Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,880)

Search Parameters:
Keywords = relationship strength

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1227 KB  
Review
Rational Design of Self-Healing Hydrogel with High Mechanical Strength and Self-Healing Efficiency: A Short Review
by Xiaogang Yu, Jinxin Huang, Fang Yang and Jinbo Li
Gels 2025, 11(10), 807; https://doi.org/10.3390/gels11100807 (registering DOI) - 8 Oct 2025
Abstract
Self-healing hydrogels, a novel class of “smart” hydrogels, possess the ability to autonomously restore their network structure and mechanical properties following damage through the reconnection of a fractured three-dimensional network via reversible interactions. This characteristic enhances their safety and durability, exhibiting significant potential [...] Read more.
Self-healing hydrogels, a novel class of “smart” hydrogels, possess the ability to autonomously restore their network structure and mechanical properties following damage through the reconnection of a fractured three-dimensional network via reversible interactions. This characteristic enhances their safety and durability, exhibiting significant potential in biomedicine. The key determinants of self-healing hydrogels are their mechanical strength and healing efficiency. Ideally, these hydrogels exhibit both high mechanical strength and good healing efficiency. Nevertheless, an inverse relationship between the mechanical strength and self-healing efficiency of self-healing hydrogels typically exists. Thus, research is currently focused on the development of self-healing hydrogels that combine good biocompatibility, high mechanical strength, and good self-healing efficiency. This review focuses on the research progress that is being made regarding the mechanical properties and self-healing capabilities of self-healing hydrogels, where we aim to achieve a balance between self-healing performance and mechanical strength. We outline the evaluation methods for assessing self-healing performance, followed by providing a summary of recent advancements in the mechanical strength and self-healing efficiency of external-stimulus-triggered self-healing hydrogels and autonomous self-healing hydrogels. Finally, we address the challenges and prospects for the future development of self-healing hydrogels. Full article
(This article belongs to the Special Issue Biobased Gels for Drugs and Cells)
13 pages, 2477 KB  
Article
Field-Gated Anion Transport in Nanoparticle Superlattices Controlled by Charge Density and Ion Geometry: Insights from Molecular Dynamics Simulations
by Yuexin Su, Jianxiang Huang, Zaixing Yang, Yangwei Jiang and Ruhong Zhou
Biomolecules 2025, 15(10), 1427; https://doi.org/10.3390/biom15101427 (registering DOI) - 8 Oct 2025
Abstract
Nanoparticle superlattices—periodic assemblies of uniformly spaced nanocrystals—bridge the nanoscale precision of individual particles with emergent collective properties akin to those of bulk materials. Recent advances demonstrate that multivalent ions and charged polymers can guide the co-assembly of nanoparticles, imparting electrostatic gating and enabling [...] Read more.
Nanoparticle superlattices—periodic assemblies of uniformly spaced nanocrystals—bridge the nanoscale precision of individual particles with emergent collective properties akin to those of bulk materials. Recent advances demonstrate that multivalent ions and charged polymers can guide the co-assembly of nanoparticles, imparting electrostatic gating and enabling semiconductor-like behavior. However, the specific roles of anion geometry, valency, and charge density in mediating ion transport remain unclear. Here, we employ coarse-grained molecular dynamics simulations to investigate how applied electric fields (0–0.40 V/nm) modulate ionic conductivity and spatial distribution in trimethylammonium-functionalized gold nanoparticle superlattices assembled with four phosphate anions of distinct geometries and charges. Our results reveal that linear anions outperform ring-shaped analogues in conductivity due to higher charge densities and weaker interfacial binding. Notably, charge density exerts a greater influence on ion mobility than size alone. Under strong fields, anions accumulate at nanoparticle interfaces, where interfacial adsorption and steric constraints suppress transport. In contrast, local migration is governed by geometrical confinement and field strength. Analyses of transition probability and residence time further indicate that the rigidity and delocalized charge of cyclic anions act as mobility barriers. These findings provide mechanistic insights into the structure–function relationship governing ion transport in superlattices, offering guidance for designing next-generation ion conductors, electrochemical sensors, and energy storage materials through anion engineering. Full article
(This article belongs to the Special Issue Nanomaterials and Their Applications in Biomedicine)
Show Figures

