Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (738)

Search Parameters:
Keywords = red grapes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 561 KB  
Article
Impact of Cation-Exchange Resin Treatment on Acidification and Quality of Monastrell Red Wine
by Alejandro Martínez-Moreno, Ana Leticia Pérez-Mendoza, Paola Sánchez-Bravo, Encarna Gómez-Plaza, Ricardo Jurado-Fuentes and Ana Belén Bautista-Ortín
Fermentation 2025, 11(9), 512; https://doi.org/10.3390/fermentation11090512 (registering DOI) - 31 Aug 2025
Abstract
Climate change is having a significant impact on vine physiology and grape composition, leading to notable alterations in wine quality, such as reduced acidity, increased ethanol content, and higher pH levels. These effects are particularly problematic in arid and semi-arid regions, such as [...] Read more.
Climate change is having a significant impact on vine physiology and grape composition, leading to notable alterations in wine quality, such as reduced acidity, increased ethanol content, and higher pH levels. These effects are particularly problematic in arid and semi-arid regions, such as Mediterranean areas, where high summer temperatures and low rainfall accelerate the degradation of organic acids in grapes. As a result, wines produced under these conditions often lack the acidity required to preserve their freshness and enological quality. This study evaluated the effect of must acidification using cation-exchange resins on the composition and quality of red wines made from the Monastrell variety, comparing them with wines acidified using tartaric acid to reach the same target pH. The results showed that treating a portion of the must (20% and 30%) with cation-exchange resins significantly reduced wine pH values and increased total acidity compared to the control wine. A similar result was observed in wines acidified with tartaric acid. However, as an additional effect, the treatment with resin more markedly reduced the concentration of pro-oxidant metal cations such as iron, copper, and manganese, contributing to lower values of volatile acidity and a greater stability against oxidation of phenolic compounds. Must acidification with both methods improved wine color quality by increasing color intensity and decreasing hue values. Although no significant differences were found in the total concentration of phenolic compounds, variations were detected in their compositional profile. Furthermore, the acidification also affected the concentration and composition of aromatic compounds in the final wine. Sensory analysis revealed that the treated wines—particularly those made with must acidified using cation-exchange resins—exhibited greater aromatic intensity, more pronounced fruity notes, and reduced astringency, resulting in a fresher mouthfeel. In conclusion, must treatment with cation-exchange resins appears to be a low-cost good alternative compared tartaric acid addition for reducing pH and increasing acidity in Monastrell red wines, thereby enhancing their quality in winegrowing regions with arid or semi-arid climates. Full article
(This article belongs to the Special Issue Biotechnology in Winemaking)
24 pages, 2067 KB  
Article
Effect of Wine Yeast (Saccharomyces sp.) Strains on the Physicochemical, Sensory, and Antioxidant Properties of Plum, Apple, and Hawthorn Wines
by František Lorenc, Markéta Jarošová, Jan Bedrníček, Vlastimil Nohejl, Eliška Míková and Pavel Smetana
Foods 2025, 14(16), 2844; https://doi.org/10.3390/foods14162844 - 16 Aug 2025
Viewed by 447
Abstract
Fruit wines have become a popular alternative to grape wines for their variability of sensory properties and unique chemical profiles, offering interesting biological activities. Winemaking also utilizes fruits, which are usually sensitive to biological deterioration, thus reducing post-harvest losses. The quality of wines [...] Read more.
Fruit wines have become a popular alternative to grape wines for their variability of sensory properties and unique chemical profiles, offering interesting biological activities. Winemaking also utilizes fruits, which are usually sensitive to biological deterioration, thus reducing post-harvest losses. The quality of wines depends on the fermentation conditions, including the wine yeast selection. In this study, we observed the effect of three common Saccharomyces wine yeast strains on the physicochemical characteristics (color, pH, ethanol content), antioxidant potential (total polyphenol content—TPC, DPPH, and ABTS antioxidant assays), and sensory properties and their relations within plum, apple, and hawthorn wines. Generally, we observed quite-wide ranges in physicochemical properties (pH: 2.8–3.8, ethanol content: 9.0–16.2%) and antioxidant potential parameters (TPC: 0.5–2.4 mg/GAE, DPPH: 0.3–1.4 mg/AAE, 0.5–3.0 mg/AAE), which were affected by the fruit, yeast, and sampling term. The yeast strain significantly affected physicochemical properties and the antioxidant potential on a minor scale. The highest impact of yeast was observed within sensory analyses, where the hawthorn and apple wines fermented by yeast strain Fruit Red exhibited a different sensory profile than those fermented by the Buket and Special strains. A positive correlation between antioxidant potential parameters and their relationship with wine color was confirmed. Moreover, the overall acceptability grew with sweet taste intensity, and panelists preferred wines with lower ethanol content. In general, this study proved the significant impact of wine yeast strain selection on certain qualitative parameters of fruit wines. Full article
(This article belongs to the Special Issue Winemaking: Innovative Technology and Sensory Analysis)
Show Figures

