Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (120,691)

Search Parameters:
Keywords = regulate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 533 KB  
Article
The Benefits of Hypnosis Support in Stress Management for First-Year Students at the Higher Institute of Nursing and Health Techniques, Rabat
by Ilham Benarfa, Dia Eddine Oudghiri, Nadia Mountaj, Aboubaker El Hessni, Abdelhalim Mesfioui and Hasna Ahyayauch
Psychiatry Int. 2025, 6(3), 103; https://doi.org/10.3390/psychiatryint6030103 (registering DOI) - 1 Sep 2025
Abstract
The transition from secondary to higher education presents numerous academic, social, and psychological challenges that can negatively impact students’ well-being, particularly during the first year. This randomized controlled trial aimed to evaluate the effectiveness of hypnosis as a non-pharmacological intervention for managing perceived [...] Read more.
The transition from secondary to higher education presents numerous academic, social, and psychological challenges that can negatively impact students’ well-being, particularly during the first year. This randomized controlled trial aimed to evaluate the effectiveness of hypnosis as a non-pharmacological intervention for managing perceived stress among first-year nursing students at the Higher Institute of Nursing and Health Techniques (ISPITS) in Rabat, Morocco. A total of 166 students from five academic tracks were randomly assigned to intervention and control groups with comparable baseline characteristics. Their perceived stress levels were assessed using two validated instruments, the Visual Analog Scale (VAS) and the 14-item Perceived Stress Scale (PSS-14), administered before and after a five-session hypnosis program conducted over 10 weeks. The results showed a marked and statistically significant reduction in stress among the intervention group, with the mean VAS scores decreasing from 7.82 ± 2.05 to 3.00 ± 1.71 compared to a smaller reduction in the control group (from 7.65 ± 1.78 to 5.80 ± 1.72; between-group difference = 2.8, p < 0.0001). Similarly, the PSS-14 scores in the intervention group declined significantly from 26.42 ± 7.54 (moderate stress) to 24.32 ± 8.20 (still moderate), with a mean difference of 2.09 ± 7.70 (t = 2.21, p = 0.0307, 95% CI [0.20; 3.98]). These findings indicate that hypnosis is an effective mind–body approach for alleviating perceived stress, improving emotional regulation, and could be incorporated into academic support programs to enhance student well-being. Full article
Show Figures

Figure 1

22 pages, 537 KB  
Article
Barriers and Strategies for Implementing Passive House Design: The Case of the Construction Sector in Saudi Arabia
by Hassan A. Alnashri, Abdulrahman S. Fnais and Abdulrahman A. Bin Mahmoud
Buildings 2025, 15(17), 3117; https://doi.org/10.3390/buildings15173117 (registering DOI) - 1 Sep 2025
Abstract
The global construction industry is facing pressure to reduce environmental impact by improving energy efficiency amid rising energy demands and growing concerns about climate change. Consequently, sustainable building practices, like the Passive House (PH) design, prioritize minimizing building energy demand. In Saudi Arabia, [...] Read more.
