reactor orientation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6194 KB  
Article
Prediction of Solute Segregation at Metal/Oxide Interfaces Using Machine Learning Approaches
by Yizhou Lu, Blas Pedro Uberuaga and Samrat Choudhury
Molecules 2025, 30(16), 3344; https://doi.org/10.3390/molecules30163344 - 11 Aug 2025
Viewed by 301
Abstract
The atomic structure and chemistry at metal/oxide interfaces play a crucial role in determining their properties. However, studying semi-coherent metal/oxide interfaces that include misfit dislocations through density functional theory (DFT) is often computationally expensive due to the large number of atoms involved, ranging [...] Read more.
The atomic structure and chemistry at metal/oxide interfaces play a crucial role in determining their properties. However, studying semi-coherent metal/oxide interfaces that include misfit dislocations through density functional theory (DFT) is often computationally expensive due to the large number of atoms involved, ranging from hundreds to thousands. In this study, we explore solute segregation behavior at the Fe/Y2O3 interface—an important model interface for cladding applications in nuclear fission reactors—by combining DFT calculations with a machine learning (ML) approach. ML models are trained using DFT-calculated segregation energies (ESeg) to identify the key chemical and geometric factors influencing solute segregation at metal/oxide interfaces, revealing the competition between these features in determining ESeg. Moreover, the segregation behavior at a specific Fe/Y2O3 interface is predicted with high accuracy using ML models trained on data from this interface. Furthermore, it is found that the ML models could also predict solute segregation at a different Fe/Y2O3 interface with a new orientation relationship (OR), at a computational cost of less than 1/45 of that required for similar DFT calculations. Full article
Show Figures

Figure 1

30 pages, 883 KB  
Review
From Block-Oriented Models to the Koopman Operator: A Comprehensive Review on Data-Driven Chemical Reactor Modeling
by Mustapha Kamel Khaldi, Mujahed Al-Dhaifallah, Ibrahim Aljamaan, Fouad Mohammad Al-Sunni, Othman Taha and Abdullah Alharbi
Mathematics 2025, 13(15), 2411; https://doi.org/10.3390/math13152411 - 26 Jul 2025
Viewed by 699
Abstract
Some chemical reactors exhibit coupled dynamics with multiple equilibrium points and strong nonlinearities. The accurate modeling of these dynamics is crucial to optimal control and increasing the reactor’s economic performance. While neural networks can effectively handle complex nonlinearities, they sacrifice interpretability. Alternatively, block-oriented [...] Read more.
Some chemical reactors exhibit coupled dynamics with multiple equilibrium points and strong nonlinearities. The accurate modeling of these dynamics is crucial to optimal control and increasing the reactor’s economic performance. While neural networks can effectively handle complex nonlinearities, they sacrifice interpretability. Alternatively, block-oriented Hammerstein–Wiener models and Koopman operator-based linear predictors combine nonlinear representation with linear dynamics, offering a gray-box identification approach. This paper comprehensively reviews recent advancements in both the Hammerstein–Wiener and Koopman operator methods and benchmarks their accuracy against neural network-based approaches to modeling a large-scale industrial Fluid Catalytic Cracking fractionator. Furthermore, Monte Carlo simulations are employed to validate performance under varying signal-to-noise ratios. The results demonstrate that the Koopman bilinear model significantly outperforms the other methods in terms of accuracy and robustness. Full article
Show Figures