Figure 1

10 pages, 880 KB  
Article
Grape Marc Flour as a Horticulture By-Product for Application in the Meat Industry
by Manuel Alejandro Vargas-Ortiz, Armida Sánchez-Escalante, Gastón R. Torrescano-Urrutia, Rey David Vargas-Sánchez, Brisa del Mar Torres-Martínez and Eber Addí Quintana-Obregón
Recycling 2025, 10(4), 164; https://doi.org/10.3390/recycling10040164 - 15 Aug 2025
Viewed by 264
Abstract
Using agro-industrial byproducts as functional ingredients represents a sustainable approach to food development. This study aimed to characterize the physicochemical and techno-functional properties of grape marc flour and evaluate the metabolite content and antioxidant activity of the extract obtained from these residues. Grape [...] Read more.
Using agro-industrial byproducts as functional ingredients represents a sustainable approach to food development. This study aimed to characterize the physicochemical and techno-functional properties of grape marc flour and evaluate the metabolite content and antioxidant activity of the extract obtained from these residues. Grape marc flour analysis included pH, color, and techno-functional parameter assessment. The metabolite content and antioxidant activity of the extracts were determined in vitro and in a meat system. The grape marc flour exhibited low pH, lightness (L*), and yellowness (b*) index values, as well as increased redness (a*) values. It also showed the ability to retain water and oil, along with notable swelling capacity. The extracts exhibited high levels of phenolic, tannins, flavonoids, and chlorogenic acid, as well as anti-radical activity and reducing power. When incorporated into a cooked meat system, the extracts decreased pH and lipid oxidation levels. These findings suggest that grape marc flour has potential as a functional ingredient in the formulation of meat products. Full article
Show Figures

Figure 1

15 pages, 3952 KB  
Article
Comparative Omics Analysis of Four Grape Varieties and Exploration of Their Anthocyanin Synthesis Mechanisms
by Kai Zhang, Liyang Zhao and Yanfeng Li
Genes 2025, 16(8), 955; https://doi.org/10.3390/genes16080955 - 13 Aug 2025
Viewed by 440
Abstract
Background: Vitis vinifera L. exhibits diverse varietal traits influencing fruit quality and stress tolerance. The summer black grape (Xiahei), known for its superior tolerance to abiotic stress and intense pigmentation, was hypothesized to possess distinct metabolic and genetic profiles, particularly in flavonoid [...] Read more.
Background: Vitis vinifera L. exhibits diverse varietal traits influencing fruit quality and stress tolerance. The summer black grape (Xiahei), known for its superior tolerance to abiotic stress and intense pigmentation, was hypothesized to possess distinct metabolic and genetic profiles, particularly in flavonoid and anthocyanin biosynthesis. This study aimed to elucidate the metabolic and molecular basis underlying these phenotypic traits by comparing carbohydrate composition and metabolomic and transcriptomic profiles of four grape varieties (summer black, flame seedless, black grape, and red milk). Methods: Grapes were consistently sampled five days after full maturity, and metabolites were analyzed using UPLC-MS/MS and GC-MS, while transcriptome analysis employed RNA sequencing followed by qRT-PCR validation. Results: The results demonstrated that carbohydrate content was similar among all grape varieties, whereas the summer black grape showed significantly higher levels of flavonoids, particularly anthocyanins such as delphinidin-3-O-glucoside, cyanidin-3-O-glucoside, and pelargonidin-3-O-glucoside. Metabolomic analyses revealed substantial enrichment of metabolites involved in flavonoid biosynthesis pathways, in agreement with transcriptomic data showing significant upregulation of key regulatory genes (CHS, DFR, and ANS) specific to anthocyanin biosynthesis. These findings suggest that the pronounced anthocyanin accumulation in summer black grape contributes to its distinctive dark pigmentation and enhanced resistance to abiotic stresses compared to other varieties. Conclusion: This study provides novel insights into the molecular and metabolic mechanisms driving anthocyanin accumulation in summer black grapes, which could inform future breeding programs aimed at improving grape resilience. Full article
(This article belongs to the Section Genes & Environments)
Show Figures

