Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (849)

Search Parameters:
Keywords = redox environment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 6024 KB  
Review
Recent Advances in Transition Metal Selenide-Based Catalysts for Organic Pollutant Degradation by Advanced Oxidation Processes
by Donatos Manos and Ioannis Konstantinou
Catalysts 2025, 15(10), 938; https://doi.org/10.3390/catal15100938 - 1 Oct 2025
Abstract
In recent years, one of the major problems facing humanity has been the contamination of the environment by various organic pollutants, with some of them exhibiting environmental persistence or pseudo-persistence. For this reason, it is necessary today, more than ever, to find new [...] Read more.
In recent years, one of the major problems facing humanity has been the contamination of the environment by various organic pollutants, with some of them exhibiting environmental persistence or pseudo-persistence. For this reason, it is necessary today, more than ever, to find new and effective methods for degrading these persistent pollutants. Transition metal selenides (TMSes) have emerged as a versatile and promising class of catalysts for the degradation of organic pollutants through various advanced oxidation processes (AOPs). The widespread use of these materials lies in the desirable characteristics they offer, such as unique electronic structures, narrow band gaps, high electrical conductivity, and multi-valent redox behavior. This review comprehensively examines recent progress in the design, synthesis, and application of these TMSes—including both single- and composite systems, such as TMSes/g-C3N4, TMSes/TiO2, and heterojunctions. The catalytic performance of these systems is being highlighted, regarding the degradation of organic pollutants such as dyes, pharmaceuticals, antibiotics, personal care products, etc. Further analysis of the mechanistic insights, structure–activity relationships, and operational parameter effects are critically discussed. Emerging trends, such as hybrid AOPs combining photocatalysis with PMS or electro-activation, and the challenges of stability, scalability, and real wastewater applicability are explored in depth. Finally, future directions emphasize the integration of multifunctional activation methods for the degradation of organic pollutants. This review aims to provide a comprehensive analysis and pave the way for the utilization of TMSe catalysts in sustainable and efficient wastewater remediation technologies. Full article
(This article belongs to the Collection Catalysis in Advanced Oxidation Processes for Pollution Control)
Show Figures

Graphical abstract

22 pages, 7843 KB  
Article
Integrated Transcriptome–Metabolome Analysis Reveals the Flavonoids Metabolism Mechanism of Maize Radicle in Response to Low Temperature
by Yi Dou, Wenqi Luo, Yifei Zhang, Wangshu Li, Chunyu Zhang, Yanjie Lv, Xinran Liu and Song Yu
Plants 2025, 14(19), 2988; https://doi.org/10.3390/plants14192988 - 26 Sep 2025
Abstract
The Northeast region in China is a major maize-producing area; however, low-temperature stress (TS) limits maize (Zea mays L.) seed germination, affecting population establishment and yield. In order to systematically explore the regulation mechanism of maize radicle which is highly sensitive to [...] Read more.
The Northeast region in China is a major maize-producing area; however, low-temperature stress (TS) limits maize (Zea mays L.) seed germination, affecting population establishment and yield. In order to systematically explore the regulation mechanism of maize radicle which is highly sensitive to low-temperature environment response to TS, seeds of ZD958 and DMY1 were used to investigate germination responses under 15 °C (control) and 5 °C (TS) conditions. Phenotypic, physiological, transcriptomic, and metabolomic analyses were conducted on the radicles after 48 h of TS treatment. TS caused reactive oxygen species (ROS) imbalance and oxidative damage in radicle cells, inhibiting growth and triggering antioxidant defenses. Integrated transcriptomic and metabolomic analyses revealed that flavonoid metabolism may play a pivotal role in radicle responses to TS. Compared with the control treatment, ZD958 and DMY1 under TS treatment significantly increased (p < 0.01) the total flavonoid content, total antioxidant capacity, 4-coumarate-CoA ligase activity, and dihydroflavonol 4-reductase activity by 15.99% and 16.01%, 18.41% and 18.54%, 63.54% and 31.16%, and 5.09% and 7.68%, respectively. Despite genotypic differences, both followed a shared regulatory logic of “low-temperature signal-driven—antioxidant redirection—functional synergy.” This enabled ROS scavenging, redox balance, and antioxidant barrier formation, ensuring basal metabolism and radicle development. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