Figure 1

19 pages, 11808 KB  
Article
Computational Fluid Dynamics and Population Balance Model Enhances the Smart Manufacturing and Performance Optimization of an Innovative Precipitation Reactor
by Antonello Raponi, Diego Fida, Fabrizio Vicari, Andrea Cipollina and Daniele Marchisio
Processes 2025, 13(6), 1721; https://doi.org/10.3390/pr13061721 - 31 May 2025
Viewed by 1749
Abstract
In this study, we propose the study of an innovative precipitation prototype designed by ResourSEAs, guided by a CFD-PBM (Computational Fluid Dynamics and Population Balance Model) approach, aiming to understand the influence of reactant concentration and nozzle orientation on precipitation processes. The first [...] Read more.
In this study, we propose the study of an innovative precipitation prototype designed by ResourSEAs, guided by a CFD-PBM (Computational Fluid Dynamics and Population Balance Model) approach, aiming to understand the influence of reactant concentration and nozzle orientation on precipitation processes. The first part of the study examines the effect of reactant concentration on supersaturation and the zeroth-order moment (m0) within a controlled flow and turbulence fields. Three different concentrations of Mg2+ (0.1, 0.3, and 0.6 M) and OH (0.005, 0.01, and 0.02 M) were tested, resulting in varying supersaturation profiles and m0 fields. Our results show that, under equal turbulence conditions, increasing the concentration of reactants beyond a certain point actually slows down mixing, which in turn hinders the generation of supersaturation. As a result, supersaturation profiles become nearly identical to those of lower concentrations, despite having consumed more reactants. The second part of this study focuses on the effect of nozzle orientation and positioning along the prototype axis on reactant mixing and particle formation. The simulations reveal that nozzle orientation has a significant impact on the formation of primary particles, especially when positioned in low-velocity regions, leading to slower mixing and greater particle growth. Conversely, high-velocity regions promote faster mixing and more intense aggregation. These findings highlight the interplay between concentration, nozzle orientation, and flow conditions in determining precipitation efficiency, offering insights for optimizing reactor design in industrial applications. Full article
Show Figures

Graphical abstract

30 pages, 3404 KB  
Review
Optimizing Solar–Biomass Pyrolysis: Innovations in Reactor Design and Thermal–Solar System Efficiency
by Fahim Ullah, Kamran Hasrat, Mao Mu, Shuang Wang and Sunel Kumar
Energies 2025, 18(10), 2640; https://doi.org/10.3390/en18102640 - 20 May 2025
Viewed by 1628
Abstract
To promote renewable energy sources, we focus on optimizing the design of solar–biomass pyrolysis systems. This study suggests the best reactor orientation that creates effective thermal–solar systems for pyrolysis. Solar–biomass pyrolysis uses solar energy to create valuable products like syngas, tar, and char [...] Read more.
To promote renewable energy sources, we focus on optimizing the design of solar–biomass pyrolysis systems. This study suggests the best reactor orientation that creates effective thermal–solar systems for pyrolysis. Solar–biomass pyrolysis uses solar energy to create valuable products like syngas, tar, and char from biomass. This process promotes energy sustainability. We analyze different solar reactors based on their design, operation, heat transfer rate, efficiency, residence time for biomass retention inside the reactor, and biomass conversion efficiency. A thorough analysis of the existing technologies helps to pinpoint the difficulties and most recent developments in the sector, making decision making more manageable and providing information on the viability and sustainability of biomass conversion technologies. Full article
Show Figures

Figure 1

47 pages, 29654 KB  
Review
A Survey on Object-Oriented Assembly and Disassembly Operations in Nuclear Applications
by Wenxing Liu, Ipek Caliskanelli, Hanlin Niu, Kaiqiang Zhang and Robert Skilton
Big Data Cogn. Comput. 2025, 9(5), 118; https://doi.org/10.3390/bdcc9050118 - 28 Apr 2025
Viewed by 833
Abstract
Nuclear environments demand exceptional precision, reliability, and safety, given the high stakes involved in handling radioactive materials and maintaining reactor systems. Object-oriented assembly and disassembly operations in nuclear applications represent a cutting-edge approach to managing complex, high-stakes operations with enhanced precision and safety. [...] Read more.
Nuclear environments demand exceptional precision, reliability, and safety, given the high stakes involved in handling radioactive materials and maintaining reactor systems. Object-oriented assembly and disassembly operations in nuclear applications represent a cutting-edge approach to managing complex, high-stakes operations with enhanced precision and safety. This paper discusses the challenges associated with nuclear robotic remote operations, summarizes current methods for handling object-oriented assembly and disassembly operations, and explores potential future research directions in this field. Object-oriented assembly and disassembly operations are vital in nuclear applications due to their ability to manage complexity, ensure precision, and enhance safety and reliability, all of which are paramount in the demanding and high-risk environment of nuclear technology. Full article
(This article belongs to the Special Issue Field Robotics and Artificial Intelligence (AI))
Show Figures

