Intracellular Dual Behavior of Trolox in HeLa Cells and 3T3 Fibroblasts Under Basal and H2O2-Induced Oxidative Stress Conditions
Abstract
1. Introduction
2. Results
2.1. Effect of TROLOX on Intracellular Basal ROS Production in Hela Cells and 3T3 Cells After 1 h Incubation
2.2. H2O2-Induced Intracellular Prooxidant Conditions
2.3. Effect of Trolox on Intracellular ROS in HeLa Cells and 3T3 Cells Under H2O2-Induced Prooxidant Conditions
2.4. Comparison with Previous Studies
3. Discussion
4. Methods
4.1. Materials
4.2. Assessment of Trolox Intracellular Antioxidant/Prooxidant Activity in HeLa Cells and 3T3 Cells
4.3. Visualization of HeLa Cells by Confocal Microscopy
4.4. Visualization of 3T3 Cells by Widefield Fluorescence Microscopy
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liebler, D.C. Antioxidant Chemistry of α-Tocopherol in Biological Systems. In Fat-Soluble Vitamins Subcellular Biochemistry; Quinn, P.J., Kagan, V.E., Eds.; Springer: Boston, MA, USA, 1998; Volume 30, pp. 301–317. [Google Scholar]
- Ausili, A.; Torrecillas, A.; De Godos, A.M.; Corbalán-García, S.; Gómez-Fernández, J.C. Phenolic Group of α-Tocopherol Anchors at the Lipid-Water Interface of Fully Saturated Membrane. Langmuir 2018, 34, 3336–3348. [Google Scholar]
- Giordano, M.E.; Caricato, R.; Lionetto, M.G. Concentration dependence of the antioxidant and prooxidant activity of trolox in HeLa cells: Involvement in the induction of apoptotic volume decrease. Antioxidants 2020, 9, 1058. [Google Scholar] [CrossRef]
- Abramovič, H.; Grobin, B.; Ulrih, N.P.; Cigić, B. Relevance and Standardization of In Vitro Antioxidant Assays: ABTS, DPPH, and Folin–Ciocalteu. J. Chem. 2018, 2018, 4608405. [Google Scholar] [CrossRef]
- Cao, G.; Alessio, H.M.; Cutler, R.G. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic. Biol. Med. 1993, 14, 303–311. [Google Scholar]
- Tian, X.; Schaich, K.M. Effects of molecular structure on kinetics and dynamics of the Trolox equivalent antioxidant capacity assay with ABTS+•. J. Agric. Food Chem. 2013, 61, 5511–5519. [Google Scholar] [CrossRef]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Alberto, M.E.; Russo, N.; Grand, A.; Galano, A. A physicochemical examination of the free radical scavenging activity of Trolox: Mechanism, kinetics and influence of the environment. Phys. Chem. Chem. Phys. 2013, 15, 4642–4650. [Google Scholar] [CrossRef]
- Davies, M.J.; Forni, L.G.; Willson, R.L. Vitamin E analogue Trolox C. E.s.r. and pulse-radiolysis studies of free-radical reactions. Biochem. J. 1988, 255, 513. [Google Scholar]
- Ikemura, K.; Inoue, K.; Mizutani, H.; Oka, H.; Iwamoto, T.; Okuda, M. An antioxidant Trolox restores decreased oral absorption of cyclosporine A after liver ischemia–reperfusion through distinct mechanisms between CYP3A and P-glycoprotein in the small intestine. Eur. J. Pharmacol. 2012, 690, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Slovák, L.; Poništ, S.; Kuncírová, V.; Mihalová, D.; Fedorova, T.; Bauerová, K. Evaluation of the effect of carnosine, its novel derivative trolox-carnosine and trolox in a pre-clinical study focussing on the regulation of immunity. Eur. Pharm. J. 2016, 63, 16–19. [Google Scholar] [CrossRef]
