Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (18,142)

Search Parameters:
Keywords = regional selectivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
87 pages, 2494 KB  
Systematic Review
A Systematic Review of Models for Fire Spread in Wildfires by Spotting
by Edna Cardoso, Domingos Xavier Viegas and António Gameiro Lopes
Fire 2025, 8(10), 392; https://doi.org/10.3390/fire8100392 - 3 Oct 2025
Abstract
Fire spotting (FS), the process by which firebrands are lofted, transported, and ignite new fires ahead of the main flame front, plays a critical role in escalating extreme wildfire events. This systematic literature review (SLR) analyzes peer-reviewed articles and book chapters published in [...] Read more.
Fire spotting (FS), the process by which firebrands are lofted, transported, and ignite new fires ahead of the main flame front, plays a critical role in escalating extreme wildfire events. This systematic literature review (SLR) analyzes peer-reviewed articles and book chapters published in English from 2000 to 2023 to assess the evolution of FS models, identify prevailing methodologies, and highlight existing gaps. Following a PRISMA-guided approach, 102 studies were selected from Scopus, Web of Science, and Google Scholar, with searches conducted up to December 2023. The results indicate a marked increase in scientific interest after 2010. Thematic and bibliometric analyses reveal a dominant research focus on integrating the FS model within existing and new fire spread models, as well as empirical research and individual FS phases, particularly firebrand transport and ignition. However, generation and ignition FS phases, physics-based FS models (encompassing all FS phases), and integrated operational models remain underexplored. Modeling strategies have advanced from empirical and semi-empirical approaches to machine learning and physical-mechanistic simulations. Despite advancements, most models still struggle to replicate the stochastic and nonlinear nature of spotting. Geographically, research is concentrated in the United States, Australia, and parts of Europe, with notable gaps in representation across the Global South. This review underscores the need for interdisciplinary, data-driven, and regionally inclusive approaches to improve the predictive accuracy and operational applicability of FS models under future climate scenarios. Full article
16 pages, 2994 KB  
Article
Stiffness Degradation of Expansive Soil Stabilized with Construction and Demolition Waste Under Wetting–Drying Cycles
by Haodong Xu and Chao Huang
Coatings 2025, 15(10), 1154; https://doi.org/10.3390/coatings15101154 - 3 Oct 2025
Abstract
To address the challenge of long-term stiffness retention of subgrades in humid–hot climates, this study evaluates expansive soil stabilized with construction and demolition waste (CDW), focusing on the resilient modulus (Mr) under coupled stress states and wetting–drying histories. Basic physical [...] Read more.
To address the challenge of long-term stiffness retention of subgrades in humid–hot climates, this study evaluates expansive soil stabilized with construction and demolition waste (CDW), focusing on the resilient modulus (Mr) under coupled stress states and wetting–drying histories. Basic physical and swelling tests identified an optimal CDW incorporation of about 40%, which was then used to prepare specimens subjected to controlled. Wetting–drying cycles (0, 1, 3, 6, 10) and multistage cyclic triaxial loading across confining and deviatoric stress combinations. Mr increased monotonically with both stresses, with stronger confinement hardening at higher deviatoric levels; with cycling, Mr exhibited a rapid then gradual degradation, and for most stress combinations, the ten-cycle loss was 20%–30%, slightly mitigated by higher confinement. Grey relational analysis ranked influence as follows: the number of wetting–drying cycles > deviatoric stress > confining pressure. A Lytton model, based on a modified prediction method, accurately predicted Mr across conditions (R2 ≈ 0.95–0.98). These results integrate stress dependence with environmental degradation, offering guidance on material selection (approximately 40% incorporation), construction (adequate compaction), and maintenance (priority control of early moisture fluctuations), and provide theoretical support for durable expansive soil subgrades in humid–hot regions. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

