Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,417)

Search Parameters:
Keywords = reinforcement ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 7519 KB  
Article
Multiaxial Fatigue Behavior of CFRP Thin-Walled Tubes: An Experimental Study with Analysis of the Acoustic Signals
by Szymon Duda, Michał Smolnicki, Paweł Zielonka, Paweł Stabla and Grzegorz Lesiuk
Polymers 2025, 17(19), 2701; https://doi.org/10.3390/polym17192701 - 7 Oct 2025
Abstract
The fatigue behavior of continuous fiber-reinforced composite materials is still not fully understood, particularly under multiaxial out-of-phase loading conditions. This study assesses the multiaxial fatigue behavior of thin-walled carbon fiber-reinforced polymer (CFRP) tubular specimens fabricated by filament winding (FW). A comprehensive experimental study [...] Read more.
The fatigue behavior of continuous fiber-reinforced composite materials is still not fully understood, particularly under multiaxial out-of-phase loading conditions. This study assesses the multiaxial fatigue behavior of thin-walled carbon fiber-reinforced polymer (CFRP) tubular specimens fabricated by filament winding (FW). A comprehensive experimental study is presented, investigating axial-torsion loads, phase shifts (0°, 45°, and 90°), and load ratios (−1, 0.05, and 0.5). Simultaneously, the acoustic emission (AE) method provides supplementary data for assessing fatigue damage accumulation. Consequently, a shear nonlinear material model and progressive damage in a shell-based finite element model were applied for stress analysis. The experimental results demonstrate the negative influence of a 90° out-of-phase load and the detrimental effect of mean stress for investigated positive load ratios. These findings offer valuable insights into the impact of phase shift (δ) and load ratio (R) in filament-wound carbon composites. These are essential for accurately modeling the fatigue behavior of composite materials under complex multiaxial loading. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

18 pages, 837 KB  
Article
Physics-Informed Feature Engineering and R2-Based Signal-to-Noise Ratio Feature Selection to Predict Concrete Shear Strength
by Trevor J. Bihl, William A. Young II and Adam Moyer
Mathematics 2025, 13(19), 3182; https://doi.org/10.3390/math13193182 - 4 Oct 2025
Viewed by 105
Abstract
Accurate prediction of reinforced concrete shear strength is essential for structural safety, yet datasets often contain a mix of raw geometric and material properties alongside physics-informed engineered features, making optimal feature selection challenging. This study introduces a statistically principled framework that advances feature [...] Read more.
Accurate prediction of reinforced concrete shear strength is essential for structural safety, yet datasets often contain a mix of raw geometric and material properties alongside physics-informed engineered features, making optimal feature selection challenging. This study introduces a statistically principled framework that advances feature reduction for neural networks in three novel ways. First, it extends the artificial neural network-based signal-to-noise ratio (ANN-SNR) method, previously limited to classification, into regression tasks for the first time. Second, it couples ANN-SNR with a confidence-interval (CI)-based stopping rule, using the lower bound of the baseline ANN’s R2 confidence interval as a rigorous statistical threshold for determining when feature elimination should cease. Third, it systematically evaluates both raw experimental variables and physics-informed engineered features, showing how their combination enhances both robustness and interpretability. Applied to experimental concrete shear strength data, the framework revealed that many low-SNR features in conventional formulations contribute little to predictive performance and can be safely removed. In contrast, hybrid models that combined key raw and engineered features consistently yielded the strongest performance. Overall, the proposed method reduced the input feature set by approximately 45% while maintaining results statistically indistinguishable from baseline and fully optimized models (R2 ≈ 0.85). These findings demonstrate that ANN-SNR with CI-based stopping provides a defensible and interpretable pathway for reducing model complexity in reinforced concrete shear strength prediction, offering practical benefits for design efficiency without compromising reliability. Full article
25 pages, 3228 KB  
Article
Sustainable vs. Non-Sustainable Assets: A Deep Learning-Based Dynamic Portfolio Allocation Strategy
by Fatma Ben Hamadou and Mouna Boujelbène Abbes
J. Risk Financial Manag. 2025, 18(10), 563; https://doi.org/10.3390/jrfm18100563 - 3 Oct 2025
Viewed by 421
Abstract
This article aims to investigate the impact of sustainable assets on dynamic portfolio optimization under varying levels of investor risk aversion, particularly during turbulent market conditions. The analysis compares the performance of two portfolio types: (i) portfolios composed of non-sustainable assets such as [...] Read more.
This article aims to investigate the impact of sustainable assets on dynamic portfolio optimization under varying levels of investor risk aversion, particularly during turbulent market conditions. The analysis compares the performance of two portfolio types: (i) portfolios composed of non-sustainable assets such as fossil energy commodities and conventional equity indices, and (ii) mixed portfolios that combine non-sustainable and sustainable assets, including renewable energy, green bonds, and precious metals using advanced Deep Reinforcement Learning models (including TD3 and DDPG) based on risk and transaction cost- sensitive in portfolio optimization against the traditional Mean-Variance model. Results show that incorporating clean and sustainable assets significantly enhances portfolio returns and reduces volatility across all risk aversion profiles. Moreover, the Deep Reinforcing Learning optimization models outperform classical MV optimization, and the RTC-LSTM-TD3 optimization strategy outperforms all others. The RTC-LSTM-TD3 optimization achieves an annual return of 24.18% and a Sharpe ratio of 2.91 in mixed portfolios (sustainable and non-sustainable assets) under low risk aversion (λ = 0.005), compared to a return of only 8.73% and a Sharpe ratio of 0.67 in portfolios excluding sustainable assets. To the best of the authors’ knowledge, this is the first study that employs the DRL framework integrating risk sensitivity and transaction costs to evaluate the diversification benefits of sustainable assets. Findings offer important implications for portfolio managers to leverage the benefits of sustainable diversification, and for policymakers to encourage the integration of sustainable assets, while addressing fiduciary responsibilities. Full article
(This article belongs to the Special Issue Sustainable Finance for Fair Green Transition)
Show Figures