Figure 1

30 pages, 13451 KB  
Article
Nanocomposites Based on Disentangled Ultra-High Molecular Weight Polyethylene: Aspects and Specifics of Solid-State Processing
by Oleg V. Lebedev, Ekaterina P. Tikunova, Tikhon S. Kurkin, Evgeny K. Golubev and Alexander N. Ozerin
Polymers 2024, 16(23), 3423; https://doi.org/10.3390/polym16233423 - 5 Dec 2024
Cited by 3 | Viewed by 1080
Abstract
The stages of solid-state processing of nanocomposites, based on nascent disentangled ultra-high-molecular-weight polyethylene (d-UHMWPE) reactor powders (RPs) and carbon nanoparticles (NPs) of various types, were meticulously investigated. The potential for optimizing the filler distribution through variation of the processing parameters, and the impact [...] Read more.
The stages of solid-state processing of nanocomposites, based on nascent disentangled ultra-high-molecular-weight polyethylene (d-UHMWPE) reactor powders (RPs) and carbon nanoparticles (NPs) of various types, were meticulously investigated. The potential for optimizing the filler distribution through variation of the processing parameters, and the impact of the d-UHMWPE RP and nanofiller type on the electrical conductivity of the resulting composites were discussed. The specifics of the dependences of conductivity and tensile strength on the deformation ratio for the composites, oriented under homogeneous shear conditions, were investigated. The obtained results and the results on piezoresistivity and temperature dependency of conductivity in the oriented and compacted composites demonstrated the independence of the UHMWPE matrix orientational strengthening on the filling. The interchangeability of high-temperature uniaxial deformation and deformation under homogeneous conditions for orientational strengthening and electrical conductivity changes in the preliminary oriented composite samples was confirmed. The potential for simultaneously achieving high strength and conductivity in composite tapes and the possibility of directly processing d-UHMWPE RP and NPs mixtures into oriented composite tapes were demonstrated. The overall results suggest that the studied composites may serve as a viable model system for investigating the deformational behavior of conductive networks comprising NPs of varying types and contents. Full article
Show Figures

Figure 1

32 pages, 12239 KB  
Review
A Comprehensive Review of Mixed Convective Heat Transfer in Tubes and Ducts: Effects of Prandtl Number, Geometry, and Orientation
by Mohd Farid Amran, Sakhr M. Sultan and C. P. Tso
Processes 2024, 12(12), 2749; https://doi.org/10.3390/pr12122749 - 3 Dec 2024
Cited by 1 | Viewed by 3140
Abstract
This paper presents a comprehensive review of mixed convective heat transfer phenomena involving fluids with varying Prandtl numbers, specifically focusing on their behavior in different geometries and orientations. This study systematically explores heat transfer characteristics for fluids with low, medium, and high Prandtl [...] Read more.
This paper presents a comprehensive review of mixed convective heat transfer phenomena involving fluids with varying Prandtl numbers, specifically focusing on their behavior in different geometries and orientations. This study systematically explores heat transfer characteristics for fluids with low, medium, and high Prandtl numbers across a range of tube geometries, including circular, rectangular, triangular, and elliptical cross-sections, and examines their effects in both horizontal and vertical tube orientations. By consolidating existing research findings and analyzing various experimental and numerical studies, this review elucidates the complex interactions between fluid properties, tube geometry, and flow orientation that influence mixed convection heat transfer. Key insights are provided into the mechanisms driving heat transfer enhancements or degradations in different scenarios. In view of the findings from this paper, more than 84% of studies were conducted in a horizontal orientation and circular cross-section with a tendency to use medium-to-high Prandtl numbers as the working fluid for the past 10 years. This paper also identifies critical gaps in current knowledge and suggests future research directions to advance the understanding and application of mixed convective heat transfer in diverse engineering systems. Furthermore, apart from having different geometries applied in industrial applications, there is still room for improvement through the addition of passive methods to the heat transfer system, including helical coils, corrugations, swirl generators, and ribs. Overall, from the literature review, it is found that there are few relevant numerical simulations and experimental studies concentrating on middle Prandtl number fluids. Hence, it is recommended to perform more research on medium Prandtl number fluids that can be used as energy storage systems (ESS) in concentrating solar power plants, nuclear reactors, and geothermal systems. Full article
(This article belongs to the Special Issue Applications of Nanofluids and Nano-PCMs in Heat Transfer)
Show Figures