The global construction industry is facing pressure to reduce environmental impact by improving energy efficiency amid rising energy demands and growing concerns about climate change. Consequently, sustainable building practices, like the Passive House (PH) design, prioritize minimizing building energy demand. In Saudi Arabia, where cooling loads dominate electricity use, implementing PH could significantly lower energy demand. However, research on PH challenges in the Saudi climate is limited, which highlights the importance of investigating the barriers and potential solutions for PH adoption in this context. This study investigates barriers to PH adoption and proposes context-specific solutions for Saudi Arabia. A mixed-methods approach, including a literature review and structured questionnaires among construction professionals, was used. Thematic analysis and importance–performance analysis (IPA) helped prioritize barriers and identify strategies. By combining evidence from the literature and practitioner surveys, this study uniquely prioritizes PH adoption barriers and proposes tailored solutions for Saudi Arabia’s hot climate. The results showed that the most critical barriers include a lack of supportive building codes, the absence of government incentives, low awareness, contractor resistance, and limited material availability. At the same time, key strategies were identified, such as revising building regulations, offering tax incentives, and adapting PH design with improved shading and HVAC systems. Overall, these findings indicate that removing the identified barriers and implementing the suggested strategies can reduce energy demand and demonstrate the feasibility of PH in Saudi Arabia’s hot climate, thereby supporting the Kingdom’s broader sustainability goals. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

18 pages, 2119 KB  
Review
Lead as a Reproductive Endocrine Disruptor in Aquatic Species and Agricultural Livestock
by Mallory J. Llewellyn, Muhammad S. Siddique, Emma Ivantsova, Bradford W. Daigneault, Tracie R. Baker and Christopher J. Martyniuk
Pollutants 2025, 5(3), 28; https://doi.org/10.3390/pollutants5030028 (registering DOI) - 1 Sep 2025
Abstract
Lead (Pb) is a naturally occurring metal that is environmentally ubiquitous due to industrial activities, such as mining, smelting, and fossil fuel combustion. Exposure to Pb adversely affects the central nervous system, gastrointestinal tract, lungs, liver, bones, and cardiovascular system, leading to a [...] Read more.
Lead (Pb) is a naturally occurring metal that is environmentally ubiquitous due to industrial activities, such as mining, smelting, and fossil fuel combustion. Exposure to Pb adversely affects the central nervous system, gastrointestinal tract, lungs, liver, bones, and cardiovascular system, leading to a multitude of negative health impacts, such as anemia and neurological disorders. While significant research has focused on the effects of Pb on the nervous and immune systems, Pb’s impact as a reproductive endocrine disruptor remains largely understudied. The first objective of this review was to collate the current literature regarding the effects of Pb on the reproductive system of aquatic species (primarily fish) and agricultural livestock to highlight the ecological significance and impacts on animal health. Literature supports the hypothesis that exposure to Pb can impede reproductive processes by affecting hormone levels, reproductive organ development, and fertility. A second objective of this review was to elucidate putative mechanisms underlying Pb as a reproductive endocrine disruptor using molecular data and computational approaches. Based on transcriptomics data, Pb is hypothesized to perturb key pathways important for hypothalamic–pituitary–gonadal axis functions, such as circadian regulation and estrogen receptor signaling. Given the widespread environmental presence of Pb, understanding these mechanisms is essential for improving risk assessments and protecting animal reproductive health. Full article
Show Figures

Graphical abstract

17 pages, 4078 KB  
Article
Visible-Light-Controlled Thermal Energy Storage and Release: A Tetra-Ortho-Fluorinated Azobenzene-Doped Composite Phase Change Material
by Yating Zhang, Jing Qi, Jun Xia, Fei Zhai and Liqi Dong
Molecules 2025, 30(17), 3576; https://doi.org/10.3390/molecules30173576 (registering DOI) - 31 Aug 2025
Abstract
Organic phase change materials (OPCMs) offer high energy density for thermal storage but suffer from crystallization kinetics dependent on ambient temperature, leading to uncontrolled heat release and limited storage lifetime. Although doping OPCMs with azobenzene (Azo) derivatives enables optically controlled energy storage and [...] Read more.