- Rozanowska, M.; Edge, R.; Land, E.J.; Navaratnam, S.; Sarna, T.; Truscott, T.G. Scavenging of Retinoid Cation Radicals by Urate, Trolox, and α-, β-, γ-, and δ-Tocopherols. Int. J. Mol. Sci. 2019, 20, 2799. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.S.; Sayyed, S.G. Effect of Trolox on nerve dysfunction, thermal hyperalgesia and oxidative stress in experimental diabetic neuropathy. Clin. Exp. Pharmacol. Physiol. 2006, 33, 1022–1028. [Google Scholar] [CrossRef] [PubMed]
- Atiq, A.; Lee, H.J.; Khan, A.; Kang, M.H.; Rehman, I.U.; Ahmad, R.; Tahir, M.; Ali, J.; Choe, K.; Park, J.S.; et al. Vitamin E Analog Trolox Attenuates MPTP-Induced Parkinson’s Disease in Mice, Mitigating Oxidative Stress, Neuroinflammation, and Motor Impairment. Int. J. Mol. Sci. 2023, 24, 9942. [Google Scholar] [PubMed]
- Upreti, S.; Nag, T.C.; Ghosh, M.P. Trolox aids coenzyme Q10 in neuroprotection against NMDA induced damage via upregulation of VEGF in rat model of glutamate excitotoxicity. Exp. Eye Res. 2024, 238, 109740. [Google Scholar] [CrossRef]
- Ko, K.M.; Yick, P.K.; Poon, M.K.T.; Ip, S.P. Prooxidant and antioxidant effects of trolox on ferric ion-induced oxidation of erythrocyte membrane lipids. Mol. Cell Biochem. 1994, 141, 65–70. [Google Scholar]
- Albertini, R.; Abuja, P.M. Prooxidant and antioxidant properties of Trolox C, analogue of vitamin E, in oxidation of low-density lipoprotein. Free Radic. Res. 1999, 30, 181–188. [Google Scholar] [CrossRef]
- Poljšak, B.; Raspor, P. The antioxidant and pro-oxidant activity of vitamin C and trolox in vitro: A comparative study. J. Appl. Toxicol. 2008, 28, 183–188. [Google Scholar] [CrossRef]
- Vilchis-Landeros, M.M.; Matuz-Mares, D.; Vázquez-Meza, H. Regulation of Metabolic Processes by Hydrogen Peroxide Generated by NADPH Oxidases. Processes 2020, 8, 1424. [Google Scholar] [CrossRef]
- Gibbs, E.T.; Lerner, C.A.; Watson, M.A.; Wong, H.S.; Gerencser, A.A.; Brand, M.D. Site IQ in mitochondrial complex I generates S1QEL-sensitive superoxide/hydrogen peroxide in both the reverse and forward reactions. Biochem. J. 2023, 480, 363–384. [Google Scholar] [CrossRef]
- Di Marzo, N.; Chisci, E.; Giovannoni, R. The Role of Hydrogen Peroxide in Redox-Dependent Signaling: Homeostatic and Pathological Responses in Mammalian Cells. Cells 2018, 7, 156. [Google Scholar] [CrossRef]
- Winterbourn, C.C.; Kettle, A.J.; Hampton, M.B. Reactive Oxygen Species and Neutrophil Function. Annu. Rev. Biochem. 2016, 85, 765–792. [Google Scholar] [CrossRef]
- Wu, W.C.; Hu, D.N.; Gao, H.X.; Chen, M.; Wang, D.; Rosen, R.; McCormick, S.A. Subtoxic levels hydrogen peroxide-induced production of interleukin-6 by retinal pigment epithelial cells. Mol. Vis. 2010, 16, 1864. [Google Scholar]
- Nunes, P.R.; Serrao Peracoli, M.T.; Romao-Veiga, M.; Matias, M.L.; Ribeiro, V.R.; Da Costa Fernandes, C., Jr.; Peracoli, J.C.; Rodrigues, J.R.; De Oliveira, L. Hydrogen peroxide-mediated oxidative stress induces inflammasome activation in term human placental explants. Pregnancy Hypertens. 2018, 14, 29–36. [Google Scholar] [CrossRef]
- Wittmann, C.; Chockley, P.; Singh, S.K.; Pase, L.; Lieschke, G.J.; Grabher, C. Hydrogen peroxide in inflammation: Messenger, guide, and assassin. Adv. Hematol. 2012, 2012, 541471. [Google Scholar] [CrossRef]
- Zoschke, D.C.; Kaja, J. Suboptimal levels of hydrogen peroxide scavengers in synovial fluid: In vitro augmentation with slow acting antirheumatic drugs. J. Rheumatol. 2025, 16, 1233–1240. [Google Scholar]