Figure 1

17 pages, 3430 KB  
Systematic Review
Liquid Organic Hydrogen Carrier Concepts and Catalysts for Hydrogenation and Dehydrogenation Reactions
by Gerardo Cabrera, Malka Mora, Juan P. Gil-Burgos, Renso Visbal, Fiderman Machuca-Martínez and Edgar Mosquera-Vargas
Molecules 2024, 29(20), 4938; https://doi.org/10.3390/molecules29204938 - 18 Oct 2024
Cited by 8 | Viewed by 4660
Abstract
Background: The issue of renewable energy (RE) source intermittency, such as wind and solar, along with the geographically uneven distribution of the global RE potential, makes it imperative to establish an energy transport medium to balance the energy demand and supply areas. A [...] Read more.
Background: The issue of renewable energy (RE) source intermittency, such as wind and solar, along with the geographically uneven distribution of the global RE potential, makes it imperative to establish an energy transport medium to balance the energy demand and supply areas. A promising energy vector to address this situation is hydrogen, which is considered a clean energy carrier for various mobile and portable applications. Unfortunately, at standard pressure and temperature, its energy content per volume is very low (0.01 kJ/L). This necessitates alternative storage technologies to achieve reasonable capacities and enable economically viable long-distance transportation. Among the hydrogen storage technologies using chemical methods, liquid organic hydrogen carrier (LOHC) systems are considered a promising solution. They can be easily managed under ambient conditions, the H2 storage/release processes are carbon-free, and the carrier liquid is reusable. However, the evolution of the proposals from the carrier liquid type and catalyst elemental composition point of view is scarcely studied, considering that both are critical in the performance of the system (operational parameters, kinetic of the reactions, gravimetric hydrogen content, and others) and impact in the final cost of the technology deployed. The latter is due to the use of the Pt group elements (PGEs) in the catalyst that, for example, have a high demand in the hydrogen production sector, particularly for polymer electrolyte membrane (PEM) water electrolysis. With that in mind, our objective was to examine the evolution and the focus of the research in recent years related to proposals of LOHCs and catalysts for hydrogenation and dehydrogenation reactions in LOHC systems which can be useful in defining routes/strategies for new participants interested in becoming involved in the development of this technology. Data sources: For this systematic review, we searched the SCOPUS database and forward and backward citations for studies published in the database between January 2011 and December 2022. Eligibility criteria: The criteria include articles which assessed or studied the effect of the type of catalyst, type of organic liquid, reactor design(s)/configuration(s), and modification of the reactor operational parameters, among others, over the performance of the LOHC system (de/hydrogenation reaction(s)). Data extraction and analysis: The relevant data from each reviewed study were collected and organized into a pre-designed table on an Excel spreadsheet, categorized by reference, year, carrier organic liquid, reaction (hydrogenation and/or dehydrogenation), investigated catalyst, and primary catalyst element. For processing the data obtained from the selected scientific publications, the data analysis software Orbit Intellixir was employed. Results: For the study, 233 studies were included. For the liquid carrier side, benzyltoluene and carbazole dominate the research strategies. Meanwhile, platinum (Pt) and palladium (Pd) are the most employed catalysts for dehydrogenation reactions, while ruthenium (Ru) is preferred for hydrogenation reactions. Conclusions: From the investigated liquid carrier, those based on benzyltoluene and carbazole together account for over 50% of the total scientific publications. Proposals based on indole, biphenyl, cyclohexane, and cyclohexyl could be considered to be emerging within the time considered in this review, and, therefore, should be monitored for their evolution. A great activity was detected in the development of catalysts oriented toward the dehydrogenation reaction, because this reaction requires high temperatures and presents slow H2 release kinetics, conditioning the success of the implementation of the technology. Finally, from the perspective of the catalyst composition (monometallic and/or bimetallic), it was identified that, for the dehydrogenation reaction, the most used elements are platinum (Pt) and palladium (Pd), while, for the hydrogenation reaction, ruthenium (Ru) widely leads its use in the different catalyst designs. Therefore, the near-term initiatives driving progress in this field are expected to focus on the development of new or improved catalysts for the dehydrogenation reaction of organic liquids based on benzyltoluene and carbazole. Full article
Show Figures