Figure 1

21 pages, 7289 KB  
Article
Strength and Ductility Improvement of Low Confinement Spun Pile with Steel Jacket Strengthening
by Yuskar Lase, Mulia Orientilize, Widjojo Adi Prakoso, Jansen Reagen and Stevany Lydia Jedidjah Hugen
Infrastructures 2025, 10(10), 262; https://doi.org/10.3390/infrastructures10100262 - 3 Oct 2025
Viewed by 119
Abstract
Spun piles adjacent to the pile cap need sufficient confinement to ensure the formation of plastic hinges during severe earthquakes. However, the high confinement ratio required for precast piles according to ACI 318-19 results in tightly spaced spirals, which are difficult to implement. [...] Read more.
Spun piles adjacent to the pile cap need sufficient confinement to ensure the formation of plastic hinges during severe earthquakes. However, the high confinement ratio required for precast piles according to ACI 318-19 results in tightly spaced spirals, which are difficult to implement. Since higher confinement is only needed at specific regions of the pile, external transverse reinforcement using steel jacketing has been proposed as an alternative solution. An experimental and numerical study was conducted to evaluate the effectiveness. The experimental results showed that the jacket enhanced both the strength and energy dissipation of the connection, but had only a minor effect on its ductility. A parametric study using finite element analysis was performed to investigate the parameters influencing connection behavior. The results indicated that variations in jacket thickness did not significantly impact the connection’s performance. A jacket height equal to 1.53 times the pile diameter was found to be the maximum effective height. It was also observed that higher axial loads led to a sudden loss of connection strength, thereby reducing ductility. Partial bonding between the jacket, grout, and pile was found to be acceptable within a certain range. The numerical analysis found that the steel jacket increases the ductility. Full article
23 pages, 2767 KB  
Article
Study on Chloride Diffusion Performance and Structural Durability Design of UHPC Under Chloride Salt Erosion
by Wenbo Kang, Kuihua Mei, Wei Liu and Shengjiang Sun
Buildings 2025, 15(19), 3569; https://doi.org/10.3390/buildings15193569 - 3 Oct 2025
Viewed by 115
Abstract
Normal concrete exhibits poor resistance to chloride penetration, often leading to reinforcement corrosion and premature structural failure. In contrast, ultra-high-performance concrete (UHPC) demonstrates superior resistance to corrosion caused by chloride salts. The chloride diffusion behaviour of UHPC was investigated via long-term immersion (LTI) [...] Read more.
Normal concrete exhibits poor resistance to chloride penetration, often leading to reinforcement corrosion and premature structural failure. In contrast, ultra-high-performance concrete (UHPC) demonstrates superior resistance to corrosion caused by chloride salts. The chloride diffusion behaviour of UHPC was investigated via long-term immersion (LTI) and rapid chloride migration (RCM) tests. Additionally, this study presents the first development of a time-dependent diffusion model for UHPC under chloride corrosion, as well as the proposal of a performance-based design method for calculating the protective layer thickness. Results show that the incorporation of steel fibers reduced the chloride diffusion coefficient (D) by 37.9%. The free chloride content (FCC) in UHPC increased by 92.0% at 2 mm after 300 d of the action of LTI. D decreased by up to 91.0%, whereas the surface chloride concentration (Cs) increased by up to 92.5% under the action of LTI. The time-dependent models of D and Cs followed power and logarithmic functions, respectively. An increase in UHPC surface temperature, relative humidity, and tensile stress ratio significantly diminishes the chloride resistance of UHPC. The minimum UHPC protective layer thicknesses required for UHPC-HPC composite beams with design service lives of 100 years, 150 years, and 200 years are 30 mm, 37 mm, and 43 mm, respectively. Full article