- Li, C.; Wang, J.; Lu, X.; Ge, H.; Jin, X.; Guan, Q.; Su, Y.; Ruijun, P.; Li, P.; Cai, W.; et al. Hydrogen peroxide-response nanoprobe for CD44-targeted circulating tumor cell detection and H2O2 analysis. Biomaterials 2020, 255, 120071. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Jiang, R.; Cui, B.; Wang, M.; Fang, J.; Li, F.; Kong, F.; Zhou, Y. Quantification and visualization of hydrogen peroxide in an ischemic model and serum samples from stroke patients using a reaction-based fluorescence sensor. Sens. Actuators B Chem. 2023, 397, 134662. [Google Scholar] [CrossRef]
- Hsieh, H.C.; Chen, C.M.; Hsieh, W.Y.; Chen, C.Y.; Liu, C.C.; Lin, F.H. ROS-induced toxicity: Exposure of 3T3, RAW264.7, and MCF7 cells to superparamagnetic iron oxide nanoparticles results in cell death by mitochondria-dependent apoptosis. J. Nanoparticle Res. 2015, 17, 71. [Google Scholar] [CrossRef]
- Greene, L.E.; Lincoln, R.; Cosa, G. Rate of Lipid Peroxyl Radical Production during Cellular Homeostasis Unraveled via Fluorescence Imaging. J. Am. Chem. Soc. 2017, 139, 15801–15811. [Google Scholar] [CrossRef]
- Giordano, M.E.; Lionetto, M.G. Intracellular Redox Behavior of Quercetin and Resveratrol Singly and in Mixtures. Molecules 2023, 28, 4682. [Google Scholar] [CrossRef]
- Kristiansen, K.A.; Jensen, P.E.; Møller, I.M.; Schulz, A. Monitoring reactive oxygen species formation and localisation in living cells by use of the fluorescent probe CM-H2DCFDA and confocal laser microscopy. Physiol. Plant 2009, 136, 369–383. [Google Scholar] [CrossRef]
- Tafazoli, S.; Wright, J.S.; O’Brien, P.J. Prooxidant and antioxidant activity of vitamin E analogues and troglitazone. Chem. Res. Toxicol. 2005, 18, 1567–1574. [Google Scholar] [CrossRef]
- Diaz, Z.; Colombo, M.; Mann, K.K.; Su, H.; Smith, K.N.; Bohle, D.S.; Schipper, H.M.; Miller, W.H., Jr. Trolox selectively enhances arsenic-mediated oxidative stress and apoptosis in APL and other malignant cell lines. Blood 2005, 105, 1237–1245. [Google Scholar] [CrossRef]
- Gyulkhandanyan, A.V.; Feeney, C.J.; Pennefather, P.S. Modulation of mitochondrial membrane potential and reactive oxygen species production by copper in astrocytes. J. Neurochem. 2003, 87, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Kuběnová, L.; Haberland, J.; Dvořák, P.; Šamaj, J.; Ovečka, M. Spatiotemporal distribution of reactive oxygen species production, delivery, and use in Arabidopsis root hairs. Plant Physiol. 2023, 193, 2337–2360. [Google Scholar] [CrossRef]
- Plantin-Carrenard, E.; Braut-Boucher, F.; Bernard, M.; Derappe, C.; Foglietti, M.J.; Aubery, M. Fluorogenic probes applied to the study of induced oxidative stress in the human leukemic HL60 cell line. J. Fluoresc. 2000, 10, 167–176. [Google Scholar] [CrossRef]
- Lionetto, M.G.; Guascito, M.R.; Giordano, M.E.; Caricato, R.; De Bartolomeo, A.R.; Romano, M.P.; Conte, M.; Dinoi, A.; Contini, D. Oxidative Potential, Cytotoxicity, and Intracellular Oxidative Stress Generating Capacity of PM10: A Case Study in South of Italy. Atmosphere 2021, 12, 464. [Google Scholar] [CrossRef]
- Giordano, M.E.; Ingrosso, I.; Schettino, T.; Caricato, R.; Giovinazzo, G.; Lionetto, M.G. Intracellular antioxidant activity of grape skin polyphenolic extracts in rat superficial colonocytes: In situ detection by confocal fluorescence microscopy. Front. Physiol. 2016, 27, 177. [Google Scholar] [CrossRef]