Figure 1

15 pages, 535 KB  
Review
Rheology of Dental Photopolymers for SLA/DLP/MSLA 3D Printing
by Luka Šimunović, Luka Brenko, Antun Jakob Marić, Senka Meštrović and Tatjana Haramina
Polymers 2025, 17(19), 2706; https://doi.org/10.3390/polym17192706 - 8 Oct 2025
Abstract
Vat photopolymerization 3D printing, including stereolithography (SLA), digital light processing (DLP), and masked SLA (mSLA), has transformed dental device fabrication by enabling precise and customizable components. However, the rheological behavior of photopolymer resins is a critical factor that governs the printability, accuracy, and [...] Read more.
Vat photopolymerization 3D printing, including stereolithography (SLA), digital light processing (DLP), and masked SLA (mSLA), has transformed dental device fabrication by enabling precise and customizable components. However, the rheological behavior of photopolymer resins is a critical factor that governs the printability, accuracy, and performance of printed parts. This review surveys the role of viscosity, shear-thinning, and thixotropy in defining the “printability window” of dental resins and explores the relationship between these properties and the formulation and final material performance. Rheological characterization using rotational rheometry provides key insights, with shear rate sweeps and thixotropy tests quantifying whether a resin behaves as Newtonian or pseudoplastic. The literature shows that optimal printability typically requires resins with low to moderate viscosity at shear, moderate thixotropy for stability, and formulations balanced between high-strength oligomers and low-viscosity diluents. The addition of fillers modifies the viscosity and dispersion, which can improve reinforcement but may reduce print resolution if not optimized. Thermal and optical considerations are also coupled with rheology, affecting the curing depth and accuracy. In conclusion, controlling resin rheology is essential for bridging material formulation with reliable clinical outcomes, guiding both resin design and printer process optimization in modern dental applications. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

17 pages, 393 KB  
Article
Informal Mathematical Thinking: Invariance of the Role of Domain-General and Domain-Specific Precursors in Spain and Chile
by Gamal Cerda, Carlos Pérez, Eugenio Chandía, Estíbaliz Aragón and José I. Navarro
J. Intell. 2025, 13(10), 128; https://doi.org/10.3390/jintelligence13100128 - 8 Oct 2025
Abstract
This study examines how domain-general (processing speed and receptive vocabulary) and domain-specific (symbolic and non-symbolic comparison) cognitive skills contribute to early informal mathematical thinking in preschoolers. The aim was to assess the invariance of these predictive relationships across two sociocultural contexts: Chilean and [...] Read more.
This study examines how domain-general (processing speed and receptive vocabulary) and domain-specific (symbolic and non-symbolic comparison) cognitive skills contribute to early informal mathematical thinking in preschoolers. The aim was to assess the invariance of these predictive relationships across two sociocultural contexts: Chilean and Spanish samples. A total of 130 children participated, and structural equation modeling was used to estimate latent structures and test multigroup invariance. The results revealed a consistent latent structure across samples and a significant contribution of symbolic and non-symbolic comparison to early math performance, while processing speed and vocabulary showed context-specific variations. These findings indicate that although foundational mathematical competencies rely on common cognitive mechanisms, cultural and educational contexts modulate the strength of these associations. This study contributes to understanding the cognitive architecture underlying early numeracy and highlights the importance of culturally sensitive assessment and intervention strategies. Full article
(This article belongs to the Special Issue Cognitive, Emotional, and Social Skills in Students)
17 pages, 2845 KB  
Article
Quantitative Mechanisms of Long-Term Drilling-Fluid–Coal Interaction and Strength Deterioration in Deep CBM Formations
by Qiang Miao, Hongtao Liu, Yubin Wang, Wei Wang, Shichao Li, Wenbao Zhai and Kai Wei
Processes 2025, 13(10), 3183; https://doi.org/10.3390/pr13103183 - 7 Oct 2025
Abstract
During deep coalbed methane (CBM) drilling, wellbore stability is significantly influenced by the interaction between drilling fluid and coal rock. However, quantitative data on mechanical degradation under long-term high-temperature and high-pressure conditions are lacking. This study subjected coal cores to immersion in field-formula [...] Read more.
During deep coalbed methane (CBM) drilling, wellbore stability is significantly influenced by the interaction between drilling fluid and coal rock. However, quantitative data on mechanical degradation under long-term high-temperature and high-pressure conditions are lacking. This study subjected coal cores to immersion in field-formula drilling fluid at 60 °C and 10.5 MPa for 0–30 days, followed by uniaxial and triaxial compression tests under confining pressures of 0/5/10/20 MPa. The fracture evolution was tracked using micro-indentation (µ-indentation), nuclear magnetic resonance (NMR), and scanning electron microscopy (SEM), establishing a relationship between water absorption and strength. The results indicate a sharp decline in mechanical parameters within the first 5 days, after which they stabilized. Uniaxial compressive strength decreased from 36.85 MPa to 22.0 MPa (−40%), elastic modulus from 1.93 GPa to 1.07 GPa (−44%), cohesion from 14.5 MPa to 5.9 MPa (−59%), and internal friction angle from 24.9° to 19.8° (−20%). Even under 20 MPa confining pressure after 30 days, the strength loss reached 43%. Water absorption increased from 6.1% to 7.9%, showing a linear negative correlation with strength, with the slope increasing from −171 MPa/% (no confining pressure) to −808 MPa/% (20 MPa confining pressure). The matrix elastic modulus remained stable at 3.5–3.9 GPa, and mineral composition remained unchanged, confirming that the degradation was due to hydraulic wedging and lubrication of fractures rather than matrix damage. These quantitative thresholds provide direct evidence for predicting wellbore stability in deep CBM drilling. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