(This article belongs to the Section Building Structures)
38 pages, 3996 KB  
Article
Deformation and Energy-Based Comparison of Outrigger Locations in RC and BRB-Core Tall Buildings Under Repetitive Earthquakes
by İlhan Emre İnam and Ahmet Anıl Dindar
Buildings 2025, 15(19), 3563; https://doi.org/10.3390/buildings15193563 - 2 Oct 2025
Viewed by 230
Abstract
The aim of this study is to investigate how the positioning of outrigger systems affects the seismic performance of high-rise buildings with either reinforced concrete (RC) shear walls or buckling-restrained braces (BRBs) in the core. Two important questions emerge as the focus and [...] Read more.
The aim of this study is to investigate how the positioning of outrigger systems affects the seismic performance of high-rise buildings with either reinforced concrete (RC) shear walls or buckling-restrained braces (BRBs) in the core. Two important questions emerge as the focus and direction of the study: (1) How does the structural performance change when outriggers are placed at various positions? (2) How do outrigger systems affect structural behavior under sequential earthquake scenarios? Nonlinear time history analyses were employed as the primary methodology to evaluate the seismic response of the two reinforced concrete buildings with 24 and 48 stories, respectively. Each building type was developed for two different core configurations: one with a reinforced concrete shear wall core and the other with a BRB core system. Each analysis model also includes outrigger systems constructed with BRBs positioned at different floor levels. Five sequential ground motion records were used to assess the effects of main- and aftershocks. The analysis results were evaluated not only based on displacement and force demands but also using a damage measure called the Park-Ang Damage Index. In addition, displacement-based metrics, particularly the maximum inter-story drift ratio (MISD), were also utilized to quantify lateral displacement demands under consecutive seismic loading. With the results obtained from this study, it is aimed to provide design-oriented insights into the most effective use of outrigger systems formed with BRB in high-rise RC buildings and their functions in increasing seismic resistance, especially in areas likely to experience consecutive seismic events. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 2476 KB  
Article
Deep Reinforcement Learning-Based DCT Image Steganography
by Rongjian Yang, Lixin Liu, Bin Han and Feng Hu
Mathematics 2025, 13(19), 3150; https://doi.org/10.3390/math13193150 - 2 Oct 2025
Viewed by 206
Abstract
In this article, we present a novel reinforcement learning-based framework in the discrete cosine transform to achieve better image steganography. First, the input image is divided into several blocks to extract semantic and structural features, evaluating their suitability for data embedding. Second, the [...] Read more.
In this article, we present a novel reinforcement learning-based framework in the discrete cosine transform to achieve better image steganography. First, the input image is divided into several blocks to extract semantic and structural features, evaluating their suitability for data embedding. Second, the Proximal Policy Optimization algorithm (PPO) is introduced in the block selection process to learn adaptive embedding policies, which effectively balances image fidelity and steganographic security. Moreover, the Deep Q-network (DQN) is used for adaptively adjusting the weights of the peak signal-to-noise ratio, structural similarity index, and detection accuracy in the reward formulation. Experimental results on the BOSSBase dataset confirm the superiority of our framework, achieving both lower detection rates and higher visual quality across a range of embedding payloads, particularly under low-bpp conditions. Full article
Show Figures