Figure 1

23 pages, 1970 KB  
Review
Resveratrol as a Therapeutic Agent in Alzheimer’s Disease: Evidence from Clinical Studies
by Nidhi Puranik, Meenakshi Kumari, Shraddha Tiwari, Thakur Dhakal and Minseok Song
Nutrients 2025, 17(15), 2557; https://doi.org/10.3390/nu17152557 - 5 Aug 2025
Viewed by 1311
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and neuronal dysfunction. It is driven by the accumulation of amyloid-beta (Aβ) plaques, Tau protein hyperphosphorylation, oxidative stress, and neuroinflammation. Resveratrol (RSV) is a natural polyphenolic compound found in [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and neuronal dysfunction. It is driven by the accumulation of amyloid-beta (Aβ) plaques, Tau protein hyperphosphorylation, oxidative stress, and neuroinflammation. Resveratrol (RSV) is a natural polyphenolic compound found in grapes, berries, and red wine that has garnered attention for its potential neuroprotective properties in combating AD. The neuroprotective effects of RSV are mediated through the activation of sirtuins (SIRT1), inhibition of Aβ aggregation, modulation of Tau protein phosphorylation, and the attenuation of oxidative stress and inflammatory responses. RSV also enhances mitochondrial function and promotes autophagy, which are important processes for maintaining neuronal health. Preclinical studies have demonstrated its efficacy in reducing Aβ burden, improving cognitive performance, and mitigating synaptic damage; however, challenges such as poor bioavailability, rapid metabolism, and limited blood–brain barrier penetration restrict its clinical applicability. Recent technological advances and selected modifications are being explored to overcome these limitations and enhance its therapeutic efficacy. This review summarizes the multifaceted neuroprotective mechanisms of RSV, the synergistic potential of natural compounds in enhancing neuroprotection, and the advancements in formulation strategies aimed at mitigating AD pathology. Leveraging the therapeutic potential of natural compounds represents a compelling paradigm shift for AD management, paving the way for future clinical applications. Full article
(This article belongs to the Special Issue The Neuroprotective Activity of Natural Dietary Compounds)
Show Figures

Figure 1

20 pages, 1664 KB  
Article
Phenolic Evolution During Industrial Red Wine Fermentations with Different Sequential Air Injection Regimes
by Paula A. Peña-Martínez, Alvaro Peña-Neira and V. Felipe Laurie
Fermentation 2025, 11(8), 446; https://doi.org/10.3390/fermentation11080446 - 31 Jul 2025
Viewed by 637
Abstract
During red wine production, managing the pomace cap is key for a successful fermentation, allowing the extraction of phenolics and other metabolites and providing the necessary oxygen for yeast activity. In recent years, automatic cap management systems based on the injection of gases [...] Read more.
During red wine production, managing the pomace cap is key for a successful fermentation, allowing the extraction of phenolics and other metabolites and providing the necessary oxygen for yeast activity. In recent years, automatic cap management systems based on the injection of gases have gained popularity, despite the limited scientific information regarding the outcomes of their use. This trial aimed to evaluate the composition of wine during industrial red wine fermentations using an automatic sequential air injection system (i.e., AirMixing MITM). Fourteen lots of Cabernet Sauvignon grapes were fermented using four air injection regimes, where the intensity and daily frequency of air injections were set to either low or high. As expected, the treatment combining high-intensity and high-frequency air injection produced the largest dissolved oxygen peaks reaching up to 1.9 mg L−1 per cycle, compared to 0.1 mg L−1 in the low-intensity and low-frequency treatment. Yet, in all cases, little to no accumulation of oxygen overtime was observed. Regarding phenolics, the highest intensity and frequency of air injections led to the fastest increase in total phenolics, anthocyanins, short polymeric pigments, and tannin concentration, although compositional differences among treatments equilibrate by the end of fermentation. The main differences in phenolic compounds observed during fermentation were mediated by temperature variation among wine tanks. Based on these findings, it is advisable to keep the characterizing kinetics of phenolic extraction and expand the study to the aroma evolution of wines fermented with this technology. Full article
(This article belongs to the Special Issue Biotechnology in Winemaking)
Show Figures