13 pages, 2846 KB  
Article
Whole Genome Re-Sequencing Reveals Insights into the Genetic Diversity and Fruit Flesh Color of Guava
by Jiale Huang, Xianghui Yang, Chongbin Zhao, Ze Peng and Jun Chen
Horticulturae 2025, 11(10), 1194; https://doi.org/10.3390/horticulturae11101194 - 3 Oct 2025
Abstract
Guava (Psidium guajava L.), a perennial species native to tropical regions of the Americas, holds significant economic value and plays an important role in the global fruit industry. Although several reference genomes have been published, population-level genomic studies remain limited, hindering genetic [...] Read more.
Guava (Psidium guajava L.), a perennial species native to tropical regions of the Americas, holds significant economic value and plays an important role in the global fruit industry. Although several reference genomes have been published, population-level genomic studies remain limited, hindering genetic improvement efforts. In this study, we conducted whole genome re-sequencing of 62 guava accessions, primarily from Southern China and Brazil. A total of 4,887,006 high-quality SNPs and 731,469 InDels were identified for population genomic analyses. Phylogenetic and population structure analyses revealed subgroupings that largely corresponded to geographic origins. The data indicated that extensive hybridization between accessions from Brazil and or within China has contributed to the development of many dominant commercial varieties. Genetic diversity analyses showed that Brazilian accessions exhibited higher nucleotide diversity and more rapid linkage disequilibrium decay than those from China. Environmental factors and artificial selection likely imposed selective pressures that shaped guava’s adaptability and agronomic traits. A preliminary genome-wide association study (GWAS) identified PgMYB4 as a candidate gene potentially associated with fruit flesh color. These findings provide novel insights into the genetic diversity, population history, and domestication of guava, and lay a valuable foundation for future breeding and improvement strategies. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

19 pages, 36886 KB  
Article
Topographic Inversion and Shallow Gas Risk Analysis in the Canyon Area of Southeastern Qiongdong Basin Based on Multi-Source Data Fusion
by Hua Tao, Yufei Li, Qilin Jiang, Bigui Huang, Hanqiong Zuo and Xiaolei Liu
J. Mar. Sci. Eng. 2025, 13(10), 1897; https://doi.org/10.3390/jmse13101897 - 3 Oct 2025
Abstract
The submarine topography in the canyon area of the Qiongdongnan Basin is complex, with severe risks of shallow gas hazards threatening marine engineering safety. To accurately characterize seabed morphology and assess shallow gas risks, this study employed multi-source data fusion technology, integrating 3D [...] Read more.
The submarine topography in the canyon area of the Qiongdongnan Basin is complex, with severe risks of shallow gas hazards threatening marine engineering safety. To accurately characterize seabed morphology and assess shallow gas risks, this study employed multi-source data fusion technology, integrating 3D seismic data, shipborne multibeam bathymetry data, and high-precision AUV topographic data from key areas to construct a refined seabed terrain inversion model. For the first time, the spatial distribution characteristics of complex geomorphological features such as scarps, mounds, fissures, faults, and mass transport deposits (MTDs) were systematically delineated. Based on attribute analysis of 3D seismic data and geostatistical methods, the enrichment intensity of shallow gas was quantified, its distribution patterns were systematically identified, and risk level evaluations were conducted. The results indicate: (1) multi-source data fusion significantly improved the resolution and accuracy of terrain inversion, revealing intricate geomorphological details in deep-water regions; and (2) seismic attribute analysis effectively delineated shallow gas enrichment zones, clarifying their spatial distribution patterns and risk levels. This study provides critical technical support for deep-water drilling platform site selection, submarine pipeline route optimization, and engineering geohazard prevention, offering significant practical implications for ensuring the safety of deep-water energy development in the South China Sea. Full article
Show Figures