17 pages, 3942 KB  
Article
Transparent Elastic Wound Dressing Gel Supporting Drug Release: Synergistic Effects of Poly(Vinyl Alcohol)/Chitosan Hybrid Matrix
by Lifei Chen, Ningning Yuan, Zhenjiang Tan, Jianwei Zhang, Lishi Zhang, Wenwei Tang, Cheng Chen and Donghai Lin
Gels 2025, 11(10), 771; https://doi.org/10.3390/gels11100771 - 25 Sep 2025
Abstract
Wound infection is one of the most critical factors affecting the healing process. Therefore, the development of wound dressings with excellent antibacterial effects has become a research hotspot in the current academic field. We prepared AgNPs (silver nanoparticles) via a redox method, combined [...] Read more.
Wound infection is one of the most critical factors affecting the healing process. Therefore, the development of wound dressings with excellent antibacterial effects has become a research hotspot in the current academic field. We prepared AgNPs (silver nanoparticles) via a redox method, combined them with Poly(vinyl alcohol)/chitosan (PVA/CS), and dried the mixture into a film to fabricate a silver-loaded hydrogel film dressing with excellent antibacterial properties. Uniaxial tensile tests on the samples revealed that the prepared film dressings exhibited good mechanical properties, preventing fracture caused by external forces. Protein adsorption experiments indicated their favorable protein adsorption performance, which can adsorb microorganisms on the external surface of the dressing. By leveraging the bactericidal mechanism of AgNPs, the dressing achieves efficient antibacterial effects. Additionally, the dressing prepared by this method features good transparency, facilitating routine observation of the wound area without removing the dressing and maintaining a sterile environment for an extended period. Finally, we verified the drug loading and drug release capabilities of the dressing, and found that it has good drug loading capacity and drug release effect. This preliminarily proves its effectiveness and provides more possibilities for subsequent research on composite drugs. This study provides new insights for exploring the clinical application of multifunctional silver-loaded wound dressings. Full article
(This article belongs to the Special Issue Designing Gels for Wound Dressing (2nd Edition))
Show Figures

Figure 1

14 pages, 1352 KB  
Article
Ecological Imprint of Rare Earth Mining on Microbial Communities and Water Quality Across Depth and Distance Gradients in Ganzhou, China
by Yian Wang, Fei Shi, Fengxiang Lang, Guohua Wang, Yan Mao, Yingjie Xiao, Li Yin, Genhe He and Yonghui Liao
Microorganisms 2025, 13(10), 2236; https://doi.org/10.3390/microorganisms13102236 - 24 Sep 2025
Viewed by 68
Abstract
Rare earth element (REE) mining exerts profound impacts on aquatic ecosystems, yet the microbial community responses and water quality under such stress remain underexplored. In this study, the surface (0.2 m) and subsurface (1.0 m) water along a spatial transect from proximal to [...] Read more.
Rare earth element (REE) mining exerts profound impacts on aquatic ecosystems, yet the microbial community responses and water quality under such stress remain underexplored. In this study, the surface (0.2 m) and subsurface (1.0 m) water along a spatial transect from proximal to distal points was investigated in a REE-mining area of Ganzhou, China. Physicochemical analyses revealed pronounced gradients of nitrogen (e.g., NH4+−N, NO3−N), heavy metals (e.g., Mn, Zn, Pb), and REEs (e.g., La, Nd, Ce), with higher accumulation near mining sources and partial attenuation downstream. Dissolved oxygen and redox potential indicated mildly reducing conditions at contaminated points, potentially promoting denitrification and altering nitrogen cycling. Metagenomic sequencing showed significant shifts in microbial community composition, with enrichment of metal- and nitrogen-tolerant taxa, and key denitrifiers (e.g., Acidovorax, Bradyrhizobium, Rhodanobacter), particularly at upstream polluted points. KEGG-based gene annotation highlighted dynamic nitrogen transformations mediated by multiple pathways, including nitrification, denitrification, dissimilatory nitrate reduction to ammonium, and nitrogen fixation. Notably, genes associated with nitrite and nitrate reduction (e.g., nir, nar, nrf) were enriched near mining sources, indicating enhanced nitrogen conversion potential, while downstream activation of nitrogen-fixing genes suggested partial ecosystem recovery. Meanwhile, some microbial such as Variovorax carried metal tolerant genes (e.g., ars, chr, cnr). These findings demonstrate that REE and heavy metal contamination restructure microbial networks, modulate nitrogen cycling, and create localized ecological stress gradients. This study provides a comprehensive assessment of mining-related water pollution, microbial responses, and ecological risks, offering valuable insights for monitoring, restoration, and sustainable management of REE-impacted aquatic environments. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