Figure 1

16 pages, 1739 KB  
Article
Impact of the Thermovinification Practice Combined with the Use of Autochthonous Yeasts on the Fermentation Kinetics of Red Wines
by Islaine Santos Silva, Ana Paula André Barros, Marcos dos Santos Lima, Bruna Carla Agustini, Carolina Oliveira de Souza and Aline Camarão Telles Biasoto
Fermentation 2025, 11(8), 436; https://doi.org/10.3390/fermentation11080436 - 29 Jul 2025
Viewed by 442
Abstract
Thermovinification has emerged as a rising alternative method in red wine production, gaining popularity among winemakers. The use of autochthonous yeasts isolated from grapes is also an interesting practice that contributes to the creation of wine with a distinctive regional character. This research [...] Read more.
Thermovinification has emerged as a rising alternative method in red wine production, gaining popularity among winemakers. The use of autochthonous yeasts isolated from grapes is also an interesting practice that contributes to the creation of wine with a distinctive regional character. This research investigated how combining thermovinification with autochthonous yeast strains influences the fermentation dynamics of Syrah wine. Six treatments were conducted, combining the use of commercial and two autochthonous yeasts with traditional vinification (7-day maceration) and thermovinification (65 °C for 2 h) processes. Sugars and alcohols were quantified during alcoholic fermentation by high-performance liquid chromatography with refractive index detection. Cell viability and kinetic parameters, such as ethanol formation rate and sugar consumption, were also evaluated. The Syrah wine’s composition was characterized by classical wine analyses (OIV procedures). The results showed that cell viability was unaffected by thermovinification. Thermovinification associated with autochthonous yeasts improved the efficiency of alcoholic fermentation. Thermovinified wines also yielded a higher alcohol content (13.9%). Future studies should investigate how thermovinification associated with autochthonous yeasts affects the metabolomic and flavoromic properties of Syrah wine and product acceptability. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

18 pages, 1650 KB  
Article
Unlocking the Fatty Acid and Antioxidant Profile of Grape Pomace: A Systematic Assessment Across Varieties and Vintages for Its Sustainable Valorization
by Teresa Abreu, Rui Ferreira, Paula C. Castilho, José S. Câmara, Juan Teixeira and Rosa Perestrelo
Molecules 2025, 30(15), 3150; https://doi.org/10.3390/molecules30153150 - 28 Jul 2025
Viewed by 449
Abstract
Grape pomace (GP), the main by-product of the wine industry, represents a valuable source of bioactive metabolites with significant potential for valorization in the context of sustainable bioresource management. This study systematically characterizes the fatty acid methyl ester (FAME) profile, total phenolic content [...] Read more.
Grape pomace (GP), the main by-product of the wine industry, represents a valuable source of bioactive metabolites with significant potential for valorization in the context of sustainable bioresource management. This study systematically characterizes the fatty acid methyl ester (FAME) profile, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activities (DPPH, ABTS, ORAC) of GP derived from seven grape varieties across three consecutive vintages (2022–2024). White GP, particularly Verdelho and Sercial, exhibited a superior lipid quality with high concentrations of methyl linoleate (up to 1997 mg/100 g DW) and methyl oleate (up to 1294 mg/100 g DW), low atherogenic (AI < 0.05) and thrombogenic indices (TI ≤ 0.13), and elevated PUFA/SFA ratios (≥8.2). In contrast, red GP, especially from Complexa and Tinta Negra, demonstrated the highest antioxidant potential, with TPC values up to 6687 mgGAE/100 g DW, TFC up to 4624 mgQE/100 g DW, and antioxidant activities reaching 5399 mgTE/100 g (DPPH) and 7219 mgTE/100 g (ABTS). Multivariate statistical analyses (PCA, PLS-DA, HCA) revealed distinct varietal and vintage-dependent clustering and identified key discriminant fatty acids, including linolenic acid (C18:3), lauric acid (C12:0), and arachidic acid (C20:0). These findings underscore the compositional diversity and functional potential of GP, reinforcing its suitability for applications in functional foods, nutraceuticals, and cosmetics, in alignment with circular economy principles. Full article
Show Figures