Figure 1

12 pages, 4900 KB  
Article
Effect of Heating Rate on Hydride Reorientation Behavior of Zirconium Alloy Tubes under Non-Stress Loading
by Boning Hui, Mingju Chen, Xinyi Li, Biao Chen, Yuli Li, Jun Zhou, Rongtao Tang and Jinshan Li
Metals 2024, 14(10), 1126; https://doi.org/10.3390/met14101126 - 3 Oct 2024
Viewed by 1112
Abstract
Zirconium alloys are widely used in nuclear water reactors as cladding materials. The cladding materials will absorb hydrogen from high temperature water during the operation of nuclear reactor. In cladding tubes, it has been common sense that circumferential hydrides form without stress, while [...] Read more.
Zirconium alloys are widely used in nuclear water reactors as cladding materials. The cladding materials will absorb hydrogen from high temperature water during the operation of nuclear reactor. In cladding tubes, it has been common sense that circumferential hydrides form without stress, while radial hydrides can form when the hydrides are reoriented under stress loading. In this study, we found that a high heating rate can result in hydride reorientation behavior even without stress. At elevated heating rates, the zirconium alloy clad tube developed a non-uniform strain gradient along the direction of heat conduction. Hydrogen atoms migrate preferentially to areas of elevated stress and precipitate as hydrides that are perpendicular to the direction of tensile stress, resulting in the formation of radial hydrides that appear as “sun spots” macroscopically. Additionally, the high heating rate disrupts the {0001}α∥{111}δ, <11–20>α∥<110>δ orientation relationship between the hydride and the substrate, which potentially facilitates crack propagation. Full article
Show Figures

Figure 1

23 pages, 9500 KB  
Article
Thermo-Convective Solution Growth of Vertically Aligned Zinc Oxide Nanowire Arrays for Piezoelectric Energy Harvesting
by Frank Eric Boye Anang, Andam Deatama Refino, Gunilla Harm, Defang Li, Jiushuai Xu, Markys Cain, Uwe Brand, Zhi Li, Marion Görke, Georg Garnweitner and Erwin Peiner
Micromachines 2024, 15(10), 1179; https://doi.org/10.3390/mi15101179 - 24 Sep 2024
Cited by 6 | Viewed by 1657
Abstract
The search for a synthesis method to create longer ZnO NWAs with high-quality vertical alignment, and the investigation of their electrical properties, have become increasingly important. In this study, a hydrothermal method for growing vertically aligned arrays of ZnO nanowires (NWs) using localized [...] Read more.
The search for a synthesis method to create longer ZnO NWAs with high-quality vertical alignment, and the investigation of their electrical properties, have become increasingly important. In this study, a hydrothermal method for growing vertically aligned arrays of ZnO nanowires (NWs) using localized heating was utilized. To produce longer NWs, the temperature environment of the growth system was optimized with a novel reaction container that provided improved thermal insulation. At a process temperature above ~90 °C, ZnO NWs reached a length of ~26.8 µm within 24 h, corresponding to a growth rate of 1.1 µm/h, nearly double the rate of 0.6 µm/h observed in traditional chemical bath growth using a glass reactor. The densely grown NWs (~1.9/µm2), with a diameter of ~0.65 µm, exhibited a preferred hexagonal c-axis orientation and were vertically aligned to the (100) silicon (Si) substrate. These NW structures have multiple applications, e.g., in piezotronic strain sensors, gas sensing, and piezoelectric energy harvesting. As proof of concept, a piezoelectric nanogenerator (PENG) was fabricated by embedding the NWs in an S1818 polymer matrix over a 15 mm × 15 mm area. Under repeated impulse-type compressive forces of 0.9 N, a maximum peak output voltage of ~95.9 mV was recorded, which is higher by a factor of four to five than the peak output voltage of 21.6 mV previously obtained with NWs measuring ~1.8 µm in length. Full article
(This article belongs to the Special Issue Micro and Smart Devices and Systems, 3rd Edition)
Show Figures