Organic phase change materials (OPCMs) offer high energy density for thermal storage but suffer from crystallization kinetics dependent on ambient temperature, leading to uncontrolled heat release and limited storage lifetime. Although doping OPCMs with azobenzene (Azo) derivatives enables optically controlled energy storage and release, existing systems require UV irradiation for E-to-Z isomerization. This UV dependency seriously hinders their development in practical solar applications. Herein, we develop a visible-light-responsive Azo@OPCM composite by doping tetra-ortho-fluorinated azobenzene into eicosane. Systematic characterization of composites with different dopant ratios via UV–visible spectroscopy and differential scanning calorimetry reveals that green-light irradiation drives E-to-Z isomerization, achieving 97–99% Z-isomer conversion. This photoisomerization could introduce supercooling through photo-responsive energy barriers generated by Z-isomer, allowing thermal energy storage at lower temperatures. Subsequent blue-light irradiation triggers Z-to-E reversion to eliminate supercooling and enable optically controlled heat release. Additionally, by regulating the molar ratios of dopant, the optimized composites achieved 280.76 J/g energy density at 20% molar doping ratio, which surpassed that of pure eicosane and the reported Azo-based photothermal energy storage system. This work establishes a complete visible-light-controlled energy harvesting–storage–release cycle with significant potential for near-room-temperature solar thermal storage applications. Full article
(This article belongs to the Special Issue Photochemistry in Asia)
18 pages, 1302 KB  
Article
Anti-Windup Method Using Ancillary Flux-Weakening for Enhanced Induction Motor Performance Under Voltage Saturation
by Xu Zhang, Shuhan Xi and Jing Zhang
Electronics 2025, 14(17), 3496; https://doi.org/10.3390/electronics14173496 (registering DOI) - 31 Aug 2025
Abstract
When the speed of an induction motor (IM) exceeds its rated value, voltage saturation occurs, which degrades its performance. Traditional flux-weakening (FW) control suffers from delays due to cascaded PI regulators and sensitivity to rotor field orientation lag. Addressing these two issues, the [...] Read more.
When the speed of an induction motor (IM) exceeds its rated value, voltage saturation occurs, which degrades its performance. Traditional flux-weakening (FW) control suffers from delays due to cascaded PI regulators and sensitivity to rotor field orientation lag. Addressing these two issues, the proposed ancillary flux-weakening (AFW) method introduces two d-axis current compensation paths. One compensation path is from the reference value of the q-axis current, which simplifies the traditional three-PI cascade FW path into a single PI path in the transient process. The other compensation path is derived from the q-axis current tracking error to mitigate voltage saturation caused by orientation error. Comparative experiments show that during precise direction acceleration, the AFW method increases the current response time by 35% and reduces the peak voltage fluctuation by 38.98%. It also reduces low voltage ripple by 76.4% in inaccurate direction and burst load conditions. The results confirm a significant enhancement of dynamic performance and voltage anti-saturation capability in the FW region. Full article
(This article belongs to the Special Issue Power Electronics Controllers for Power System)
25 pages, 872 KB  
Article
Dietary Intakes and Exposures to Minerals and Trace Elements from Cereal-Based Mixtures: Potential Health Benefits and Risks for Adults
by Martina Mrázková, Daniela Sumczynski, Lenka Šenkárová and Richardos Nikolaos Salek
Nutrients 2025, 17(17), 2848; https://doi.org/10.3390/nu17172848 (registering DOI) - 31 Aug 2025
Abstract
Background: Foods containing nutraceuticals from the mineral element group are being developed to compensate for the problem of deficiency in billions of people around the world. This research focuses on essential elements of patented cereal-based mixtures to complement the deficiencies of these elements [...] Read more.