Figure 1

15 pages, 2281 KB  
Article
Transcriptome and Anthocyanin Profile Analysis Reveals That Exogenous Ethylene Regulates Anthocyanin Biosynthesis in Grape Berries
by Min Liu, Boyuan Fan, Le Li, Jinmei Hao, Ruteng Wei, Hua Luo, Fei Shi, Zhiyuan Ren and Jun Wang
Foods 2025, 14(14), 2551; https://doi.org/10.3390/foods14142551 - 21 Jul 2025
Viewed by 508
Abstract
Anthocyanins are important phenolic compounds in grape skins, affecting the color, oxidation resistance, and aging ability of red wine. In recent years, global warming has had a negative effect on anthocyanin biosynthesis in grape berries. Ethylene serves as a crucial phytohormone regulating the [...] Read more.
Anthocyanins are important phenolic compounds in grape skins, affecting the color, oxidation resistance, and aging ability of red wine. In recent years, global warming has had a negative effect on anthocyanin biosynthesis in grape berries. Ethylene serves as a crucial phytohormone regulating the development and ripening processes of fruit; however, the specific molecular mechanism and the regulatory network between ethylene signaling and the anthocyanin biosynthesis pathway remain incompletely understood. In this study, 400 mg/L ethephon (ETH) solution was sprayed onto the surface of grape berries at the lag phase (EL-34), and the changes in anthocyanin-related genes and metabolites were explored through transcriptomic and metabolomic analysis. The results showed that ETH treatment increased Brix and pH in mature berries. In total, 35 individual anthocyanins were detected, in which 21 individual anthocyanins were enhanced by ETH treatment. However, the anthocyanin profile was not affected by exogenous ethylene. Transcriptomics analysis showed that there were a total of 825 and 1399 differentially expressed genes (DEGs) 12 h and 24 h after treatment. Moreover, key structural genes in the anthocyanin synthesis pathway were strongly induced, including VvPAL, VvCHS, VvF3H, VvF3′5′H, VvDFR and VvUFGT. At the maturity stage (EL-38), the expression levels of these genes were still higher in EHT-treated berries than in the control. ETH treatment also influenced the expression of genes related to hormone biosynthesis and signal transduction. The ethylene biosynthesis gene (VvACO), ethylene receptor genes (VvETR2, VvERS1 and VvEIN4), ABA biosynthesis gene (VvNCED2), and ABA receptor gene (VvPYL4) were up-regulated by ETH treatment, while the auxin biosynthesis gene (VvTAA3) and seven genes of the auxin-responsive protein were inhibited by exogenous ethylene. Meanwhile, ETH treatment promoted the expression of the sugar transporter gene (VvEDL16) and two sucrose synthase genes (VvSUS2 and VvSUS6). In EHT-treated berries, 19 MYB and 23 ERF genes were expressed differently compared with the control (p < 0.05). This study provides the theoretical foundation and technical support for the regulation of anthocyanin synthesis in non-climacteric fruit. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