Figure 1

21 pages, 1625 KB  
Article
Multi-Objective Feature Selection for Intrusion Detection Systems: A Comparative Analysis of Bio-Inspired Optimization Algorithms
by Anıl Sezgin, Mustafa Ulaş and Aytuğ Boyacı
Sensors 2025, 25(19), 6099; https://doi.org/10.3390/s25196099 - 3 Oct 2025
Abstract
The increasing sophistication of cyberattacks makes Intrusion Detection Systems (IDSs) essential, yet the high dimensionality of modern network traffic hinders accuracy and efficiency. We conduct a comparative study of multi-objective feature selection for IDS using four bio-inspired metaheuristics—Grey Wolf Optimizer (GWO), Genetic Algorithm [...] Read more.
The increasing sophistication of cyberattacks makes Intrusion Detection Systems (IDSs) essential, yet the high dimensionality of modern network traffic hinders accuracy and efficiency. We conduct a comparative study of multi-objective feature selection for IDS using four bio-inspired metaheuristics—Grey Wolf Optimizer (GWO), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO)—on the X-IIoTID dataset. GA achieved the highest accuracy (99.60%) with the lowest FPR (0.39%) using 34 features. GWO offered the best accuracy–subset balance, reaching 99.50% accuracy with 22 features (65.08% reduction) within 0.10 percentage points of GA while using ~35% fewer features. PSO delivered competitive performance with 99.58% accuracy, 32 features (49.21% reduction), FPR 0.40%, and FNR 0.44%. ACO was the fastest (total training time 3001 s) and produced the smallest subset (7 features; 88.89% reduction), at an accuracy of 97.65% (FPR 2.30%, FNR 2.40%). These results delineate clear trade-off regions of high accuracy (GA/PSO/GWO), balanced (GWO), and efficiency-oriented (ACO) and underscore that algorithm choice should align with deployment constraints (e.g., edge vs. enterprise vs. cloud). We selected this quartet because it spans distinct search paradigms (hierarchical hunting, evolutionary recombination, social swarming, pheromone-guided foraging) commonly used in IDS feature selection, aiming for a representative, reproducible comparison rather than exhaustiveness; extending to additional bio-inspired and hybrid methods is left for future work. Full article
Show Figures

Figure 1

30 pages, 9143 KB  
Article
Numerical Simulation of Ultrasonic Field During Five-Source Ultrasound-Assisted Casting of 2219 Al Alloy
by Chengqun Zhou, Weimin Zhang, Ruiqing Li, Ripeng Jiang and Renjun Hu
Coatings 2025, 15(10), 1151; https://doi.org/10.3390/coatings15101151 - 3 Oct 2025
Abstract
In this study, the distribution of the acoustic pressure field and cavitation threshold region in Al alloy casting under two five-source ultrasound arrangements (A and B) is investigated, aiming to optimize the five-source ultrasound configuration to improve casting quality. Numerical simulations were conducted [...] Read more.
In this study, the distribution of the acoustic pressure field and cavitation threshold region in Al alloy casting under two five-source ultrasound arrangements (A and B) is investigated, aiming to optimize the five-source ultrasound configuration to improve casting quality. Numerical simulations were conducted using COMSOL software (COMSOL Multiphysics 6.0) to analyze the propagation characteristics of ultrasound in the Al melt and its influence on the cavitation effect under the two arrangements. The simulation results indicate that the cavitation threshold region for arrangement A is slightly larger than that for arrangement B. Furthermore, arrangement A demonstrates superior performance in terms of the uniformity of sound pressure distribution and the reduction in the cavitation threshold. Based on the simulation results, arrangement A was selected for experimental validation. The experimental results reveal that arrangement A, with a radial rod distance (L) of 200 mm from the center point and an insertion depth (H) of 270 mm, significantly refines the grains and improves the distribution of the second phase, thereby confirming the reliability of the simulation results. This study provides a theoretical foundation and practical guidance for the application of five-source ultrasound in Al alloy casting. Full article
Show Figures