26 pages, 7645 KB  
Article
Investigation on Drying Shrinkage of Basalt Fiber-Reinforced Concrete with Coal Gangue Ceramsite as Coarse Aggregates
by Shi Liu, Xiaojian Rong, Shuchao Wei and Dong Li
Materials 2025, 18(19), 4627; https://doi.org/10.3390/ma18194627 - 7 Oct 2025
Abstract
In order to investigate the basalt fiber influences on drying shrinkage of coal gangue ceramsite concrete, specimens with varying fiber dosages and matrix strength were prepared. The drying shrinkage (DS) was compared. To elucidate the characteristics of the DS, the internal humidity (IH) [...] Read more.
In order to investigate the basalt fiber influences on drying shrinkage of coal gangue ceramsite concrete, specimens with varying fiber dosages and matrix strength were prepared. The drying shrinkage (DS) was compared. To elucidate the characteristics of the DS, the internal humidity (IH) and electrical resistivity (ER) were also tested. The properties of the variation in the DS, IH, and ER were verified. The correlation between the values of the DS, IH, and ES was systematically analyzed, and a prediction model of DS considering the influence of fiber dosage and coal gangue ceramsite was proposed. The results showed that the incorporation of basalt fiber can significantly reduce the DS, and the value of the DS decreased with the increment of fiber dosage. The value of the DS also decreased with the enhancement of the matrix strength. An inverse relationship existed between the variation in the IH and DS, whereas the variation in the ER demonstrated a direct proportionality with the variation in the DS. The prediction model for the basalt fiber-reinforced coal gangue ceramsite concrete was obtained by modifying the AFREM model. The values predicted by the improved AFREM model demonstrated excellent consistency with the test data. Full article
(This article belongs to the Topic Solid Waste Recycling in Civil Engineering Materials)
Show Figures