24 pages, 2436 KB  
Review
Valorization of Kitchen Waste into Functional Biochar: Progress in Synthesis, Characterization, and Water Remediation Potential
by Himanshi Soni, Anjali Verma, Subbulakshmi Ganesan, Thangaraj Anand, Shakti Prakash Jena, Mikhael Bechelany and Jagpreet Singh
Sustainability 2025, 17(19), 8533; https://doi.org/10.3390/su17198533 - 23 Sep 2025
Viewed by 192
Abstract
The continuous increase in urbanization and global population has led to the generation of a substantial amount of kitchen waste, posing severe environmental and disposal challenges. The utilization of kitchen waste as organic biomass for biochar production offers a promising, sustainable, and cost-effective [...] Read more.
The continuous increase in urbanization and global population has led to the generation of a substantial amount of kitchen waste, posing severe environmental and disposal challenges. The utilization of kitchen waste as organic biomass for biochar production offers a promising, sustainable, and cost-effective solution. This review comprehensively analyzes the recent developments in the transformation of kitchen waste into biochar. Moreover, the current study involves various synthesis techniques, the physicochemical characteristics of biochar, and its applications in soil and water remediation. Afterwards, the experimental parameters and feedstock types are critically evaluated in terms of their key characteristics for biochar. Moreover, the current study highlights the effectiveness of kitchen waste-derived biochar (KWBC) in decomposing organic pollutants, heavy metals, and pharmaceutical pollutants from contaminated environments. Additionally, the mechanisms of adsorption, ion exchange, complexation, and redox interactions are thoroughly illustrated to evaluate the pollutant removal pathways. At the end of the study, experimental parameters such as pH, dosage, contact time, and initial pollutant concentration are discussed, which play the main role in enhancing the adsorption capacity of biochar. Finally, this review outlines current limitations and proposes future directions for optimizing biochar performance and promoting its large-scale application in sustainable environmental management. Full article
Show Figures

Figure 1

18 pages, 7190 KB  
Article
Lithofacies Characteristics and Sedimentary Evolution of the Lianggaoshan Formation in the Southeastern Sichuan Basin
by Qingshao Liang, Qianglu Chen, Yunfei Lu, Yanji Li, Jianxin Tu, Guang Yang and Longhui Gao
Minerals 2025, 15(9), 1003; https://doi.org/10.3390/min15091003 - 22 Sep 2025
Viewed by 220
Abstract
The Lower Submember of the Second Member of the Lianggaoshan Formation (LGS2-LS) in the Fuling area, southeastern Sichuan Basin, represents the deepest lacustrine depositional stage of the formation and constitutes an important target for shale oil and gas exploration. Based on core observations, [...] Read more.
The Lower Submember of the Second Member of the Lianggaoshan Formation (LGS2-LS) in the Fuling area, southeastern Sichuan Basin, represents the deepest lacustrine depositional stage of the formation and constitutes an important target for shale oil and gas exploration. Based on core observations, thin-section petrography, X-ray diffraction, geochemical analyses, and sedimentary facies interpretation from representative wells, this study characterizes the lithofacies types, sedimentary environments, and depositional evolution of the LGS2-LS. Results show that the LGS2-LS is dominated by clay–quartz assemblages, with average clay mineral and quartz contents of 44.6% and 38.8%, respectively, and can be subdivided into shallow and semi-deep lacustrine subfacies comprising eight microfacies. Geochemical proxies indicate alternating warm-humid and hot-arid paleoclimatic phases, predominantly freshwater conditions, variable redox states, and fluctuations in paleoproductivity. Sedimentary evolution reveals multiple transgressive–regressive cycles, with Sub-layer 6 recording the maximum water depth and deposition of thick organic-rich shales under strongly reducing conditions. The proposed sedimentary model outlines a terrigenous clastic lacustrine system controlled by lake-level fluctuations, transitioning from littoral to shallow-lake to semi-deep-lake environments. The distribution of high-quality organic-rich shales interbedded with sandstones highlights the LGS2-LS as a favorable interval for shale oil and gas accumulation, providing a geological basis for further hydrocarbon exploration in the southeastern Sichuan Basin. Full article
(This article belongs to the Special Issue Sedimentary Basins and Minerals)
Show Figures