Background: Foods containing nutraceuticals from the mineral element group are being developed to compensate for the problem of deficiency in billions of people around the world. This research focuses on essential elements of patented cereal-based mixtures to complement the deficiencies of these elements and, at the same time, assesses their safety in terms of toxic elements in the human diet. Methods: The mineral and trace element contents in the mixtures were determined using the ICP-MS method with a subsequent evaluation of the contributions of the mixtures to the essential and toxic reference values based on dietary intakes and exposures for adults at 60, 80 and 100 kg of adult body weight and a portion size of 50 g. The potential health risk was evaluated using a metal pollution index. Results: The concentrations of minerals and trace elements in the cereal-based mixtures analyzed were as follows: K (up to 4150 µg/g) ≥ P > Mg > Ca > Na > Fe > Zn > Mn > Cu > Al > Ba (up to 4.40 µg/g) > Sr (up to 480 ng/g) ≥ Ti ≥ Ni > Ce ≥ Co > As ≥ Cs > Ag ≥ Li > Se > Be > Cr > Tl > Pb ≥ Hg > Ho > Cd > Sn (up to 1.12 ng/g). The mixtures contribute significantly to the reference values for Mn, Cu, Zn, Fe, and P for adults. Individual dietary exposure values of toxic elements for adults weighing 60 kg decrease in this order: Al (10.1 µg/kg bw/day) > Ni (362 ng/kg bw/day) > As ≥ Pb > Ag > Hg > Cd > and Sn (0.93 ng/kg bw/day). Conclusions: In terms of Regulation (EU) No 1924/2006 of the European Parliament and of the Council on nutrition and health claims made on foods, the cereal-based mixtures could be labelled “source of” Mn, Cu, Zn, Fe, and P” when their contributions to the reference values exceeded 15%; in addition, “low sodium/salt” or “very low sodium/salt” can be applied. The mixtures contribute insignificantly to the toxic reference values of Al, Sn, Hg, Cd, Ni, and Ag, and the exposure values of Pb for developmental neurotoxicity, nephrotoxicity, and cardiovascular effects were considered safe. Regarding the metal pollution index of mixtures, there is no concern for potential health effects. Cereal-based mixtures are suitable for use in the food industry as a potential source of beneficial micronutrients for the human diet, although bioaccessible studies should not be neglected. Full article
26 pages, 1902 KB  
Article
Development, Characterization, and Stability of Flavored Water Kefir: Impact of Fermentation and Storage
by Samarha Pacheco Wichello, Kamila Ferreira Chaves, Wallaf Costa Vimercati, Sergio Henriques Saraiva and Luciano Jose Quintão Teixeira
Fermentation 2025, 11(9), 513; https://doi.org/10.3390/fermentation11090513 (registering DOI) - 31 Aug 2025
Abstract
:The increasing demand for functional beverages sparked greater interest in health-promoting craft drinks, highlighting the need to optimize production parameters and assess their stability. This study aimed to develop, optimize, and characterize a grape juice-flavored naturally carbonated water kefir, evaluating its sensory [...] Read more.
:The increasing demand for functional beverages sparked greater interest in health-promoting craft drinks, highlighting the need to optimize production parameters and assess their stability. This study aimed to develop, optimize, and characterize a grape juice-flavored naturally carbonated water kefir, evaluating its sensory qualities, physicochemical and microbiological stability. Fermentation conditions (F1) were optimized using Central Composite Rotational Design, leading to the selection of 24 h at 30 °C with (6.5% w/v) brown sugar, ensuring efficient pH reduction to safe levels. Sensory analysis selected grape juice as the flavoring agent, and a mixture design coupled with the desirability function determined the optimal formulation as 50% kefired water, 46.4% grape juice, and 3.6% water, resulting in high overall sensory desirability. During 42 days of refrigerated storage (4 °C), the beverage exhibited progressive sugar consumption from residual metabolic activity, a dynamic antioxidant profile characterized by increases in total phenolic compounds and FRAP activity, stability in ABTS activity, and decline in DPPH activity. Lactic acid bacteria counts remained stable during storage, while acetic acid bacteria and yeast populations decreased. Furthermore, pH (~3.30) and alcohol content (~1.86 °GL) remained stable, although the latter requires clear labeling in compliance with regulations for similar fermented beverages. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
22 pages, 2341 KB  
Article
CX3CR1–TLR4 Axis as a Shared Neuroimmune Target in COVID-19 and Epilepsy: Integrative Transcriptomics and Gabapentin Repositioning
by Nannan Pan, Penghui Cao, Ben Chen, Li Chen, Xuezhen Liao and Yuping Ning
Biomedicines 2025, 13(9), 2133; https://doi.org/10.3390/biomedicines13092133 (registering DOI) - 31 Aug 2025
Abstract
Introduction: Neuroinflammation is a common pathological hallmark of Coronavirus Disease 2019 (COVID-19) and epilepsy; however, their shared immunogenomic mechanisms remain poorly defined. This study explores shared immune-inflammatory transcriptomic signatures and identifies potential repositioning therapeutics. Methods: We integrated single-cell RNA-seq data from peripheral blood [...] Read more.