- Giordano, M.E.; Caricato, R.; Verri, T.; Lionetto, M.G. The colon epithelium as a target for the intracellular antioxidant activity of hydroxytyrosol: A study on rat colon explants. J. Funct. Foods 2020, 64, 103604. [Google Scholar] [CrossRef]
- Priyadarsini, K.I.; Kapoor, S.; Naik, D.B. One- and Two-Electron Oxidation Reactions of Trolox by Peroxynitrite. Chemi Res. Toxicol. 2001, 14, 567–571. [Google Scholar] [CrossRef]
- Nakamura, M. One-Electron Oxidation of Trolox C (a Vitamin E Analogue) by Peroxidases. J. Biochem. 1990, 108, 245–249. [Google Scholar] [CrossRef]
- Malyszko, J.; Mechanik, M. Anodic Oxidation of Trolox in Aqueous Solutions. Pol. J. Chem. 2004, 78, 1575–1582. [Google Scholar]
- Delicado, E.; Ferrer, Á.; Carmona, F. A kinetic study of the one-electron oxidation of Trolox C by the hy-droperoxidase activity of lipoxygenase. Biochim. Biophys. Acta 1997, 1335, 127–134. [Google Scholar] [CrossRef]
- Lu, N.; Chen, W.; Peng, Y. Effects of glutathione, Trolox and desferrioxamine on hemoglobin-induced pro-tein oxidative damage: Anti-oxidant or pro-oxidant? Eur. J. Pharmacol. 2011, 659, 95–101. [Google Scholar] [CrossRef]
- Koppe, L.; Croze, M.; Monteiro, E.; Benoit, B.; Bres, E.; Guebre-Egziabher, F.; Daleprane, J.; Fouque, D.; Soulage, C. The protein-bound uremic toxin p-cresyl-sulfate promotes intracellular ROS production and lipid peroxida-tion in 3T3-L1 adipose cells. Biochimie 2021, 189, 137–143. [Google Scholar] [CrossRef]
- Mishina, N.; Bogdanova, Y.; Ermakova, Y.; Panova, A.; Kotova, D.; Bilan, D.; Steinhorn, B.; Arnér, E.; Michel, T.; Belousov, V. Which Antioxidant System Shapes Intracellular H2O2 Gradients? Antioxid. Redox Signal. 2019, 31, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Amić, A.; Mastil, D. A DFT study of the antioxidant potency of α-tocopherol and its derivatives: PMHC, Trolox, and α-CEHC. J. Mol. Liq. 2024, 403, 124796. [Google Scholar] [CrossRef]
- Martin-Rubio, A.; Sopelana, P.; Ibargoitia, M.; Guillén, M. Prooxidant effect of α-tocopherol on soybean oil. Global monitoring of its oxidation process under accelerated storage conditions by 1H nuclear magnetic resonance. Food Chem. 2018, 245, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Nieva-Echevarría, B.; Goicoechea, E.; Guillén, M. Effect of adding al-pha-tocopherol on the oxidation advance during in vitro gastrointestinal digestion of sunflower and flaxseed oils. Food Res. Int. 2019, 125, 108558. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Tsuchiya, J.; Niki, E. Interaction of alpha-tocopherol with copper and its effect on lipid peroxidation. Biochim. Biophys. Acta 1994, 1200, 85–92. [Google Scholar] [CrossRef]
- Yamamoto, K.; Niki, E. Interaction of alpha-tocopherol with iron: Antioxidant and prooxidant effects of alpha-tocopherol in the oxidation of lipids in aqueous dispersions in the presence of iron. Biochim. Biophys. Acta 1988, 958, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Kontush, A.; Finckh, B.; Karten, B.; Kohlschütter, A.; Beisiegel, U. Antioxidant and prooxidant activity of alpha-tocopherol in human plasma and low density lipoprotein. J. Lipid Res. 1996, 37, 1436–1448. [Google Scholar] [CrossRef] [PubMed]
- Bowry, V.W.; Ingold, K.U.; Stocker, R. Vitamin E in human low-density lipoprotein. When and how this antioxidant becomes a pro-oxidant. Biochem. J. 1992, 288, 341–344. [Google Scholar] [CrossRef]