Figure 1

20 pages, 1346 KB  
Review
Copper, Cuproptosis, and Neurodegenerative Diseases
by Giuseppe Genchi, Alessia Catalano, Alessia Carocci, Maria Stefania Sinicropi and Graziantonio Lauria
Int. J. Mol. Sci. 2025, 26(18), 9173; https://doi.org/10.3390/ijms26189173 - 19 Sep 2025
Viewed by 233
Abstract
Copper is a vital micronutrient for animals and plants acting as a crucial cofactor in the synthesis of numerous metabolic enzymes and contributing to mitochondrial respiration, metabolism, oxido-reductive reactions, signal transmission, and oxidative and nitrosative damage. In the cells, copper may exist in [...] Read more.
Copper is a vital micronutrient for animals and plants acting as a crucial cofactor in the synthesis of numerous metabolic enzymes and contributing to mitochondrial respiration, metabolism, oxido-reductive reactions, signal transmission, and oxidative and nitrosative damage. In the cells, copper may exist in the Cu+ and Cu++ oxidation states and the interconversion between these two states may occur via various redox reactions regulating cellular respiration, energy metabolism, and cell growth. The human body maintains a low level of copper, and copper deficiency or copper excess may adversely affect cellular functions; therefore, regulation of copper levels within a narrow range is important for maintaining metabolic homeostasis. Recent studies identified a new copper-dependent form of cell death called cuproptosis. Cuproptosis occurs due to copper binding to lipoylated enzymes (for instance, pyruvate dehydrogenase and α-ketoglutarate dehydrogenase) in the tricarboxylic acid Krebs cycle. In recent years, extensive studies on copper homeostasis and copper-induced cell death in degenerative disorders, like Menkes, Wilson, Alzheimer, Parkinson’s, Huntington’s diseases, and Amyotrophic Lateral Sclerosis, have discussed the therapeutic potential of targeting cuproptosis. Copper contamination in the environment, which has increased in recent years due to the expansion of agricultural and industrial activities, is associated with a wide range of human health risks. Soil used for the cultivation of grapes has a long history of copper-based fungicide application (the Bordeaux mixture is rich in copper) resulting in copper accumulation at levels capable of causing toxicity in plants that co-inhabit the vineyards. Phytoremediation, which uses plants and biological solutions to remove toxic heavy metals and pesticides and other contaminants from soil and water, is an environmentally friendly and cost-effective technology used for the removal of copper. It requires plants to be tolerant of high levels of copper and capable of accumulating metal copper in plants’ aerial organs and roots. This review aims at highlighting the importance of copper as an essential metal, as well as its involvement in cuproptosis and neurodegenerative diseases. Full article
Show Figures