Figure 1

11 pages, 1143 KB  
Communication
Development of Nanobody-Based Sandwich ELISA Resistant to SpA Interference for Sensitive Detection of Staphylococcal Enterotoxin A
by Chenghao Hu, Di Wang, Yangwei Ou, Ruoyu Li, Qi Chen and Peng Liu
Biosensors 2025, 15(10), 666; https://doi.org/10.3390/bios15100666 - 3 Oct 2025
Abstract
Staphylococcus aureus is a major pathogen responsible for staphylococcal food poisoning (SFP), with its pathogenicity primarily dependent on staphylococcal enterotoxins (SEs). Among these, staphylococcal enterotoxin A (SEA) is a critical risk factor due to its high toxicity, high detection rate (accounting for 80% [...] Read more.
Staphylococcus aureus is a major pathogen responsible for staphylococcal food poisoning (SFP), with its pathogenicity primarily dependent on staphylococcal enterotoxins (SEs). Among these, staphylococcal enterotoxin A (SEA) is a critical risk factor due to its high toxicity, high detection rate (accounting for 80% of SFP cases), strong thermal stability, and resistance to hydrolysis. Traditional SEA immunoassays, such as enzyme-linked immunosorbent assay (ELISA), are prone to false-positive results caused by nonspecific binding interference from S. aureus surface protein A (SpA). In recent years, nanobodies (single-domain heavy-chain antibodies) have emerged as an ideal alternative to address SpA interference owing to their small molecular weight (15 kDa), high affinity, robust stability, and lack of Fc regions. In this study, based on a previously developed highly specific monoclonal antibody against SEA (mAb-4C6), four anti-SEA nanobodies paired with mAb-4C6 were obtained through two-part (four-round) of biopanning from a naive nanobody phage display library. Among these, SEA-4-20 and SEA-4-31 were selected as optimal candidates and paired with mAb-4C6 to construct double-antibody sandwich ELISAs. The detection limits for SEA were 0.135 ng/mL and 0.137 ng/mL, respectively, with effective elimination of SpA interference. This approach provides a reliable tool for rapid and accurate detection of SEA in food, clinical, and environmental samples. Full article
(This article belongs to the Special Issue Immunoassays and Biosensing (2nd Edition))
Show Figures

Figure 1

19 pages, 6403 KB  
Article
Membrane Composition Modulates Vp54 Binding: A Combined Experimental and Computational Study
by Wenhan Guo, Rui Dong, Ayoyinka O. Okedigba, Jason E. Sanchez, Irina V. Agarkova, Elea-Maria Abisamra, Andrew Jelinsky, Wayne Riekhof, Laila Noor, David D. Dunigan, James L. Van Etten, Daniel G. S. Capelluto, Chuan Xiao and Lin Li
Pathogens 2025, 14(10), 1000; https://doi.org/10.3390/pathogens14101000 - 3 Oct 2025
Abstract
The recruitment of peripheral membrane proteins is tightly regulated by membrane lipid composition and local electrostatic microenvironments. Our experimental observations revealed that Vp54, a viral matrix protein, exhibited preferential binding to lipid bilayers enriched in anionic lipids such as phosphatidylglycerol (PG) and phosphatidylserine [...] Read more.
The recruitment of peripheral membrane proteins is tightly regulated by membrane lipid composition and local electrostatic microenvironments. Our experimental observations revealed that Vp54, a viral matrix protein, exhibited preferential binding to lipid bilayers enriched in anionic lipids such as phosphatidylglycerol (PG) and phosphatidylserine (PS), compared to neutral phosphatidylcholine/phosphatidylethanolamine liposomes, and this occurred in a curvature-dependent manner. To elucidate the molecular basis of this selective interaction, we performed a series of computational analyses including helical wheel projection, electrostatic potential calculations, electric field lines simulations, and electrostatic force analysis. Our results showed that the membrane-proximal region of Vp54 adopted an amphipathic α-helical structure with a positively charged interface. In membranes containing PG or PS, electrostatic potentials at the interface were significantly more negative, enhancing attraction with Vp54. Field line and force analyses further confirmed that both the presence and spatial clustering of anionic lipids intensify membrane–Vp54 electrostatic interactions. These computational findings align with experimental binding data, jointly demonstrating that membrane lipid composition and organization critically modulate Vp54 recruitment. Together, our findings highlight the importance of electrostatic complementarity and membrane heterogeneity in peripheral protein targeting and provide a framework applicable to broader classes of membrane-binding proteins. Full article
Show Figures