Figure 1

20 pages, 4133 KB  
Article
Dynamic Mechanical Behavior of Nanosilica-Based Epoxy Composites Under LEO-like UV-C Exposure
by Emanuela Proietti Mancini, Flavia Palmeri and Susanna Laurenzi
J. Compos. Sci. 2025, 9(10), 529; https://doi.org/10.3390/jcs9100529 - 1 Oct 2025
Viewed by 215
Abstract
The harsh conditions of the space environment necessitate advanced materials capable of withstanding extreme temperature fluctuations and ultraviolet (UV) radiation. While epoxy-based composites are widely utilized in aerospace due to their favorable strength-to-weight ratio, they are prone to degradation, especially under prolonged high-energy [...] Read more.
The harsh conditions of the space environment necessitate advanced materials capable of withstanding extreme temperature fluctuations and ultraviolet (UV) radiation. While epoxy-based composites are widely utilized in aerospace due to their favorable strength-to-weight ratio, they are prone to degradation, especially under prolonged high-energy UV-C exposure. This study investigated the mechanical and chemical stability of epoxy composites reinforced with nanosilica at 0, 2, 5, and 10 wt% before and after UV-C irradiation. Dynamic mechanical analysis (DMA) revealed that increased nanosilica content enhanced the storage modulus below the glass transition temperature (Tg) but reduced both Tg and the damping factor. Following UV-C exposure, all samples showed a decrease in storage modulus and Tg; however, composites with higher nanosilica content maintained better property retention. Frequency sweeps corroborated these findings, indicating improved instantaneous modulus but accelerated relaxation with increased nanosilica. Fourier-transform infrared (FTIR) spectroscopy of UV-C-exposed samples demonstrated significant oxidation and carboxylic group formation in neat epoxy, contrasting with minimal spectral changes in nanosilica-modified composites, signifying improved chemical resistance. Overall, nanosilica incorporation substantially enhances the thermomechanical and oxidative stability of epoxy composites under simulated space conditions, highlighting their potential for more durable performance in low Earth orbit applications. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

25 pages, 4181 KB  
Article
Mechanical Properties Quantification of Steel Fiber-Reinforced Geopolymer Concrete with Slag and Fly Ash
by Reem Adam, Haya Zuaiter, Doha ElMaoued, Adil Tamimi and Mohammad AlHamaydeh
Buildings 2025, 15(19), 3533; https://doi.org/10.3390/buildings15193533 - 1 Oct 2025
Viewed by 326
Abstract
This study examines the influence of steel fiber reinforcement on the mechanical properties of geopolymer concrete incorporating different slag to fly ash binder ratios (75:25, 50:50, and 25:75). Three fiber contents (0%, 1%, and 2%) by volume were used to assess their impact [...] Read more.
This study examines the influence of steel fiber reinforcement on the mechanical properties of geopolymer concrete incorporating different slag to fly ash binder ratios (75:25, 50:50, and 25:75). Three fiber contents (0%, 1%, and 2%) by volume were used to assess their impact on compressive strength, flexural strength, initial stiffness, and toughness. Compressive tests were conducted at 1, 7, and 28 days, while flexural behavior was evaluated through a four-point bending test at 28 days. The results showed that geopolymer concrete with 75% slag and 25% fly ash experienced the highest compressive strength and modulus of elasticity, regardless of the steel fiber content. The addition of 1% and 2% steel fiber content enhanced the compressive strength by 17.49% and 28.8%, respectively, compared to the control sample. The binder composition of geopolymer concrete plays a crucial role in determining its compressive strength. Reducing the slag content from 75% to 50% and then to 25% resulted in a 15.1% and 33% decrease in compressive strength, respectively. The load–displacement curves of the 2% fiber-reinforced beams display strain-hardening behavior. On the other hand, after the initial crack, a constant increase in load causes the specimen to experience progressive strain until it reaches its maximum load capacity. When the peak load is attained, the curve gradually drops due to a loss in load-carrying capacity known as post-peak softening. This behavior is attributed to steel’s ductility and is evident in specimens 75S25FA2 and 50S50FA2. Concrete with 75% slag and 25% fly ash demonstrated the highest peak load but the lowest ultimate displacement, indicating high strength but brittle behavior. In contrast, concrete with 75% fly ash and 25% slag showed the lowest peak load but the highest displacement. Across all binder ratios, the addition of steel fibers enhanced the flexural strength, initial stiffness, and toughness. This is attributed to the bridging action of steel fibers in concrete. Additionally, steel fiber-reinforced beams exhibited a ductile failure mode, characterized by multiple fine cracks throughout the midspan, whereas the control beams displayed a single vertical crack in the midspan, indicating a brittle failure mode. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