18 pages, 589 KB  
Article
Circular Model for the Valorization of Black Grape Pomace for Producing Pasteurized Red Must Enriched in Health-Promoting Phenolic Compounds
by Victoria Artem, Arina Oana Antoce, Elisabeta Irina Geana, Ancuta Nechita, Georgeta Tudor, Petronela Anca Onache and Aurora Ranca
Sustainability 2025, 17(14), 6633; https://doi.org/10.3390/su17146633 - 21 Jul 2025
Viewed by 600
Abstract
As compared to red wine technology, where pomace is macerated, the grape juices and musts are obtained by pressing the grapes and removing the pomace, thus removing an important source of antioxidant molecules. The objective of this study was to exploit the bioactive [...] Read more.
As compared to red wine technology, where pomace is macerated, the grape juices and musts are obtained by pressing the grapes and removing the pomace, thus removing an important source of antioxidant molecules. The objective of this study was to exploit the bioactive compounds from the black grape pomace and obtain a new food product, namely pasteurized red must with improved health-promoting properties. The study was conducted on four grape varieties for red wines—Fetească Neagră, Cabernet Sauvignon, Blauer Zweigelt, and Arcaș—each coming from a certain recognized Romanian vineyard, as follows: Murfatlar, Dealu Mare, Ștefănești-Argeș, and Iași, respectively. Both the must and the pomace extract used for each product were from the same variety and region. The recovery of polyphenols was achieved by macerating the pomace at ambient temperature, using solutions of ethanol in concentrations of 25%, 50%, and 75%. The results showed that the most efficient method of polyphenol recovery was obtained by using the ethanolic solution of 50%, which was selected for the subsequent stages of the study. The selected hydroalcoholic extract was concentrated by eliminating the solvent by roto evaporation and used as a source of supplementary bioactive compounds for the pasteurized must. The phenolic profiles of the musts enriched with phenolic extracts were determined by liquid chromatography, UHPLS-HRMS, revealing significant increases in the content of individual phenolic acids and other polyphenols. The phenolic extract recovered from the pomace significantly optimized the phenolic quality of the pasteurized must, thus contributing to the improvement of its nutritional value. The new product has a phenolic profile close to that of a red wine, but does not contain alcohol. Also, this technology is a sustainable method to convert grape waste into a safe, antioxidant-rich grape juice with potential health benefits. Full article
(This article belongs to the Special Issue Sustainable Research on Food Science and Food Technology)
Show Figures

Figure 1

17 pages, 1205 KB  
Article
Feeding a Bitter Mix of Gentian and Grape Seed Extracts with Caffeine Reduces Appetite and Body Fat Deposition and Improves Meat Colour in Pigs
by Maximiliano Müller, Xinle Tan, Fan Liu, Marta Navarro, Louwrens C. Hoffman and Eugeni Roura
Animals 2025, 15(14), 2129; https://doi.org/10.3390/ani15142129 - 18 Jul 2025
Viewed by 438
Abstract
Dietary bitter compounds such as caffeine have the potential to reduce backfat in pigs. However, the use of caffeine as a feed additive has restrictions in many countries. It was hypothesised that grape seed and gentian plant extracts (GG) could replace caffeine in [...] Read more.
Dietary bitter compounds such as caffeine have the potential to reduce backfat in pigs. However, the use of caffeine as a feed additive has restrictions in many countries. It was hypothesised that grape seed and gentian plant extracts (GG) could replace caffeine in feed due to their bitterness and antiadipogenic effects. The effect of caffeine (0.5 g/kg), GG (2 g/kg) alone or in combination with caffeine (BM) at increasing concentrations (0.5, 1, 1.5, or 2 g/kg) on feed efficiency, carcass, and meat quality was assessed in finishing pigs (Large White × Landrace). Growth performance and carcass traits were evaluated at a pen level (n = 14). Loins (longissimus thoracis) were removed from eight pig/treatment at the abattoir to assess drip loss, lightness (L*), redness (a*), yellowness (b*), chroma (C*), hue angle (h°), pH, cook loss, and shear force. A linear increase (p < 0.05) in loin a*, b*, and C* values and a linear decrease (p < 0.05) in ADFI, ADG, backfat, dressing percentage, and HSCW were observed with increasing BM levels. At 1.5 g/kg, BM increased the loins a* (p < 0.05), b* (p < 0.05) and C* values (p < 0.05) compared to the control. Twenty-two proteins related to energy metabolism and myofibril assembly were identified to be upregulated (FDR < 0.05) in BM vs. control loins. In conclusion, GG could be used in combination with low doses of caffeine to modulate appetite and carcass leanness and improve pork colour. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