Introduction: Neuroinflammation is a common pathological hallmark of Coronavirus Disease 2019 (COVID-19) and epilepsy; however, their shared immunogenomic mechanisms remain poorly defined. This study explores shared immune-inflammatory transcriptomic signatures and identifies potential repositioning therapeutics. Methods: We integrated single-cell RNA-seq data from peripheral blood mononuclear cells (PBMCs) of COVID-19 patients and healthy donors (GSE149689), and bulk RNA-seq data from hippocampal tissue of patients with Temporal Lobe Epilepsy with Hippocampal Sclerosis (TLE-HS) and healthy controls (GSE256068). Common Differentially Expressed Genes (DEGs) were identified and subjected to GO/KEGG enrichment, a PPI network, hub gene detection (cytoHubba), and transcriptional regulation analysis (ENCODE-based TF/miRNA networks). Drug repositioning was performed using the LINCS L1000 database. Results: We identified 25 DEGs shared across datasets, including 22 upregulated genes enriched in cytokine–cytokine receptor interaction, NF-κB, and Toll-like receptor pathways. PPI analysis revealed a CX3CR1–TLR4-centered immune module. Gabapentin emerged as a promising repositioning candidate with potential to downregulate CX3CR1, TLR4, and selectin P ligand (SELPLG). Receiver Operating Characteristic (ROC) analysis confirmed the diagnostic value of these targets (AUC > 0.90 in epilepsy). A mechanistic model was proposed to illustrate Gabapentin’s dual action on microglial polarization and cytokine suppression. Conclusions: Our results reveal a shared CX3CR1–TLR4–NF-κB inflammatory axis in COVID-19 and epilepsy, supporting Gabapentin as a potential dual-action immunomodulator. These findings reveal a previously underappreciated immunomodulatory role for Gabapentin, providing mechanistic rationale for its repositioning in neuroinflammatory conditions beyond seizure control. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
22 pages, 4858 KB  
Review
Application of Chronobiology in Plant Agriculture
by Maria Stolarz
Appl. Sci. 2025, 15(17), 9614; https://doi.org/10.3390/app15179614 (registering DOI) - 31 Aug 2025
Abstract
Plants grow, develop, and reproduce within a rhythmic environment. Environmental cues—such as light, temperature, nutrition, water—initiate, sustain, or terminate basic physiological processes within the plant, such as photosynthesis, respiration, nutrient uptake, water management, transpiration, growth, and hormone regulation. Simultaneously, inside the plant, internal [...] Read more.
Plants grow, develop, and reproduce within a rhythmic environment. Environmental cues—such as light, temperature, nutrition, water—initiate, sustain, or terminate basic physiological processes within the plant, such as photosynthesis, respiration, nutrient uptake, water management, transpiration, growth, and hormone regulation. Simultaneously, inside the plant, internal “living clocks” are ticking and helping plants to synchronize internal processes with environmental cues and defend themselves against stressful conditions. These clock-regulated processes underlie a variety of plant traits, such as germination capability, growth and development rate, time of flowering, fruiting and yielding, development of plant shape, and size and biomass production. Most of these physiological traits are important attributes of crop plants. In recent years, the growing understanding of environmental rhythms as environmental cues and the mechanisms underlying plant internal clocks has begun to play an increasingly important role in agricultural practices. This is an emerging area of research that integrates insights from chronobiology with practices in plant agriculture. In this review, this new research area is studied and mapped using Scopus, Web of Science, Google Scholar, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA protocol), and VOSviewer1.6.20 software. The analyses were carried out on 18 July–27 August 2025. For the VOSviewer author keywords co-occurrence analysis, all 1022 documents covering the time range of the last 7.5–2.5 years (2018–July 2025) were included and three maps were generated. Additionally, 59 review documents covering the last 27 years (1988–July 2025) were extracted by relevance using Google Scholar. In this review, recent advances and topics in plant chronobiology were examined. The issue of how these advances respond to key challenges in plant agriculture was explored. The bidirectional influence between chronobiology and practices in plant agriculture were also considered. Full article
(This article belongs to the Section Agricultural Science and Technology)
19 pages, 1424 KB  
Article
Design of Hydrogel Microneedle Arrays for Physiology Monitoring of Farm Animals
by Laurabelle Gautier, Sandra Wiart-Letort, Alexandra Massé, Caroline Xavier, Lorraine Novais-Gameiro, Antoine Hoang, Marie Escudé, Ilaria Sorrentino, Muriel Bonnet, Florence Gondret, Claire Verplanck and Isabelle Texier
Micromachines 2025, 16(9), 1015; https://doi.org/10.3390/mi16091015 (registering DOI) - 31 Aug 2025
Abstract
For monitoring animal adaptation when facing environmental challenges, and more specifically when addressing the impacts of global warming—particularly responses to heat stress and short-term fluctuations in osmotic regulations in the different organs influencing animal physiology—there is an increasing demand for digital tools to [...] Read more.