Figure 1

11 pages, 1909 KB  
Article
Reliability of the Seated Unilateral Cable Row and Strength Differences Between Dominant and Non-Dominant Sides in Young Athletes
by Ángela Rodríguez-Perea, Helena Vila, Carmen Ferragut, Daniel Jerez-Mayorga, Luis Javier Chirosa Ríos, Oscar García-García and Virginia Serrano-Gómez
J. Funct. Morphol. Kinesiol. 2025, 10(4), 390; https://doi.org/10.3390/jfmk10040390 - 7 Oct 2025
Abstract
Background: Muscle strength asymmetries between limbs are common in physically active populations and may influence performance and injury risk. This study aimed to: (i) analyze the reliability of the seated unilateral cable row exercise using a functional electromechanical dynamometer (FEMD) and to examine [...] Read more.
Background: Muscle strength asymmetries between limbs are common in physically active populations and may influence performance and injury risk. This study aimed to: (i) analyze the reliability of the seated unilateral cable row exercise using a functional electromechanical dynamometer (FEMD) and to examine differences in reliability between sides and contraction types; (ii) investigate the relationship between the dominant and non-dominant sides, as well as between the dynamic and static force production of the back muscles; and (iii) quantify force output and assess interlimb asymmetries. Methods: Twenty-nine young physically active athletes completed two sets of four repetitions of a seated unilateral cable row at 0.30 m·s−1 using the FEMD, followed by a 6-s isometric contraction. Two testing sessions were conducted seven days apart. Reliability was assessed using paired t-tests, the effect size, the coefficient of variation (CV), the standard error of measurement, and the intraclass correlation coefficient (ICC), with 95% confidence intervals. Results: Peak and average force values showed very high to extremely high relative reliability (ICC = 0.86–0.96) and acceptable absolute reliability (CV ≈ 10%). Differences between dominant and non-dominant sides varied depending on contraction type. While group-level asymmetries did not exceed 10%, individual analysis revealed that 14%, 32%, and 7% of participants had asymmetries greater than 15% in isometric, concentric, and eccentric force, respectively. Conclusions: This test demonstrates strong reliability and provides a practical method for assessing upper limb asymmetries in physically active individuals, with potential applications in performance monitoring and injury prevention. Full article
Show Figures

Figure 1

19 pages, 8342 KB  
Article
Soil Carbon–Water Trade-Off Relationships and Driving Mechanisms in Different Forest Types on the Yunnan Plateau, China
by Zhiqiang Ding, Ping Wang, Lei Fu and Shidong Chen
Forests 2025, 16(10), 1548; https://doi.org/10.3390/f16101548 - 7 Oct 2025
Abstract
Semi-humid subtropical montane regions face the dual pressures of climate change and water scarcity, making it essential to understand how soil carbon–water coupling varies among forest types. Focusing on seven representative forest types in the central Yunnan Plateau, this study analyzes the spatial [...] Read more.
Semi-humid subtropical montane regions face the dual pressures of climate change and water scarcity, making it essential to understand how soil carbon–water coupling varies among forest types. Focusing on seven representative forest types in the central Yunnan Plateau, this study analyzes the spatial distribution, trade-offs, and drivers of soil organic carbon storage (SOCS) and soil water storage (SWS) within the 0–60 cm soil layer, using sloping rainfed farmland (SRF) as a reference. We hypothesize that, relative to SRF, both SOCS and SWS increase across forest types; however, the direction and strength of the SOCS–SWS trade-off differ among plant communities and are regulated by litter traits and soil structural properties. The results show that SOCS in all forest types exceeded that in SRF, whereas a significant increase in SWS occurred only in ACF. Broadleaf stands were particularly prominent: SOCS rose most in the 23 yr SF and the 20 yr ACF (274.44% and 256.48%, respectively), far exceeding the 9–60 yr P. yunnanensis stands (44.01%–105.32%). Carbon–water trade-offs varied by forest type and depth. In conifer stands, SWS gains outweighed SOCS and trade-off intensity increased with stand age (RMSD from 0.48 to 0.53). In broadleaf stands, SOCS gains were larger, with RMSD ranging from 0.21 to 0.45 and the weakest trade-off in SF. Across depths, SOCS gains exceeded SWS in 0–20 cm, whereas SWS gains dominated in 40–60 cm. Regression analyses indicated a significant negative SOCS–SWS relationship in conifer stands and a significant positive relationship in 0–20 cm soils (both p < 0.05), with no significant correlations in other forest types or depths (p > 0.05). Correlation results further suggest that organic matter inputs, N availability, and soil physical structure jointly regulate carbon–water trade-off intensity across forest types and soil depths. We therefore recommend prioritizing native zonal broadleaf species, as well as protecting SF and establishing mixed conifer–broadleaf stands, to achieve synergistic improvements in SOCS and SWS. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