Figure 1

18 pages, 2632 KB  
Article
Intracellular Dual Behavior of Trolox in HeLa Cells and 3T3 Fibroblasts Under Basal and H2O2-Induced Oxidative Stress Conditions
by Maria Elena Giordano and Maria Giulia Lionetto
Molecules 2025, 30(18), 3755; https://doi.org/10.3390/molecules30183755 - 16 Sep 2025
Viewed by 257
Abstract
Trolox, a water-soluble analog of vitamin E, is widely used as a reference antioxidant in in vitro biochemical assays. However, its intracellular redox behavior is known to vary depending on both concentration and oxidative context. In this study, we investigated the dose-dependent antioxidant [...] Read more.
Trolox, a water-soluble analog of vitamin E, is widely used as a reference antioxidant in in vitro biochemical assays. However, its intracellular redox behavior is known to vary depending on both concentration and oxidative context. In this study, we investigated the dose-dependent antioxidant and prooxidant effects of Trolox in two cellular models, HeLa cells and 3T3 cells exposed for 1 h to increasing concentrations (2–160 µM), under both basal conditions and oxidative stress induced by hydrogen peroxide. Intracellular oxidative changes were assessed using the oxidative stress-sensitive fluorescent probe CM-H2DCFDA. Under basal conditions, Trolox exerted slight dose-dependent antioxidant behavior in 3T3 cells on the basal production of ROS in concentrations ranging from 2 µM to 160 µM. In contrast, in HeLa cells Trolox displayed a biphasic activity: antioxidant at low doses (≤10 µM) and a switch to prooxidant behavior at higher concentrations. Under H2O2-induced stress, in HeLa cells Trolox retained antioxidant activity at low concentrations (≤10 µM), but this effect gradually declined at higher doses, disappearing around 80 µM and shifting to a slight prooxidant effect at 160 µM. Confocal microscopy confirmed the spectrofluorimetric results. Conversely, 3T3 cells exhibited an early shift toward prooxidant activity already at 10 µM. These findings highlight that the Trolox redox activity is determined not only by concentration but also by cell-specific intracellular environment and redox state. The study suggests caution against generalized antioxidant use of Trolox and highlights the need for specific dose–response evaluations in specific cell types and biological settings. Full article
Show Figures

Figure 1

16 pages, 1875 KB  
Article
Valorization of an Industrial Pollutant Residue as a Teaching Tool: Extraction of Al3+ from Aluminum Saline Slag
by Alejandro Jiménez, Raquel Trujillano, Sophia Korili, Antonio Gil and Miguel Ángel Vicente
ChemEngineering 2025, 9(5), 99; https://doi.org/10.3390/chemengineering9050099 - 15 Sep 2025
Viewed by 309
Abstract
Aluminum is the most used non–ferrous metal. It can be recycled saving several natural resources, but generates large amounts of residues with a complex composition—still containing a valuable amount of aluminum, although also including contaminant compounds. The laboratory-scale valorization of an industrial aluminum [...] Read more.
Aluminum is the most used non–ferrous metal. It can be recycled saving several natural resources, but generates large amounts of residues with a complex composition—still containing a valuable amount of aluminum, although also including contaminant compounds. The laboratory-scale valorization of an industrial aluminum residue is here used as a powerful didactic resource in Inorganic and Analytical Chemistry and related fields such as Chemistry, Chemical Engineering, Environmental Engineering, Materials Engineering, and related university degrees, since concepts like acid-base properties (particularly amphoterism), redox reactions, speciation diagrams, or solubility–precipitation concepts are applied. The students are encouraged to look for information on the topic, to teamwork, and to elaborate a well-written laboratory report. At the same time, this laboratory work introduces them to advanced laboratory techniques and to incorporate concepts of Circular Economy and various Sustainable Development Goals, educating the students with respect to the environment. Although focused on University studies, this manuscript also contains excellent ideas for secondary teachers to motivate STEM vocations, particularly for Chemistry and Chemical and Environmental Engineering, and is also ideal for being included in the preparation of future Secondary School teachers. Full article
Show Figures

Figure 1

23 pages, 1696 KB  
Article
Ab Initio Study of Formation Mechanisms and Thermochemical Properties of Reactive Oxygen Species (ROS) in Photocatalytic Processes
by Silvia González and Ximena Jaramillo-Fierro
Int. J. Mol. Sci. 2025, 26(18), 8989; https://doi.org/10.3390/ijms26188989 - 15 Sep 2025
Viewed by 303
Abstract
This study explores the thermochemical properties and formation mechanisms of reactive oxygen species (ROS) relevant to photocatalytic processes, aiming to clarify their molecular characteristics and reaction dynamics. The research focuses on key ROS, including the superoxide anion radical (O2 [...] Read more.
This study explores the thermochemical properties and formation mechanisms of reactive oxygen species (ROS) relevant to photocatalytic processes, aiming to clarify their molecular characteristics and reaction dynamics. The research focuses on key ROS, including the superoxide anion radical (O2), hydrogen peroxide (H2O2), singlet oxygen (1O2), and hydroxyl radical (OH), employing Møller–Plesset second-order perturbation theory (MP2)-level quantum chemical calculations. Solvent effects were modeled using water to simulate conditions commonly found in photocatalytic environments. The computed energetic profiles and stabilities of the ROS offer insights into their relative reactivities and possible interconversion pathways. These findings enhance the understanding of how ROS behave under photocatalytic conditions, with implications for their role in degradation mechanisms and redox cycles. Overall, the results support the development and optimization of photocatalytic technologies for environmental applications, including pollutant degradation and disinfection of water and air. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