Graphical abstract

19 pages, 3846 KB  
Article
Impact of the Tigray War on Water Infrastructures and Essential Hydrosystems in Selected Battle Corridors
by Gebremedhin Berhane, Tesfamichael Gebreyohannes, Miruts Hagos, Abdelwassie Huessien, Aregawi Gebrekirstos, Kaleab Adhena Abera, Thomas Hermans and Kristine Walraevens
Water 2025, 17(19), 2883; https://doi.org/10.3390/w17192883 - 2 Oct 2025
Abstract
Armed conflicts continue to severely impact human populations and essential infrastructure, particularly water supply systems. This study examines the Yechilla area, a high-intensity battle corridor during the Tigray (between 12°15′26″ 14°57′49″ N latitude; and 36°20′57″–39°58′54″ E longitude) war (2020–2022). Using Cochran’s formula, a [...] Read more.
Armed conflicts continue to severely impact human populations and essential infrastructure, particularly water supply systems. This study examines the Yechilla area, a high-intensity battle corridor during the Tigray (between 12°15′26″ 14°57′49″ N latitude; and 36°20′57″–39°58′54″ E longitude) war (2020–2022). Using Cochran’s formula, a representative sample of 89 water schemes was selected for onsite assessment. Additional data on damages to water offices, personnel, equipment, and related infrastructure were gathered through face-to-face interviews with local officials and water professionals, onsite visits, and reviews of governmental and non-governmental archives, and previous studies. The findings reveal that 48.3% of water schemes in the study area are non-functional (does not deliver water), which is a significant increase from pre-war non-functionality rates of approximately 7.1% regionally and 21.1% nationally. Despite the Pretoria peace agreement, non-functionality levels remain critically high two years after conflict. Damage includes partial impairments, lack of technical and spare part support, complete destruction, and looting of water scheme components. The widespread destruction of civilian water infrastructure during the Tigray conflict underscores the insufficiency of existing international legal frameworks, such as the International Humanitarian Law and International Water Law, which are inadequately protecting civilians and their property. Understanding the broader consequences of armed conflicts requires examining the indirect effects and the complex interactions within and between social, economic, and environmental systems. These interconnected impacts are essential to fully grasp how conflict affects livelihoods and human security on a wider scale. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