For monitoring animal adaptation when facing environmental challenges, and more specifically when addressing the impacts of global warming—particularly responses to heat stress and short-term fluctuations in osmotic regulations in the different organs influencing animal physiology—there is an increasing demand for digital tools to understand and monitor a range of biomarkers. Microneedle arrays (MNAs) have recently emerged as promising devices minimally invasively penetrating human skin to access dermal interstitial fluid (ISF) to monitor deviations in physiology and consequences on health. The ISF is a blood filtrate where the concentrations of ions, low molecular weight metabolites (<70 kDa), hormones, and drugs, often closely correlate with those in blood. However, anatomical skin differences between human and farm animals, especially large animals, as well as divergent tolerances of such devices among species with behavior specificities, motivate new MNA designs. We addressed technological challenges to design higher microneedles for farm animal (pigs and cattle) measurements. We designed microneedle arrays composed of 37 microneedles, each 2.8 mm in height, using dextran-methacrylate, a photo-crosslinked biocompatible biopolymer-based hydrogel. The arrays were characterized geometrically and mechanically. Their abilities to perforate pig and cow skin were demonstrated through histological analysis. The MNAs successfully absorbed approximately 10 µL of fluid within 3 h of application. Full article
15 pages, 878 KB  
Article
Modulation of the Gut Microbiota by Nopalea cochenillifera (Prickly Pear Cactus) Contributes to Improved Lipid Metabolism and Immune Function
by Sayaka Yokoyama, Amane Kikuchi, Hideaki Takahashi, Hinako Ushimaru, Hibiki Yamaguchi, Chikako Yamada, Kotoyo Fujiki, Hana Kozai, Suzuno Ota, Tadashi Fujii, Yoshiki Hirooka, Takumi Tochio and Mamoru Tanaka
Nutrients 2025, 17(17), 2844; https://doi.org/10.3390/nu17172844 (registering DOI) - 31 Aug 2025
Abstract
Background/Objectives: Nopalea cochenillifera (L.) Salm-Dyck cladodes are rich in dietary fiber, polyphenols, and minerals, which are known to exert antioxidant and immunomodulatory effects. However, the mechanisms and active constituents have not been fully elucidated. In this study, we investigated the effects of [...] Read more.
Background/Objectives: Nopalea cochenillifera (L.) Salm-Dyck cladodes are rich in dietary fiber, polyphenols, and minerals, which are known to exert antioxidant and immunomodulatory effects. However, the mechanisms and active constituents have not been fully elucidated. In this study, we investigated the effects of continuous N. cochenillifera consumption on lipid metabolism, immune function, and the gut microbiota in mice. Methods: The feed was made using freeze-dried and powdered cladodes of N. cochenillifera. Male C57BL/6J mice were assigned to four groups: control diet (C), control diet plus 10% N. cochenillifera (CN), high-fat diet (FC), and high-fat diet plus 10% N. cochenillifera (FN). Results: Cactus supplementation reduced the body and liver weights that were elevated by the high-fat diet. Serum total cholesterol and free fatty acids were increased in the FC group compared with the C group, while cactus intake lowered these levels and enhanced fecal cholesterol excretion. Cactus consumption also elevated fecal total IgA and mucin contents. IL-4 expression in Peyer’s patches was significantly increased in the FN group compared with the FC group. Gut microbiota analysis showed significant differences in β-diversity, along with increased α-diversity and higher abundance of Lachnospiraceae, following cactus intake. Conclusions: These findings suggest that N. cochenillifera intake increases gut microbiota diversity, which enhances intestinal barrier function and thereby contributes to improved lipid metabolism and immune regulation. Full article
(This article belongs to the Special Issue Functional Foods and Sustainable Health (2nd Edition))
16 pages, 2908 KB  
Article
Pharmacoepigenomic Impact of Antihypertensive Drugs on miRNome and Proteome and Its Potential Influence on Health and Side Effects
by Samyukta Bhass and Moinak Banerjee
Cells 2025, 14(17), 1359; https://doi.org/10.3390/cells14171359 (registering DOI) - 31 Aug 2025
Abstract
Antihypertensive drugs are widely used for the treatment of hypertension, and the choice of drug and dosage is based on trial and error. The variability in drug response and adverse reactions leads to the poor adherence to treatment. Epigenetic modulation is one of [...] Read more.