41 pages, 5058 KB  
Review
Review of Enargite Flotation—Part I: Surface Characterization and Advances in Selective Flotation
by Pablo Miranda-Villagrán, Rodrigo Yepsen, Andrés Ramírez-Madrid, Jorge H. Saavedra and Leopoldo Gutiérrez
Minerals 2025, 15(9), 971; https://doi.org/10.3390/min15090971 - 13 Sep 2025
Viewed by 385
Abstract
Enargite (Cu3AsS4), a copper–arsenic sulfosalt, represents a critical challenge in copper mineral processing due to its high arsenic content, which poses significant environmental, metallurgical, and economic issues. Its flotation behavior closely resembles that of other copper sulfides such as [...] Read more.
Enargite (Cu3AsS4), a copper–arsenic sulfosalt, represents a critical challenge in copper mineral processing due to its high arsenic content, which poses significant environmental, metallurgical, and economic issues. Its flotation behavior closely resembles that of other copper sulfides such as chalcopyrite and chalcocite, complicating selective separation at early beneficiation stages. This review presents a comprehensive examination of enargite’s surface chemistry and electrochemical behavior, focusing on the influence of oxidation, pH, and pulp potential on surface reactivity, charge distribution (zeta potential), and hydrophobicity. Detailed insights into the formation of surface oxidation layers, passivation mechanisms, and contact angle variations are provided to elucidate collector-mineral interactions. Advances in selective flotation techniques are also discussed, including the use of depressant reagents, controlled redox environments, and reagent conditioning strategies. Special attention is given to flotation in seawater, where ionic strength and multivalent ions significantly influence mineral-reagent interactions and flotation outcomes. Galvanic interactions between enargite and other sulfide minerals are identified as critical factors affecting floatability and selectivity. The review consolidates findings from recent experimental and electrochemical studies, highlighting promising approaches to enhance enargite rejection and copper concentrate purity. It concludes with perspectives on future research aimed at optimizing flotation processes and developing sustainable solutions for processing arsenic-bearing copper ores. Full article
Show Figures

Figure 1

24 pages, 20388 KB  
Article
Distribution and Environmental Implications of GDGTs in Sediments from Three Asian Mangrove Wetlands
by Qiunan Li, Yasong Wang, Xinxin Li, Mohammad Abdul Baki, Shilpi Saha, Jiaodi Zhou and Yunping Xu
Water 2025, 17(18), 2677; https://doi.org/10.3390/w17182677 - 10 Sep 2025
Viewed by 381
Abstract
Glycerol Dialkyl Glycerol Tetraethers (GDGTs) are microbial membrane lipids that can provide crucial information for identifying organic carbon sources and understanding paleoenvironments. Despite numerous studies reporting the presence of GDGTs in various terrestrial and marine environments, there is a paucity of reports concerning [...] Read more.
Glycerol Dialkyl Glycerol Tetraethers (GDGTs) are microbial membrane lipids that can provide crucial information for identifying organic carbon sources and understanding paleoenvironments. Despite numerous studies reporting the presence of GDGTs in various terrestrial and marine environments, there is a paucity of reports concerning GDGTs in mangrove wetlands that are characterized by unique hydrological conditions and disproportionately high accumulation rates of blue carbon (i.e., carbon sequestered in coastal ecosystems, where tidal flooding and anaerobic sediments facilitate exceptional long-term carbon storage). This study investigates GDGTs in 81 sediment samples from 5 sediment cores collected from three Asian mangrove wetlands in Bangladesh, Hong Kong, and Guangxi Province, China. The Hong Kong mangrove sediments had the highest GDGT concentration (370.18 ± 58.00 ng·g−1 dws), followed by Bangladesh mangrove sediments (136.70 ± 41.70 ng·g−1 dws), while Guangxi mangrove sediments had the lowest (100.80 ± 28.71 ng·g−1 dws). All samples demonstrated high BIT index values (>0.8), low IIIa/IIa index values (0.09–0.19) and the predominance of tetramethylated brGDGTs (70.38 ± 2.21%), indicating that terrestrial inputs are the primary source of organic carbon. Despite overall low methylation index (MI) values (0.15–0.35) and GDGT-0/Cren ratios, deeper sediment samples in the lower part of HK exhibited GDGT-0/Cren > 2, likely reflecting enhanced contributions of methanogenic archaea under distinct redox conditions compared to upper sediments. This in situ production may complicate the application of GDGT-based paleo-proxies, as indicated by the substantial deviations between CBT’-pH (MBT’5ME-temperature) and measured pH (instrumental temperature). The dominant bacterial phyla in the mangrove sediments of Guangxi and Bangladesh were Proteobacteria, Actinobacteriota, Chloroflexi, Acidobacteriota, and Firmicutes (>70% relative abundance). However, correlations between microbial community compositions and brGDGT isomers are different among sampling sites. Our study emphasizes that site- and depth-specific microbial activity may significantly contribute to organic matter cycling and the in situ production of GDGTs in mangrove sediments. These factors should be taken into account for organic carbon sequestration and the validity of GDGT-based paleo-proxies in mangrove wetlands. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Figure 1