- Kagan, V.; Kagan, V.; Serbinova, E.; Serbinova, E.; Packer, L.; Packer, L. Generation and recycling of radicals from phenolic antioxidants. Arch. Biochem. Biophys. 1990, 280, 33–39. [Google Scholar] [CrossRef] [PubMed]
Cell Type | Trolox Concentration | Observed Effects | Pro/Antioxidant | Conditions | Exposure Duration | Ref |
---|---|---|---|---|---|---|
HeLa cells | 2–20 µM | Non-monotonic decrease in intracellular ROS | Antioxidant (non-monotonic behavior) | Baseline (no added oxidant) | 1 h | Present study |
HeLa cells | >20 µM | Increased ROS | Prooxidant | Baseline (no added oxidant) | 1 h | Present study |
HeLa cells | >10–80 µM | Non-monotonic decrease in intracellular ROS | Antioxidant (non-monotonic behavior) | H2O2 | 1 h | Present study |
HeLa cells | 160 µM | Increased ROS | Prooxidant | H2O2 | 1 h | Present study |
HeLa cells | 2.5–15 µM | Decreased intracellular ROS | Antioxidant | Baseline (no added oxidant) | 24 h | [3] |
3T3 cells | 2–160 µM | Slight monotonic decrease in intracellular ROS | Antioxidant (monotonic behavior) | Baseline (no added oxidant) | 1 h | Present study |
3T3 cells | 2–5 µM | Non-monotonic decrease in intracellular ROS | Antioxidant (non-monotonic behavior) | H2O2 | 1 h | Present study |
3T3 cells | 10–160 µM | Non-monotonic increase in intracellular ROS | Prooxidant (non-monotonic behavior) | H2O2 | 1 h | Present study |
HeLa cells | >20 µM | Increased intracellular ROS, apoptosis | Prooxidant | Baseline (no added oxidant) | 24 h | [3] |
Rat hepatocytes | <20 µM | Inhibited cumene hydroperoxide-induced LPO and cytotoxicity | Antioxidant | 90µM Cumene peroxide | 2 h | [33] |
Rat hepatocytes | 100 µM | LPO (MDA formation); GSH oxidation; cytotoxicity | Prooxidant | peroxidase/H2O2 | 2 h | [33] |
Rat astrocytes | 250 µM | Depolarization of mitochondria | Prooxidant | CuSO4 | 15 min | [35] |
NB4 cells | 100 µM | Oxidative stress; apoptosis | Prooxidant | As2O3 | 6 days | [34] |
AsR2 cells | 100 µM | Oxidative stress; apoptosis | Prooxidant | As2O3 | 6 days | [34] |
IM9 cells | 100 µM | Oxidative stress; apoptosis | Prooxidant | As2O3 | 6 days | [34] |
Mouse fibroblasts | 100 µM | Decreased As2O3− mediated apoptosis | Antioxidant | As2O3 | 3 days | [34] |
Erythrocyte membrane | 50 µM | Lipid oxidation | Prooxidant | Fe3+ | 30 min | [16] |
Cell-free system | 5 mM | Hydroxyl radical formation | Prooxidant | Cr(VI), H2O2 | 30 min | [18] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giordano, M.E.; Lionetto, M.G. Intracellular Dual Behavior of Trolox in HeLa Cells and 3T3 Fibroblasts Under Basal and H2O2-Induced Oxidative Stress Conditions. Molecules 2025, 30, 3755. https://doi.org/10.3390/molecules30183755
Giordano ME, Lionetto MG. Intracellular Dual Behavior of Trolox in HeLa Cells and 3T3 Fibroblasts Under Basal and H2O2-Induced Oxidative Stress Conditions. Molecules. 2025; 30(18):3755. https://doi.org/10.3390/molecules30183755
Chicago/Turabian StyleGiordano, Maria Elena, and Maria Giulia Lionetto. 2025. "Intracellular Dual Behavior of Trolox in HeLa Cells and 3T3 Fibroblasts Under Basal and H2O2-Induced Oxidative Stress Conditions" Molecules 30, no. 18: 3755. https://doi.org/10.3390/molecules30183755
APA StyleGiordano, M. E., & Lionetto, M. G. (2025). Intracellular Dual Behavior of Trolox in HeLa Cells and 3T3 Fibroblasts Under Basal and H2O2-Induced Oxidative Stress Conditions. Molecules, 30(18), 3755. https://doi.org/10.3390/molecules30183755