Antihypertensive drugs are widely used for the treatment of hypertension, and the choice of drug and dosage is based on trial and error. The variability in drug response and adverse reactions leads to the poor adherence to treatment. Epigenetic modulation is one of the major mechanisms that may contribute to the variability in drug responses, and microRNAs (miRNAs) can serve as crucial epigenetic regulators and have also been reported to be associated with hypertension pathogenesis. The objective of this study is to investigate the regulatory effects of commonly used antihypertensive drugs on the endothelial miRNome in human aortic endothelial cells. We aim to integrate miRNA expression data with proteomic analyses to elucidate drug-induced molecular mechanisms relevant to hypertension treatment. Whole genome small RNA sequencing was performed, followed by whole proteome analysis using LC-MS/MS comparing between control and treated samples. The treatments induced significant differential regulation of several miRNAs and proteins; among these, a few reflected reverse relationships with miRNA regulation and protein expression. Certain miRNAs and their corresponding target proteins seem to distinguish between good therapeutic outcomes and potential side effects. This study unravels the potential role of drug-induced miRNAs in inducing post-transcriptional modifications to cause the differential expression of certain proteins that may induce not only therapeutic effects or drug side effects but can also indicate the potential for drug-repurposing in other diseases. Full article
43 pages, 3469 KB  
Review
Navigating the Landscape of Exosomal microRNAs: Charting Their Pivotal Role as Biomarkers in Hematological Malignancies
by Manlio Fazio, Fabio Stagno, Giuseppa Penna, Giuseppe Mirabile and Alessandro Allegra
Non-Coding RNA 2025, 11(5), 64; https://doi.org/10.3390/ncrna11050064 (registering DOI) - 31 Aug 2025
Abstract
Under physiological and pathological conditions, all cells release extracellular vesicles named exosomes, which act as transporters of lipidic, protein, and genetic material from parent to recipient cells. Neoplastic cells can secrete higher number of exosomes to exert pro-tumoral effects such as microenvironmental changes, [...] Read more.
Under physiological and pathological conditions, all cells release extracellular vesicles named exosomes, which act as transporters of lipidic, protein, and genetic material from parent to recipient cells. Neoplastic cells can secrete higher number of exosomes to exert pro-tumoral effects such as microenvironmental changes, disease progression, immunosuppression and drug-resistance. This holds true for both organ-specific cancers and hematologic malignancies. One of the most important components of exosomal cargo are microRNAs which can mediate all the abovementioned effects. More specifically, microRNAs are small non-coding RNAs, routinely detected through quantitative real-time PCR, which act as translational suppressors by regulating protein-coding genes. Considering their high stability in all body fluids and viability in circulation, research is currently focusing on this type of RNAs for the so called “liquid biopsy”, a non-invasive tool for disease diagnosis and longitudinal monitoring. However, several issues remain to be solved including the lack of standardized protocols for exosome isolation and miRNA detection. Starting with this premise, our review aims to provide a wide description of the known microRNA panels employed in the prominent hematological malignancies, which will hopefully redefine the approach to these very challenging diseases in the near future. Full article
Show Figures

Figure 1

20 pages, 934 KB  
Review
Antioxidant Effect of Curcumin and Its Impact on Mitochondria: Evidence from Biological Models
by Karla Alejandra Avendaño-Briseño, Jorge Escutia-Martínez, Estefani Yaquelin Hernández-Cruz and José Pedraza-Chaverri
J. Xenobiot. 2025, 15(5), 139; https://doi.org/10.3390/jox15050139 (registering DOI) - 31 Aug 2025
Abstract
Curcumin, the principal active component of turmeric, is a polyphenol that has been used in various countries for the treatment of numerous conditions due to its wide range of health benefits. Curcumin exhibits bifunctional antioxidant properties: the first is attributed to its chemical [...] Read more.