16 pages, 1904 KB  
Review
Nicotinamide N-Methyltransferase in Cardiovascular Diseases: Metabolic Regulator and Emerging Therapeutic Target
by Jawaria, Yusra Zarlashat, Márton Philippovich and Edit Dósa
Biomolecules 2025, 15(9), 1281; https://doi.org/10.3390/biom15091281 - 4 Sep 2025
Viewed by 1284
Abstract
Cardiovascular disease (CVD) remains a leading cause of morbidity and mortality worldwide, arising from complex interactions among metabolic, genetic, and environmental factors. Nicotinamide N-methyltransferase (NNMT) has recently emerged as a key metabolic regulator in CVD pathogenesis. By consuming nicotinamide and methyl groups, NNMT [...] Read more.
Cardiovascular disease (CVD) remains a leading cause of morbidity and mortality worldwide, arising from complex interactions among metabolic, genetic, and environmental factors. Nicotinamide N-methyltransferase (NNMT) has recently emerged as a key metabolic regulator in CVD pathogenesis. By consuming nicotinamide and methyl groups, NNMT perturbs epigenetic, metabolic, and redox pathways that are critical for cardiovascular health. NNMT-mediated NAD+ depletion impairs mitochondrial function, sirtuin (SIRT) activity, redox balance, and energy metabolism, thereby creating a pro-atherogenic environment. NNMT and its product 1-methylnicotinamide (1-MNA) show a complex duality: they modulate SIRT activity—particularly SIRT1 and SIRT3—to influence gluconeogenesis, cholesterol synthesis, lipogenesis, and mitochondrial antioxidant defenses. NNMT upregulation also elevates homocysteine levels, activating pro-inflammatory and pro-oxidative cascades (e.g., TLR4–NF-κB and STAT3–IL-1β). Growing evidence links NNMT to major CVD risk factors, including hyperlipidemia, hypertension, diabetes mellitus, and obesity. Thus, NNMT has a multifaceted role in cardiovascular health: while its enzymatic activity is often pathogenic (via NAD+/SAM consumption and homocysteine production), its metabolite 1-MNA can exert protective effects (via NRF2 activation and anti-thrombotic mechanisms). This duality highlights the need to delineate the molecular processes that balance these opposing actions. Experimental studies using small-molecule NNMT inhibitors and RNA interference have shown promising cardiometabolic benefits in preclinical models, including improved insulin sensitivity, reduced atherosclerosis, and attenuated cardiac dysfunction. However, no clinical trials have yet targeted NNMT specifically in CVD. Future research should clarify the tissue-specific functions of NNMT and translate these insights into novel therapeutic strategies. Full article
Show Figures