23 pages, 7104 KB  
Article
A Patient-Derived Scaffold-Based 3D Culture Platform for Head and Neck Cancer: Preserving Tumor Heterogeneity for Personalized Drug Testing
by Alinda Anameriç, Emilia Reszczyńska, Tomasz Stankiewicz, Adrian Andrzejczak, Andrzej Stepulak and Matthias Nees
Cells 2025, 14(19), 1543; https://doi.org/10.3390/cells14191543 - 2 Oct 2025
Abstract
Head and neck cancer (HNC) is highly heterogeneous and difficult to treat, underscoring the need for rapid, patient-specific models. Standard three-dimensional (3D) cultures often lose stromal partners that influence therapy response. We developed a patient-derived system maintaining tumor cells, cancer-associated fibroblasts (CAFs), and [...] Read more.
Head and neck cancer (HNC) is highly heterogeneous and difficult to treat, underscoring the need for rapid, patient-specific models. Standard three-dimensional (3D) cultures often lose stromal partners that influence therapy response. We developed a patient-derived system maintaining tumor cells, cancer-associated fibroblasts (CAFs), and cells undergoing partial epithelial–mesenchymal transition (pEMT) for drug sensitivity testing. Biopsies from four HNC patients were enzymatically dissociated. CAFs were directly cultured, and their conditioned medium (CAF-CM) was collected. Cryopreserved primary tumor cell suspensions were later revived, screened in five different growth media under 2D conditions, and the most heterogeneous cultures were re-embedded in 3D hydrogels with varied gel mixtures, media, and seeding geometries. Tumoroid morphology was quantified using a perimeter-based complexity index. Viability after treatment with cisplatin or Notch modulators (RIN-1, recombination signal-binding protein for immunoglobulin κ J region (RBPJ) inhibitor; FLI-06, inhibitor) was assessed by live imaging and the water-soluble tetrazolium-8 (WST-8) assay. Endothelial Cell Growth Medium 2 (ECM-2) medium alone produced compact CAF-free spheroids, whereas ECM-2 supplemented with CAF-CM generated invasive aggregates that deposited endogenous matrix. Matrigel with this medium and single-point seeding gave the highest complexity scores. Two of the three patient tumoroids were cisplatin-sensitive, and all showed significant growth inhibition with the FLI-06 Notch inhibitor, while the RBPJ inhibitor RIN-1 induced minimal change. The optimized scaffold retains tumor–stroma crosstalk and provides patient-specific drug response data within days after operation, supporting personalized treatment selection in HNC. Full article
(This article belongs to the Special Issue 3D Cultures and Organ-on-a-Chip in Cell and Tissue Cultures)
16 pages, 7612 KB  
Article
Remote Sensing Evaluation of Cultivated Land Soil Quality in Soda–Saline Soil Areas
by Lulu Gao, Chao Zhang and Cheng Li
Land 2025, 14(10), 1986; https://doi.org/10.3390/land14101986 - 2 Oct 2025
Abstract
Rapid evaluations of farmland soil quality can provide data support for farmland protection and utilization. This study focuses on the soda–saline soil region of Da’an City, Jilin Province, covering an area of 4879 km2; it proposes a framework for evaluating farmland [...] Read more.
Rapid evaluations of farmland soil quality can provide data support for farmland protection and utilization. This study focuses on the soda–saline soil region of Da’an City, Jilin Province, covering an area of 4879 km2; it proposes a framework for evaluating farmland soil quality based on multi-source remote sensing data (Sentinel-2 MSI, GF-5 AHSI hyperspectral and field hyperspectral data). Soil organic matter content, salt content, and pH were selected as indicators of cultivated land soil quality in soda–saline soil areas. A threshold of 20% crop residue cover was set to mask high-cover areas, extracting bare soil information. The spectral indices SI1 and SI2 were utilized to predict the comprehensive grade of soil organic matter + salinity based on the cloud model (MEc = 0.74 and MEv = 0.68). The pH grade was predicted using the red-edge ratio vegetation index (RVIre) (MEc = 0.95 and MEv = 0.98). The short-board method was used to construct a soil quality evaluation system. The results indicate that 13.73% of the cultivated land in Da’an City is of high quality (grade 1), 80.63% is of medium quality (grades 2–3), and 5.65% is of poor quality (grade 4). This study provides a rapid assessment tool for the sustainable management of cultivated land in saline–alkali areas at the county level. Full article
(This article belongs to the Special Issue New Advance in Intensive Agriculture and Soil Quality)
Show Figures