17 pages, 2676 KB  
Article
Stiffness and Strength of Scots Pine Wood Under Compression Perpendicular to the Grain and Rolling Shear Loading
by Shaheda T. Akter, Anders Olsson and Thomas K. Bader
Appl. Sci. 2025, 15(19), 10775; https://doi.org/10.3390/app151910775 - 7 Oct 2025
Abstract
To increase and optimize the use of wood in structural elements, a deep understanding of its mechanical behavior is necessary. The transverse material properties of wood are particularly important for mass timber construction and for utilizing wood as a strengthening material in timber [...] Read more.
To increase and optimize the use of wood in structural elements, a deep understanding of its mechanical behavior is necessary. The transverse material properties of wood are particularly important for mass timber construction and for utilizing wood as a strengthening material in timber connections. This study experimentally determined the stiffness and strength of Scots pine wood under compression perpendicular to the grain and rolling shear loading, as well as their dependence on the annual ring structure. A previously established biaxial test configuration was employed for this purpose. The modulus of elasticity in the radial direction was found to be about twice that in the tangential direction (687 vs. 372 N/mm2), although the strength in the tangential direction (5.19 N/mm2) was comparatively higher than that in the radial direction (4.70 N/mm2). For rolling shear, especially for the rolling shear modulus, a large variation was found, and its relationship with annual ring structure was assessed. The obtained RS modulus ranged from 50 to 254 N/mm2, while RS strength was found to be between 2.14 and 4.61 N/mm2. The results aligned well with previous findings. Full article
Show Figures

Figure 1

14 pages, 4733 KB  
Article
Microstructural Stability and Densification Behavior of Cantor-Type High-Entropy Alloy Processed by Spark Plasma Sintering
by Marcin Madej, Beata Leszczyńska-Madej, Anna Kopeć-Surzyn, Paweł Nieroda and Stanislav Rusz
Materials 2025, 18(19), 4625; https://doi.org/10.3390/ma18194625 - 7 Oct 2025
Abstract
High-entropy alloys (HEAs) of the Cantor type (CoCrFeMnNi) are widely recognized as model systems for studying the relationships between composition, microstructure, and functional performance. In this study, atomized Cantor alloy powders were consolidated using spark plasma sintering (SPS) under systematically varied process parameters [...] Read more.
High-entropy alloys (HEAs) of the Cantor type (CoCrFeMnNi) are widely recognized as model systems for studying the relationships between composition, microstructure, and functional performance. In this study, atomized Cantor alloy powders were consolidated using spark plasma sintering (SPS) under systematically varied process parameters (temperature and dwell time). The densification behavior, microstructural evolution, and mechanical response were investigated using Archimedes’ density measurements, Vickers hardness testing, compression tests, scanning electron microscopy, and EDS mapping. The results reveal a non-linear relationship between sintering temperature and densification, with maximum relative densities obtained at 1050 °C and 1100 °C for short dwell times. Despite the ultrafast nature of SPS, grain growth was observed, particularly at elevated temperatures and extended dwell times, challenging the assumption that SPS inherently limits grain coarsening. All sintered samples retained a single-phase FCC structure with homogeneous elemental distribution, and no phase segregation or secondary precipitates were detected. Compression testing showed that samples sintered at 1060 °C and 1100 °C exhibited the highest strength, demonstrating the strong interplay between sintering kinetics and grain cohesion. Full article
Show Figures

Figure 1

22 pages, 3798 KB  
Article
Range-Aware Two-Stage Modeling for Feed Ratio Optimization in Fluoroelastomers: Mechanistic Pathways from NMR Structural Features to Macroscopic Properties
by Yaxian Liu, Yadong Wu, Zhoujun Lin, Lijuan Peng and Hongwei Fu
Materials 2025, 18(19), 4618; https://doi.org/10.3390/ma18194618 - 6 Oct 2025
Viewed by 67
Abstract
This study developed the RATS (Range-Aware Two-Stage) modeling approach to establish mechanistic foundations for feed ratio optimization in fluoroelastomers. Using 19F NMR spectroscopic analysis, the approach decomposes complex composition–property relationships into sequential processes: monomer feed ratios to NMR-derived structural features, and structural [...] Read more.
This study developed the RATS (Range-Aware Two-Stage) modeling approach to establish mechanistic foundations for feed ratio optimization in fluoroelastomers. Using 19F NMR spectroscopic analysis, the approach decomposes complex composition–property relationships into sequential processes: monomer feed ratios to NMR-derived structural features, and structural features to properties, enabling mechanistic pathway analysis through quantifiable structural intermediates. Using 52 industrial datasets, RATS achieved an average R2 of 0.90 across four property predictions, representing a 0.14 improvement over direct modeling and a 28% reduction in prediction error. The approach identified 72 systematic transmission pathways, including promoting effects of PMVE-series structures (+0.220 influence strength) and inhibitory effects of VDF monomers (−0.219 influence strength), through quantified model parameter analysis. This methodology provides a practical analytical tool for mechanism-driven feed ratio optimization, facilitating the transition from empirical trial-and-error to systematic, data-guided fluoroelastomer formulation. Full article
Show Figures