15 pages, 466 KB  
Article
Metagenomic Profiling of the Grapevine Virome in Canadian Vineyards
by Bhadra Murthy Vemulapati, Kankana Ghoshal, Sylvain Lerat, Wendy Mcfadden-Smith, Mamadou L. Fall, José Ramón Úrbez-Torres, Peter Moffet, Ian Boyes, James Phelan, Lucas Bennouna, Debra L. Moreau, Mike Rott and Sudarsana Poojari
Agriculture 2025, 15(14), 1532; https://doi.org/10.3390/agriculture15141532 - 16 Jul 2025
Viewed by 563
Abstract
A high-throughput sequencing-based grapevine metagenomic survey was conducted across all grape-growing Canadian provinces (British Columbia, Ontario, Nova Scotia, and Québec) with the objective of better understanding the grapevine virome composition. In total, 310 composite grapevine samples representing nine Vitis vinifera red; five V. [...] Read more.
A high-throughput sequencing-based grapevine metagenomic survey was conducted across all grape-growing Canadian provinces (British Columbia, Ontario, Nova Scotia, and Québec) with the objective of better understanding the grapevine virome composition. In total, 310 composite grapevine samples representing nine Vitis vinifera red; five V. vinifera white; seven American–French red; and five white hybrid cultivars were analyzed. dsRNA, enriched using two different methods, was used as the starting material and source of viral nucleic acids in HTS. The virome status on the distribution and incidence in different regions and grapevine cultivars is addressed. Results from this study revealed the presence of 20 viruses and 3 viroids in the samples tested. Twelve viruses, which are in the regulated viruses list under grapevine certification, were identified in this survey. The major viruses detected in this survey and their incidence rates are GRSPaV (26% to 100%), GLRaV-2 (1% to 18%), GLRaV-3 (15% to 63%), GRVFV (0% to 52%), GRGV (0% to 52%), GPGV (3.3% to 77%), GFkV (1.5% to 31.6%), and GRBV (0% to 19.4%). This survey is the first comprehensive virome study using viral dsRNA and a metagenomics approach on grapevine samples from the British Columbia, Ontario, Nova Scotia, and Quebec provinces in Canada. Results from this survey highlight the grapevine virome distribution across four major grapevine-growing regions and their cultivars. The outcome of this survey underlines the need for strengthening current management options to mitigate the impact of virus spread, and the implementation of a domestic grapevine clean plant program to improve the sanitary status of the grapevine ecosystem. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

22 pages, 1279 KB  
Review
State of the Art of Biomethane Production in the Mediterranean Region
by Antonio Comparetti, Salvatore Ciulla, Carlo Greco, Francesco Santoro and Santo Orlando
Agronomy 2025, 15(7), 1702; https://doi.org/10.3390/agronomy15071702 - 15 Jul 2025
Viewed by 597
Abstract
The Mediterranean region is increasingly confronted with intersecting environmental, agricultural, and socio-economic challenges, including biowaste accumulation, soil degradation, and high dependency on imported fossil fuels. Biomethane, a renewable substitute for natural gas, offers a strategic solution that aligns with the region’s need for [...] Read more.
The Mediterranean region is increasingly confronted with intersecting environmental, agricultural, and socio-economic challenges, including biowaste accumulation, soil degradation, and high dependency on imported fossil fuels. Biomethane, a renewable substitute for natural gas, offers a strategic solution that aligns with the region’s need for sustainable energy transition and circular resource management. This review examines the current state of biomethane production in the Mediterranean area, with a focus on anaerobic digestion (AD) technologies, feedstock availability, policy drivers, and integration into the circular bioeconomy (CBE) framework. Emphasis is placed on the valorisation of regionally abundant feedstocks such as olive pomace, citrus peel, grape marc, cactus pear (Opuntia ficus-indica) residues, livestock manure, and the Organic Fraction of Municipal Solid Waste (OFMSW). The multifunctionality of AD—producing renewable energy and nutrient-rich digestate—is highlighted for its dual role in reducing greenhouse gas (GHG) emissions and restoring soil health, especially in areas threatened by desertification such as Sicily (Italy), Spain, Malta, and Greece. The review also explores emerging innovations in biogas upgrading, nutrient recovery, and digital monitoring, along with the role of Renewable Energy Directive III (RED III) and national biomethane strategies in scaling up deployment. Case studies and decentralised implementation models underscore the socio-technical feasibility of biomethane systems across rural and insular territories. Despite significant potential, barriers such as feedstock variability, infrastructural gaps, and policy fragmentation remain. The paper concludes with a roadmap for research and policy to advance biomethane as a pillar of Mediterranean climate resilience, energy autonomy and sustainable agriculture within a circular bioeconomy paradigm. Full article
Show Figures