Figure 1

27 pages, 6007 KB  
Article
Research on Rice Field Identification Methods in Mountainous Regions
by Yuyao Wang, Jiehai Cheng, Zhanliang Yuan and Wenqian Zang
Remote Sens. 2025, 17(19), 3356; https://doi.org/10.3390/rs17193356 - 2 Oct 2025
Abstract
Rice is one of the most important staple crops in China, and the rapid and accurate extraction of rice planting areas plays a crucial role in the agricultural management and food security assessment. However, the existing rice field identification methods faced the significant [...] Read more.
Rice is one of the most important staple crops in China, and the rapid and accurate extraction of rice planting areas plays a crucial role in the agricultural management and food security assessment. However, the existing rice field identification methods faced the significant challenges in mountainous regions due to the severe cloud contamination, insufficient utilization of multi-dimensional features, and limited classification accuracy. This study presented a novel rice field identification method based on the Graph Convolutional Networks (GCN) that effectively integrated multi-source remote sensing data tailored for the complex mountainous terrain. A coarse-to-fine cloud removal strategy was developed by fusing the synthetic aperture radar (SAR) imagery with temporally adjacent optical remote sensing imagery, achieving high cloud removal accuracy, thereby providing reliable and clear optical data for the subsequent rice mapping. A comprehensive multi-feature library comprising spectral, texture, polarization, and terrain attributes was constructed and optimized via a stepwise selection process. Furthermore, the 19 key features were established to enhance the classification performance. The proposed method achieved an overall accuracy of 98.3% for the rice field identification in Huoshan County of the Dabie Mountains, and a 96.8% consistency compared to statistical yearbook data. The ablation experiments demonstrated that incorporating terrain features substantially improved the rice field identification accuracy under the complex topographic conditions. The comparative evaluations against support vector machine (SVM), random forest (RF), and U-Net models confirmed the superiority of the proposed method in terms of accuracy, local performance, terrain adaptability, training sample requirement, and computational cost, and demonstrated its effectiveness and applicability for the high-precision rice field distribution mapping in mountainous environments. Full article
Show Figures

Figure 1

20 pages, 38135 KB  
Article
Assessing the Sensitivity of Snow Depth Retrieval Algorithms to Inter-Sensor Brightness Temperature Differences
by Guangjin Liu, Lingmei Jiang, Huizhen Cui, Jinmei Pan, Jianwei Yang and Min Wu
Remote Sens. 2025, 17(19), 3355; https://doi.org/10.3390/rs17193355 - 2 Oct 2025
Abstract
Passive microwave remote sensing provides indispensable observations for constructing long-term snow depth records, which are critical for climatology, hydrology, and operational applications. Nevertheless, despite decades of snow depth monitoring, systematic evaluations of how inter-sensor brightness temperature differences (TBDs) propagate into retrieval uncertainties are [...] Read more.
Passive microwave remote sensing provides indispensable observations for constructing long-term snow depth records, which are critical for climatology, hydrology, and operational applications. Nevertheless, despite decades of snow depth monitoring, systematic evaluations of how inter-sensor brightness temperature differences (TBDs) propagate into retrieval uncertainties are still lacking. In this study, TBDs between DMSP-F18/SSMIS, FY-3D/MWRI, and AMSR2 sensors were quantified, and the sensitivity of seven snow depth retrieval algorithms to these discrepancies was systematically assessed. The results indicate that TBDs between SSMIS and AMSR2 are larger than those between MWRI and AMSR2, likely reflecting variations in sensor specifications such as frequency, observation angle, and overpass time. In terms of algorithm sensitivity, SPD, WESTDC, FY-3B, and FY-3D demonstrate less sensitivity across sensors, with standard deviations of snow depth differences generally below 2 cm. In contrast, the Foster algorithm exhibits pronounced sensitivity to TBDs, with standard deviations exceeding 11 cm and snow depth differences reaching over 20 cm in heavily forested regions (forest fracion >90%). This study provides guidance for SWE virtual constellation design and algorithm selection, supporting long-term, seamless, and consistent snow depth retrievals. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