Figure 1

21 pages, 5144 KB  
Review
Strategies for Regulating Reactive Oxygen Species in Carbon Nitride-Based Photocatalysis
by Qingyun Liu, Xiaoqiang Li, Yuxiao Chen, Xinhuan Zhang, Bailin Gao, Manqiu Ma, Hui Yang, Saisai Yuan and Qitao Zhang
Molecules 2025, 30(17), 3586; https://doi.org/10.3390/molecules30173586 - 2 Sep 2025
Viewed by 1141
Abstract
Reactive oxygen species (ROS) are increasingly recognized as decisive actors in photocatalytic redox chemistry, dictating both the selectivity and efficiency of target reactions, while most photocatalytic systems generate a mixture of ROS under illumination. Recent studies have revealed that tailoring the generation of [...] Read more.
Reactive oxygen species (ROS) are increasingly recognized as decisive actors in photocatalytic redox chemistry, dictating both the selectivity and efficiency of target reactions, while most photocatalytic systems generate a mixture of ROS under illumination. Recent studies have revealed that tailoring the generation of specific ROS, rather than maximizing the overall ROS yield, holds the key to unlocking high-performance and application-specific catalysis. In this context, the selective production of specific ROS has emerged as a critical requirement for achieving target-oriented and sustainable photocatalytic transformations. Among the various photocatalytic materials, polymeric carbon nitride (PCN) has garnered considerable attention due to its metal-free composition, visible-light response, tunable structure, and chemical robustness. More importantly, the tunable band structure, surface chemistry, and interfacial environment of PCN collectively make it an excellent scaffold for the controlled generation of specific ROS. In recent years, numerous strategies including molecular doping, defect engineering, heterojunction construction, and co-catalyst integration have been developed to precisely tailor the ROS profile derived from PCN-based systems. This review provides a comprehensive overview of ROS regulation in PCN-based photocatalysis, with a focus on type-specific strategies. By classifying the discussion according to the major ROS types, we highlight the mechanisms of their formation and the design principles that govern their selective generation. In addition, we discuss representative applications in which particular ROS play dominant roles and emphasize the potential of PCN systems in achieving tunable and efficient photocatalytic performance. Finally, we outline key challenges and future directions for developing next-generation ROS-regulated PCN photocatalysts, particularly in the context of reaction selectivity, dynamic behavior, and practical implementation. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

15 pages, 1745 KB  
Review
Zeaxanthin and Other Carotenoids: Roles in Abiotic Stress Defense with Implications for Biotic Defense
by Barbara Demmig-Adams, Amy K. Hodges, Stephanie K. Polutchko and William W. Adams
Plants 2025, 14(17), 2703; https://doi.org/10.3390/plants14172703 - 30 Aug 2025
Viewed by 607
Abstract
Xanthophylls are carotenoids with diverse roles in stress protection across all taxa of life. This review highlights chloroplast-localized xanthophylls (with a focus on zeaxanthin) of plants by presenting an overview of the protective effects of xanthophylls as well as the role of carotenoids [...] Read more.
Xanthophylls are carotenoids with diverse roles in stress protection across all taxa of life. This review highlights chloroplast-localized xanthophylls (with a focus on zeaxanthin) of plants by presenting an overview of the protective effects of xanthophylls as well as the role of carotenoids as precursors of multiple plant stress hormones. It also examines the roles of xanthophylls and stress hormones in signaling cascades between the chloroplast and nuclear genes that control plant growth, development, and stress defenses. This overview addresses the biosynthetic pathways of xanthophylls and carotenoid-derived plant stress hormones, functions of xanthophylls in photoprotection of photosynthesis, carotenoids as essential human micronutrients, and roles of xanthophylls in membrane integrity. Attention is given to the involvement of zeaxanthin in both abiotic and biotic defense as well as its impact on components of the biotic defense system with contrasting targets. Examples for the multiple principal loops of signaling cascades between the chloroplast and nucleus, which are based on chloroplast redox state and modulated by xanthophylls, are summarized. This review integrates the role of chloroplast carotenoids in controlling light-use efficiency and providing photoprotection with their system-wide regulatory effects as precursors of carotenoid-derived plant stress hormones and modulators of chloroplast redox state. A better understanding of these connections is needed to guide development of plant lines with improved resilience and productivity in complex, changing, and challenging environments. Full article
Show Figures

Figure 1

Back to TopTop