Curcumin, the principal active component of turmeric, is a polyphenol that has been used in various countries for the treatment of numerous conditions due to its wide range of health benefits. Curcumin exhibits bifunctional antioxidant properties: the first is attributed to its chemical structure, which enables it to directly neutralize reactive oxygen species (ROS); the second is related to its ability to induce the expression of antioxidant enzymes via the transcription factor nuclear factor erythroid 2–related factor 2 (Nrf2). Both ROS and Nrf2 are closely associated with mitochondrial function and metabolism, and their dysregulation may lead to mitochondrial dysfunction, potentially contributing to the development of various pathological conditions. Therefore, curcumin treatment appears highly promising and is strongly associated with the preservation of mitochondrial function. The aim of this review is to summarize the current literature on the impact of curcumin’s antioxidant properties on mitochondrial function. Specifically, studies conducted in different biological models are included, with emphasis on aspects such as mitochondrial respiration, antioxidant enzyme activity, interactions with mitochondrial membranes, and the role of curcumin in the regulation of intrinsic apoptosis. Full article
Show Figures

Figure 1

27 pages, 12231 KB  
Review
Mitochondria-Associated Membrane Dysfunction in Neurodegeneration and Its Effects on Lipid Metabolism, Calcium Signaling, and Cell Fate
by Thi Thuy Truong, Alka Ashok Singh, Nguyen Van Bang, Nguyen Minh Hung Vu, Sungsoo Na, Jaeyeop Choi, Junghwan Oh and Sudip Mondal
Membranes 2025, 15(9), 263; https://doi.org/10.3390/membranes15090263 (registering DOI) - 31 Aug 2025
Abstract
Mitochondria-associated membranes (MAMs) are essential for cellular homeostasis. MAMs are specialized contact sites located between the endoplasmic reticulum (ER) and mitochondria and control apoptotic pathways, lipid metabolism, autophagy initiation, and calcium signaling, processes critical to the survival and function of neurons. Although this [...] Read more.
Mitochondria-associated membranes (MAMs) are essential for cellular homeostasis. MAMs are specialized contact sites located between the endoplasmic reticulum (ER) and mitochondria and control apoptotic pathways, lipid metabolism, autophagy initiation, and calcium signaling, processes critical to the survival and function of neurons. Although this area of membrane biology remains understudied, increasing evidence links MAM dysfunction to the etiology of major neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS). MAMs consist of a network of protein complexes that mediate molecular exchange and ER–mitochondria tethering. MAMs regulate lipid flow in the brain, including phosphatidylserine and cholesterol; disruption of this process causes membrane instability and impaired synaptic function. Inositol 1,4,5-trisphosphate receptor—voltage-dependent anion channel 1 (IP3R-VDAC1) interactions at MAMs maintain calcium homeostasis, which is required for mitochondria to produce ATP; dysregulation promotes oxidative stress and neuronal death. An effective therapeutic approach for altering neurodegenerative processes is to restore the functional integrity of MAMs. Improving cell-to-cell interactions and modulating MAM-associated proteins may contribute to the restoration of calcium homeostasis and lipid metabolism, both of which are key for neuronal protection. MAMs significantly contribute to the progression of neurodegenerative diseases, making them promising targets for future therapeutic research. This review emphasizes the increasing importance of MAMs in the study of neurodegeneration and their potential as novel targets for membrane-based therapeutic interventions. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

Back to TopTop