45 pages, 2430 KB  
Article
Adolescent Smartphone Overdependence in South Korea: A Place-Stratified Evaluation of Conceptually Informed AI/ML Modeling
by Andrew H. Kim, Uibin Lee, Yohan Cho, Sangmi Kim and Vatsal Shah
Int. J. Environ. Res. Public Health 2025, 22(10), 1515; https://doi.org/10.3390/ijerph22101515 - 2 Oct 2025
Abstract
Smartphone overdependence among South Korean adolescents, affecting nearly 40%, poses a growing public health concern, with usage patterns varying by regional context. Leveraging conceptually informed AI/ML models, this study (1) develops a high-performing low-risk screening tool to monitor disease burden, (2) leverages AI/ML [...] Read more.
Smartphone overdependence among South Korean adolescents, affecting nearly 40%, poses a growing public health concern, with usage patterns varying by regional context. Leveraging conceptually informed AI/ML models, this study (1) develops a high-performing low-risk screening tool to monitor disease burden, (2) leverages AI/ML to explore psychologically meaningful constructs, and (3) provides place-based policy implication profiles to inform public health policy. This study uses data from 1873 adolescents in the 2023 Smartphone Overdependence Survey by the National Information Society Agency (NISA) in South Korea. Across the sample, the adolescents were about 14 years old (SD = 2.4) and equally distributed by sex (48.1% male). We then conceptually selected 131 features across two domains and 10 identified constructs. A nested modeling approach identified a low-risk screening tool using 59 features that achieved strong predictive accuracy (AUC = 81.5%), with Smartphone Use Case features contributing approximately 20% to performance. Construct-specific models confirmed the importance of Smartphone Use Cases, Perceived Digital Competence and Risk, and Consequences and Dependence (AUC range: 80.6–89.1%) and uncovered cognitive patterns warranting further study. Place-stratified analysis revealed substantial regional variation in model performance (AUC range: 71.4–91.1%) and distinct local feature importance. Overall, this study demonstrated the value of integrating conceptual frameworks with AI/ML to detect adolescent smartphone overdependence, offering novel approaches to monitoring disease burden, advancing construct-level insights, and providing targeted place-based public health policy recommendations within the South Korean context. Full article
(This article belongs to the Special Issue Problematic Internet and Smartphone Use as a Public Health Concern)
23 pages, 11765 KB  
Article
Clonal Selection for Citrus Production: Evaluation of ‘Pera’ Sweet Orange Selections for Fresh Fruit and Juice Processing Markets
by Deived Uilian de Carvalho, Maria Aparecida da Cruz-Bejatto, Ronan Carlos Colombo, Inês Fumiko Ubukata Yada, Rui Pereira Leite and Zuleide Hissano Tazima
Horticulturae 2025, 11(10), 1183; https://doi.org/10.3390/horticulturae11101183 - 2 Oct 2025
Abstract
‘Pera’ sweet orange is a key variety for the Brazilian citrus industry, but orchards rely on a limited number of clonal selections, which restricts adaptability and productivity across diverse environments. This study assessed the agronomic performance of 13 ‘Pera’ selections grafted on Rangpur [...] Read more.
‘Pera’ sweet orange is a key variety for the Brazilian citrus industry, but orchards rely on a limited number of clonal selections, which restricts adaptability and productivity across diverse environments. This study assessed the agronomic performance of 13 ‘Pera’ selections grafted on Rangpur lime, cultivated under rainfed conditions in subtropical Brazil. From 2002 to 2010, trees were assessed for vegetative growth, cumulative yield, alternate bearing, and fruit quality. Market-specific performance indices were calculated to determine suitability for fresh fruit or juice processing. Substantial genotypic variation was observed across traits, particularly during early orchard stage. Selections such as ‘Morretes’, ‘Seleção 11’, ‘Seleção 27’, ‘Seleção 37’, and ‘IPR 153’ demonstrated high cumulative yield, stable productivity, and favorable canopy traits, supporting their use in both conventional and high-density systems. ‘IPR 153’ combined compact growth with high yield efficiency and excellent fruit quality, while ‘Morretes’ had the highest juice content and broad market adaptability. In contrast, ‘IPR 159’ showed low vigor and yield under rainfed conditions. The results emphasize the value of regionally targeted clonal selection to improve orchard performance and market alignment. The identification of dual-purpose genotypes offers a pathway to diversify citrus production and improve profitability under subtropical growing conditions. Full article
Show Figures

Figure 1

Back to TopTop