Figure 1

25 pages, 4899 KB  
Article
Efficiency-Oriented Model Predictive Control: A Novel MPC Strategy to Optimize the Global Process Performance
by Jiahong Xu
Sensors 2024, 24(17), 5732; https://doi.org/10.3390/s24175732 - 3 Sep 2024
Viewed by 2280
Abstract
Existing control strategies, such as Real-time Optimization (RTO), Dynamic Real-time Optimization (DRTO), and Economic Model Predictive Control (EMPC) cannot enable optimal operation and control behavior in an optimal fashion. This work proposes a novel control strategy, named the efficiency-oriented model predictive control (MPC), [...] Read more.
Existing control strategies, such as Real-time Optimization (RTO), Dynamic Real-time Optimization (DRTO), and Economic Model Predictive Control (EMPC) cannot enable optimal operation and control behavior in an optimal fashion. This work proposes a novel control strategy, named the efficiency-oriented model predictive control (MPC), which can fully realize the potential of the optimization margin to improve the global process performance of the whole system. The ideas of optimization margin and optimization efficiency are first proposed to measure the superiority of the control strategy. Our new efficiency-oriented MPC innovatively uses a nested optimization structure to optimize the optimization margin directly online. To realize the computation, a Periodic Approximation technique is proposed, and an Efficiency-Oriented MPC Type I is constructed based on the Periodic Approximation. In order to alleviate the strict constraint of Efficiency-Oriented MPC Type I, the zone-control-based optimization concept is used to construct an Efficiency-Oriented MPC Type II. These two well-designed efficiency-oriented controllers were compared with other control strategies over a Continuous Stirred Tank Reactor (CSTR) application. The simulation results show that the proposed control strategy can generate superior closed-loop process performance, for example, and the Efficiency-Oriented MPC Type I can obtain 7.11% higher profits than those of other control strategies; the effectiveness of the efficiency-oriented MPC was, thereby, demonstrated. Full article
Show Figures