39 pages, 8028 KB  
Article
Parametric Visualization, Climate Adaptability Evaluation, and Optimization of Strategies for the Subtropical Hakka Enclosed House: The Guangludi Case in Meizhou
by Yijiao Zhou, Zhe Zhou, Pei Cai and Nangkula Utaberta
Buildings 2025, 15(19), 3530; https://doi.org/10.3390/buildings15193530 - 1 Oct 2025
Viewed by 148
Abstract
Hakka traditional vernacular dwellings embody regionally specific climatic adaptation strategies. This study takes the Meizhou Guangludi enclosed house as a case study to evaluate its climate adaptability with longevity and passive survivability factors of the Hakka three-hall enclosed house under subtropical climatic conditions. [...] Read more.
Hakka traditional vernacular dwellings embody regionally specific climatic adaptation strategies. This study takes the Meizhou Guangludi enclosed house as a case study to evaluate its climate adaptability with longevity and passive survivability factors of the Hakka three-hall enclosed house under subtropical climatic conditions. A mixed research method is employed, integrating visualized parametric modeling analysis and on-site measurement comparisons to quantify wind, temperature, solar radiation/illuminance, and humidity, along with human comfort zone limits and building environment. The results reveal that nature erosion in the Guangludi enclosed house is the most pronounced during winter and spring, particularly on exterior walls below 2.8 m. Key issues include bulging, spalling, molding, and fractured purlins caused by wind-driven rain, exacerbated by low wind speeds and limited solar exposure, especially at test spots like the E8–E10 and N1–N16 southeast and southern walls below 1.5 m. Fungal growth and plant intrusion are severe where surrounding trees and fengshui forests restrict wind flow and lighting. In terms of passive survivability, the Guangludi enclosed house has strong thermal insulation and buffering, aided by the Huatai mound; however, humidity and day illuminance deficiencies persist in the interstitial spaces between lateral rooms and the central hall. To address these issues, this study proposes strategies such as adding ventilation shafts and flexible partitions, optimizing patio dimensions and window-to-wall ratios, retaining the spatial layout and Fengshui pond to enhance wind airflow, and reinforcing the identified easily eroded spots with waterproofing, antimicrobial coatings, and extended eaves. Through parametric simulation and empirical validation, this study presents a climate-responsive retrofit framework that supports the sustainability and conservation of the subtropical Hakka enclosed house. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

22 pages, 3198 KB  
Review
High-Temperature Polyimide Composites—A Review on Polyimide Types, Manufacturing, and Mechanical and Thermal Behavior
by Vahid Daghigh, Hamid Daghigh and Roger Harrison
J. Compos. Sci. 2025, 9(10), 526; https://doi.org/10.3390/jcs9100526 - 1 Oct 2025
Viewed by 405
Abstract
Polyimide composites represent a class of advanced materials with remarkable mechanical robustness and thermal stability, making them highly suitable for applications in extreme environments. Their unique ability to maintain performance under high temperatures and corrosive conditions, combined with a favorable strength-to-weight ratio, positions [...] Read more.
Polyimide composites represent a class of advanced materials with remarkable mechanical robustness and thermal stability, making them highly suitable for applications in extreme environments. Their unique ability to maintain performance under high temperatures and corrosive conditions, combined with a favorable strength-to-weight ratio, positions them as critical components in aerospace, electronics, and automotive systems. Several leading aerospace and electronics corporations have made significant investments in incorporating polyimide composites into their products, indicating the material’s transformative potential. This review paper provides an overview of mechanical and thermal behaviors of polyimide composites, summarizing recent developments and research trends. It examines the influence of various reinforcements, processing techniques, and composite architectures on material performance under mechanical loading and thermal stress. The paper synthesizes findings from experimental studies and modeling efforts to highlight the critical factors affecting strength, durability, and thermal stability. Discussion and recommendations regarding applications in aerospace, electronics, and other high-temperature environments are provided, emphasizing the challenges and opportunities presented by these advanced materials. This review adopts a broad scope to reflect the interdisciplinary nature of polyimide research. Due to gaps in literature, this work aims to provide a foundational overview that supports future, more specialized investigations. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