Figure 1

18 pages, 4067 KB  
Article
Oxidative Degradation of Anthocyanins in Red Wine: Kinetic Characterization Under Accelerated Aging Conditions
by Khulood Fahad Saud Alabbosh, Violeta Jevtovic, Jelena Mitić, Zoran Pržić, Vesna Stankov Jovanović, Reem Ali Alyami, Maha Raghyan Alshammari, Badriah Alshammari and Milan Mitić
Processes 2025, 13(7), 2245; https://doi.org/10.3390/pr13072245 - 14 Jul 2025
Viewed by 530
Abstract
The oxidative degradation of anthocyanins in red wine was investigated under controlled conditions using hydroxyl radicals generated in the presence of Cu (II) as a catalyst. A full factorial experimental design with 23 replicates was used to evaluate the effects of hydrogen peroxide [...] Read more.
The oxidative degradation of anthocyanins in red wine was investigated under controlled conditions using hydroxyl radicals generated in the presence of Cu (II) as a catalyst. A full factorial experimental design with 23 replicates was used to evaluate the effects of hydrogen peroxide concentration, catalyst dosage, and reaction temperature on anthocyanin degradation over a fixed time. Statistical analysis (ANOVA and multiple regression) showed that all three variables and the main interactions significantly affected anthocyanin loss, with temperature identified as the most influential factor. The combined effects were described by a first-order polynomial model. The activation energies for degradation ranged from 56.62 kJ/mol (cyanidin-3-O-glucoside) to 40.58 kJ/mol (peonidin-3-O-glucoside acetate). Increasing the temperature from 30 °C to 40 °C accelerated the degradation kinetics, almost doubled the rate constants and shortened the half-life of the pigments. At 40 °C, the half-lives ranged from 62.3 min to 154.0 min, depending on the anthocyanin structure. These results contribute to a deeper understanding of the stability of anthocyanins in red wine under oxidative stress and provide insights into the chemical behavior of derived pigments. The results are of practical importance for both oenology and viticulture and support efforts to improve the color stability of wine and extend the shelf life of grape-based products. Full article
(This article belongs to the Special Issue Processes in Agri-Food Technology)
Show Figures

Figure 1

19 pages, 3887 KB  
Systematic Review
Systematic Review and Meta-Analysis of Melatonin Quantification in Wine
by Sandra A. V. Eremia, Gabriel Lucian Radu and Camelia Albu
Appl. Sci. 2025, 15(14), 7755; https://doi.org/10.3390/app15147755 - 10 Jul 2025
Viewed by 433
Abstract
The identification of melatonin in grapes has led to the publication of numerous studies on melatonin in wines, and the aim of this study was to perform a systematic review and meta-analysis of published data on melatonin concentrations in wines. In this context, [...] Read more.
The identification of melatonin in grapes has led to the publication of numerous studies on melatonin in wines, and the aim of this study was to perform a systematic review and meta-analysis of published data on melatonin concentrations in wines. In this context, international databases such as Scopus, Web of Science and PubMed were searched for relevant articles (437) up to 29 March 2025. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used. A total of 15 studies from eight countries, involving various wine types and analytical methods, were included in the meta-analysis. Considerable analytical variation was observed across studies, and high-performance liquid chromatography (HPLC) coupled with either mass spectrometry (MS) or fluorescence (FL) detection was shown to be the most accurate and sensitive method for quantifying melatonin. The highest concentrations were found in Spanish red Tempranillo wine, Romanian white Noah wine, and Romanian rosé Lidia wine. Red wines, particularly those produced from Cabernet Sauvignon (CS) grapes, were the most frequently studied. The results of this work provide a clearer picture of melatonin levels in wine. Further research is needed to explore the implications of melatonin content in wine for human health and the wine industry. Full article
(This article belongs to the Special Issue Wine Technology and Sensory Analysis)
Show Figures

Figure 1

Back to TopTop