Figure 1

20 pages, 3956 KB  
Article
A Crystal Plasticity-Based Simulation to Predict Fracture Initiation Toughness of Reactor-Grade Aluminium: Experimental Verification and Study of Effect of Crystal Orientation
by Mahendra Kumar Samal, Trishant Sahu and Ather Syed
Appl. Mech. 2024, 5(3), 513-532; https://doi.org/10.3390/applmech5030029 - 17 Jul 2024
Viewed by 1928
Abstract
Aluminium alloys are used for the fabrication of the fuel clad of research-grade nuclear reactors as well as for several types of core components of high-flux research reactors. In order to carry out design and safety analysis of these components, their mechanical and [...] Read more.
Aluminium alloys are used for the fabrication of the fuel clad of research-grade nuclear reactors as well as for several types of core components of high-flux research reactors. In order to carry out design and safety analysis of these components, their mechanical and fracture properties are required by the designer. In this work, experiments have been conducted on tensile specimens machined from an aluminium alloy block to evaluate the material stress-strain curve. Experiments have also been conducted on disc-shaped compact tension specimens in order to determine the fracture toughness of aluminium alloy. Numerical simulations of both tensile and fracture specimens have been carried out using the crystal plasticity model. Initially, the slip system level parameters of the crystal plasticity material model have been calibrated using experimental stress-strain data for single as well as polycrystalline aluminium. For the prediction of crack initiation toughness, Rice and Tracey’s damage model has been used. The critical damage parameter has been evaluated for a fractured specimen with a crack length-to-width (a/W) ratio of 0.6. The attainment of the critical damage parameter in the analysis corresponds to the instance of experimentally observed ductile crack initiation in the specimen. Later, this model was applied to other fracture specimens with different a/W ratios with values ranging from 0.39 to 0.59. It was observed that the critical damage parameter corresponding to crack initiation in the material has a very small variation, even if the specimens have different crack lengths. It is well-known in the literature that Rice and Tracey’s critical damage parameter is a material constant. Hence, we have applied the same model to predict crack initiation for single crystal fracture specimens with two different orientations of the crack plane. It was observed that the <111> orientation is more susceptible to crack initiation and propagation compared with the <100> orientation, as the damage parameter is high in the ligament of the specimen ahead of the crack tip for the same level of applied loading. As the [111] crack plane is more closely packed compared with the [100] plane, the distance between atomic planes is greater for the former, and hence, it is more susceptible to ductile damage. The results of the experiments and the material damage parameter are helpful for the integrity analysis of the fuel clad of research reactors as well as components of high-flux research reactors. Full article
(This article belongs to the Collection Fracture, Fatigue, and Wear)
Show Figures

Figure 1

28 pages, 11309 KB  
Review
Preparation, Deformation Behavior and Irradiation Damage of Refractory Metal Single Crystals for Nuclear Applications: A Review
by Benqi Jiao, Weizhong Han, Wen Zhang, Zhongwu Hu and Jianfeng Li
Materials 2024, 17(14), 3417; https://doi.org/10.3390/ma17143417 - 10 Jul 2024
Cited by 3 | Viewed by 1516
Abstract
Refractory metal single crystals have been applied in key high-temperature structural components of advanced nuclear reactor power systems, due to their excellent high-temperature properties and outstanding compatibility with nuclear fuels. Although electron beam floating zone melting and plasma arc melting techniques can prepare [...] Read more.
Refractory metal single crystals have been applied in key high-temperature structural components of advanced nuclear reactor power systems, due to their excellent high-temperature properties and outstanding compatibility with nuclear fuels. Although electron beam floating zone melting and plasma arc melting techniques can prepare large-size oriented refractory metals and their alloy single crystals, both have difficulty producing perfect defect-free single crystals because of the high-temperature gradient. The mechanical properties of refractory metal single crystals under different loads all exhibit strong temperature and crystal orientation dependence. Slip and twinning are the two basic deformation mechanisms of refractory metal single crystals, in which low temperatures or high strain rates are more likely to induce twinning. Recrystallization is always induced by the combined action of deformation and annealing, exhibiting a strong crystal orientation dependence. The irradiation hardening and neutron embrittlement appear after exposure to irradiation damage and degrade the material properties, attributed to vacancies, dislocation loops, precipitates, and other irradiation defects, hindering dislocation motion. This paper reviews the research progress of refractory metal single crystals from three aspects, preparation technology, deformation behavior, and irradiation damage, and highlights key directions for future research. Finally, future research directions are prospected to provide a reference for the design and development of refractory metal single crystals for nuclear applications. Full article
(This article belongs to the Special Issue Key Materials in Nuclear Reactors)
Show Figures