18 pages, 1612 KB  
Article
Theoretical Method for Calculating the Second-Order Effect and Reinforcement of Reinforced Concrete Box Section Columns
by Lu Li, Gang Chen, Donghua Zhou and Xuefeng Guo
Buildings 2025, 15(19), 3528; https://doi.org/10.3390/buildings15193528 - 1 Oct 2025
Viewed by 134
Abstract
Calculating the second-order effect and reinforcement of reinforced concrete box section columns has geometric nonlinearity and material nonlinearity. It requires integration and iterative solutions and is inconvenient in practical applications; moreover, China’s “Code for Design of Concrete Structures” (GB 50010-2010) uses the same [...] Read more.
Calculating the second-order effect and reinforcement of reinforced concrete box section columns has geometric nonlinearity and material nonlinearity. It requires integration and iterative solutions and is inconvenient in practical applications; moreover, China’s “Code for Design of Concrete Structures” (GB 50010-2010) uses the same formula as that for rectangular sections when calculating geometric nonlinearity. To find out a calculation method by hand that is specific to box-shaped sections and does not require iterative procedures, the theoretical derivation is adopted and divided into two gradations: (1) in terms of cross-section: using strain as the known variable to solve the internal force, thus solving the calculation problem of the bearing capacity of the cross-section; (2) in terms of members, the model column method can be used to solve the calculation problem of second-order effects of members. Finally, nomograms that can calculate the second-order effect and reinforcement of columns without iterative calculation are drawn, which contain five parameters, namely first-order bending moment, axial force, curvature, slenderness ratio, and the mechanical ratio of reinforcement. One of the nomograms corresponds to the cross-section resistance, and the other corresponds to the balance of internal resistance and external effect. Compared with the GB 50010-2010, the differences in the total bending moment and reinforcement ratio are within 10% and 20%, respectively. Compared with the numerical calculation results, the remaining examples are within 10% under normal load conditions. Full article
(This article belongs to the Special Issue Trends and Prospects in Civil Engineering Structures)
Show Figures

Figure 1

28 pages, 10634 KB  
Review
Status and Perspectives for Mechanical Performance of Cement/Concrete Hybrids with Inorganic Carbon Materials
by Lina Huang, Hua Chen and Jianzeng Shen
Buildings 2025, 15(19), 3525; https://doi.org/10.3390/buildings15193525 - 1 Oct 2025
Viewed by 243
Abstract
The rapid advancement of modern infrastructure and construction industries demands cementitious materials with superior mechanical performance, durability, and sustainability, surpassing the limitations of conventional concrete. To address these challenges, carbon-based nanomaterials—including carbon nanofibers (CNFs), carbon nanotubes (CNTs), and graphene—have gained significant attention as [...] Read more.
The rapid advancement of modern infrastructure and construction industries demands cementitious materials with superior mechanical performance, durability, and sustainability, surpassing the limitations of conventional concrete. To address these challenges, carbon-based nanomaterials—including carbon nanofibers (CNFs), carbon nanotubes (CNTs), and graphene—have gained significant attention as next-generation reinforcement agents due to their exceptional strength, high aspect ratio, and unique interfacial properties. This review presents a critical analysis of the latest technological developments in carbon-enhanced cement and concrete composites, focusing on their role in achieving high-performance construction materials, as there is a shortage of reviews of cement concretes based on carbon nanoadditives. We systematically explore the underlying mechanisms, processing techniques, and structure–property relationships governing carbon-modified cementitious systems. First, we discuss advanced synthesis methods and dispersion strategies for carbon nanomaterials to ensure uniform reinforcement within the cement matrix. Subsequently, we analyze the mechanical enhancement mechanisms, including crack bridging, nucleation seeding, and interfacial bonding, supported by experimental and computational studies. Despite notable progress, challenges such as long-term durability, cost-effectiveness, and large-scale processing remain key barriers to practical implementation. Finally, we outline emerging trends, including multifunctional smart composites and sustainable hybrid systems, to guide future research toward scalable and eco-friendly solutions. By integrating fundamental insights with technological advancements, this review not only advances the understanding of carbon-reinforced cement composites but also provides strategic recommendations for their optimization and industrial adoption in next-generation construction. Full article
(This article belongs to the Special Issue Advances in Composite Structures for Sustainable Building Solutions)
Show Figures

Figure 1

25 pages, 6196 KB  
Article
Experimental Study and Engineering Application of Concrete-Encased Reinforcement for Mine Pillars
by Fuhua Peng and Weijun Wang
Appl. Sci. 2025, 15(19), 10615; https://doi.org/10.3390/app151910615 - 30 Sep 2025
Viewed by 189
Abstract
The stability of the mine pillar is a key issue related to the safe mining underground. Reinforcing the mine pillar is an important method to improve its stability. To reveal the reinforcement effect and mechanism of concrete-encased mine pillars, laboratory tests and field [...] Read more.
The stability of the mine pillar is a key issue related to the safe mining underground. Reinforcing the mine pillar is an important method to improve its stability. To reveal the reinforcement effect and mechanism of concrete-encased mine pillars, laboratory tests and field engineering application studies were conducted. Four groups of tests were carried out considering different sample sizes, rock strengths, encasing material strengths, and encasing layer thicknesses. The results demonstrated that mortar-encased rock specimens exhibited significant improvements in peak stress and axial peak strain. The reinforcement effectiveness was inversely proportional to the specimen’s height-to-diameter ratio and rock strength, while directly proportional to the wrapping material strength and layer thickness. Orthogonal range analysis revealed the sensitivity ranking of influencing factors as follows: encasing thickness > specimen height-to-diameter ratio > encasing material strength > rock strength. After encasing, the failure mode transitioned from integral failure to fragmented failure, with encased specimens demonstrating enhanced energy absorption capacity and bearing capacity. Increasing encasing strength and thickness induced a tendency towards plastic deformation failure. The encased rock-specimen system can be regarded as a parallel composite structure of rock and mortar layer. This configuration not only increases the bearing capacity of the mortar layer but also significantly enhances the rock’s intrinsic bearing capacity through confining pressure provided by the encasing material, which grows substantially with improvements in encasing material strength and thickness. Field applications in mines demonstrated that concrete-encased reinforcement of key area pillars can effectively control overall ground pressure in mining operations. The research results of this paper indicated that the reinforcement of mine pillars by concrete wrapping can enhance the stability of mine pillars and provide a new idea for improving the safety of mines. Full article
Show Figures

Figure 1

24 pages, 11795 KB  
Article
Effects of Sodium Chloride in Soil Stabilization: Improving the Behavior of Clay Deposits in Northern Cartagena, Colombia
by Jair Arrieta Baldovino, Jesús David Torres Parra and Yamid E. Nuñez de la Rosa
Sustainability 2025, 17(19), 8715; https://doi.org/10.3390/su17198715 - 28 Sep 2025
Viewed by 252
Abstract
This research evaluates the stabilization of a clay collected from the northern expansion zone of Cartagena de Indias, Colombia. Laboratory analyses, including particle size distribution, Atterberg limits, compaction, specific gravity, and XRF/XRD, classified the soil as a highly plastic clay (CH) with moderate [...] Read more.
This research evaluates the stabilization of a clay collected from the northern expansion zone of Cartagena de Indias, Colombia. Laboratory analyses, including particle size distribution, Atterberg limits, compaction, specific gravity, and XRF/XRD, classified the soil as a highly plastic clay (CH) with moderate dispersivity, as confirmed by pinhole and crumb tests. The soil was treated with 3–9% lime, with and without the addition of NaCl (0% and 2%), and tested for unconfined compressive strength (qu), small-strain stiffness (Go), and microstructural properties under curing periods of 14 and 28 days at two compaction densities. Results showed that lime significantly improved mechanical behavior, while the inclusion of NaCl further enhanced qu (up to 185%) and Go (up to 3-fold), particularly at higher lime contents and curing times. Regression models demonstrated that both qu and Go follow power-type relationships with the porosity-to-lime index, with consistent exponents (−4.75 and −5.23, respectively) and high coefficients of determination (R2 > 0.79). Normalization of the data yielded master curves with R2 values above 0.90, confirming the robustness of the porosity-to-lime framework as a predictive tool. The Go/qu ratio obtained (3737.4) falls within the range reported for cemented geomaterials, reinforcing its relevance for comparative analysis. SEM observations revealed the transition from a porous, weakly aggregated structure to a dense matrix filled with C–S–H and C–A–H gels, corroborating the macro–micro correlation. Overall, the combined use of lime and NaCl effectively converts dispersive clays into non-dispersive, mechanically improved geomaterials, providing a practical and sustainable approach for stabilizing problematic coastal soils in tropical environments. Full article
Show Figures

Figure 1

Back to TopTop