Figure 1

17 pages, 5088 KB  
Article
Structural Characterization of Enzymatic Interactions with Functional Nicotinamide Cofactor Biomimetics
by Raquel A. Rocha, Liam A. Wilson, Brett D. Schwartz, Andrew C. Warden, Luke W. Guddat, Robert E. Speight, Lara Malins, Gerhard Schenk and Colin Scott
Catalysts 2024, 14(7), 399; https://doi.org/10.3390/catal14070399 - 24 Jun 2024
Cited by 2 | Viewed by 2372
Abstract
Synthetic nicotinamide biomimetics (NCBs) have emerged as alternatives to the use of natural cofactors. The relatively low cost and ease of manufacture of NCBs may enable the scaling of biocatalytic reactions to produce bulk chemicals (e.g., biofuels and plastics). NCBs are also recognized [...] Read more.
Synthetic nicotinamide biomimetics (NCBs) have emerged as alternatives to the use of natural cofactors. The relatively low cost and ease of manufacture of NCBs may enable the scaling of biocatalytic reactions to produce bulk chemicals (e.g., biofuels and plastics). NCBs are also recognized by only a subset of NAD(P)/NAD(P)H-dependent enzymes, which potentially allows access to orthogonal redox cascades that can be run simultaneously within a single reactor. In the work presented here, a series of NCBs was prepared and tested for activity with alcohol dehydrogenases and ene-reductases. While the NCBs did not support enzymatic activity with the alcohol dehydrogenases, the observed rate of the ene-reductases with NCBs was greater than when incubated with the natural cofactor (consistent with previous observations). We obtained the structures of an ene-reductase and an alcohol dehydrogenase with an NCB bound in their active sites. While the NCB bound to the ene-reductases in a productive position and orientation for hydride transfer to the isoalloxazine ring of the flavin cofactor, the NCB failed to adopt a catalytically competent binding mode in the alcohol dehydrogenase. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Figure 1

13 pages, 1950 KB  
Article
Decomposition of Organic Pollutants in Subcritical Water under Moderate Conditions
by Jaroslava Švarc-Gajić, Tanja Brezo-Borjan, Sandra Jakšić, Vesna Despotović, Nina Finčur, Szabolcs Bognár, Dušica Jovanović and Daniela Šojić Merkulov
Processes 2024, 12(7), 1293; https://doi.org/10.3390/pr12071293 - 21 Jun 2024
Cited by 2 | Viewed by 1704
Abstract
In this research, the efficiency of degradation of different organic contaminant classes, including pesticides (tembotrione, clomazone), pharmaceuticals (ciprofloxacin, 17α-ethinyl estradiol) and mycotoxins (zearalenone, deoxynivalenol, fumonisin B1) with subcritical water treatment was studied in model systems. All experiments were conducted in a house-made batch-type [...] Read more.
In this research, the efficiency of degradation of different organic contaminant classes, including pesticides (tembotrione, clomazone), pharmaceuticals (ciprofloxacin, 17α-ethinyl estradiol) and mycotoxins (zearalenone, deoxynivalenol, fumonisin B1) with subcritical water treatment was studied in model systems. All experiments were conducted in a house-made batch-type pilot reactor. The research was focused on the optimization of the treatment parameters using moderate treatment conditions. Optimization of the remediation processes of water contaminated with 17α-ethinyl estradiol, tembotrione, clomazone, and ciprofloxacin, was conducted through testing with different homogeneous and heterogeneous catalysts, as well as different gas atmospheres (nitrogen and carbon dioxide) for pressurization of the process system. Mycotoxins in water were degraded without catalysts and all experiments were conducted in nitrogen atmosphere. Optimization was conducted through defining the optimal combination of the treatment temperature and time, oriented towards energy saving and minimization of the technical requirements. The degradation efficiency in all tested samples was determined via HPLC analysis. Study showed the full degradation of tembotrione and all tested mycotoxins at 200 °C without a need for a catalyst. The efficiency of degradation of other tested pollutants at 200 °C was satisfying and within the range of 89.5% (clomazone) to 98.7% (17α-ethinyl estradiol). Full article
(This article belongs to the Special Issue Treatment and Remediation of Organic and Inorganic Pollutants)
Show Figures

Figure 1

Back to TopTop