Figure 1

18 pages, 6151 KB  
Article
Impact of Cutting Parameters and Tool Type on Surface Finish in MQL Turning of Inconel 625
by Magdalena Machno, Wojciech Zębala and Emilia Franczyk
Materials 2025, 18(19), 4617; https://doi.org/10.3390/ma18194617 - 6 Oct 2025
Viewed by 74
Abstract
Inconel 625 is a nickel-based superalloy widely applied in aerospace and energy sectors due to its high strength and corrosion resistance. However, its poor machinability remains a significant challenge in precision manufacturing. This study investigates the influence of tool geometry and cutting parameters [...] Read more.
Inconel 625 is a nickel-based superalloy widely applied in aerospace and energy sectors due to its high strength and corrosion resistance. However, its poor machinability remains a significant challenge in precision manufacturing. This study investigates the influence of tool geometry and cutting parameters on surface roughness of Inconel 625 during turning operations under the minimum quantity lubrication (MQL) conditions. Experiments were carried out using three types of cutting inserts with distinct chip breaker geometries while systematically varying the cutting speed, feed rate, and depth of cut. The results were statistically analyzed using analysis of variance (ANOVA) to determine the significance of individual factors. The findings reveal that both the type of cutting insert and the process parameters have a considerable effect on surface roughness, which is the key output examined in this study. Cutting forces and chip type were examined to provide complementary insights and improve understanding of the observed relationships. Based on the results, an optimal set of cutting data was proposed to achieve a required surface roughness during the turning of Inconel 625 with MQL. Furthermore, a practical algorithm was developed to support the selection of cutting parameters in industrial applications. Analysis of the results showed that a cutting insert with a 0.4 mm corner radius achieved the required surface finish (Rz ≤ 0.4 µm). Furthermore, the analysis revealed a significant effect of the thermal properties of Inconel 625 on machining results and chip geometry. Full article
Show Figures

Figure 1

21 pages, 708 KB  
Article
Assessing Comprehensive Spatial Ability and Specific Attributes Through Higher-Order LLM
by Jujia Li, Kaiwen Man, Mehdi Rajeb, Andrew Krist and Joni M. Lakin
J. Intell. 2025, 13(10), 127; https://doi.org/10.3390/jintelligence13100127 - 5 Oct 2025
Viewed by 96
Abstract
Spatial reasoning ability plays a critical role in predicting academic outcomes, particularly in STEM (science, technology, engineering, and mathematics) education. According to the Cattell–Horn–Carroll (CHC) theory of human intelligence, spatial reasoning is a general ability including various specific attributes. However, most spatial assessments [...] Read more.
Spatial reasoning ability plays a critical role in predicting academic outcomes, particularly in STEM (science, technology, engineering, and mathematics) education. According to the Cattell–Horn–Carroll (CHC) theory of human intelligence, spatial reasoning is a general ability including various specific attributes. However, most spatial assessments focus on testing one specific spatial attribute or a limited set (e.g., visualization, rotation, etc.), rather than general spatial ability. To address this limitation, we created a mixed spatial test that includes mental rotation, object assembly, and isometric perception subtests to evaluate both general spatial ability and specific attributes. To understand the complex relationship between general spatial ability and mastery of specific attributes, we used a higher-order linear logistic model (HO-LLM), which is designed to simultaneously estimate high-order ability and sub-attributes. Additionally, this study compares four spatial ability classification frameworks using each to construct Q-matrices that define the relationships between test items and spatial reasoning attributes within the HO-LLM framework. Our findings indicate that HO-LLMs improve model fit and show distinct patterns of attribute mastery, highlighting which spatial attributes contribute most to general spatial ability. The results suggest that higher-order LLMs can offer a deeper and more interpretable assessment of spatial ability and support tailored training by identifying areas of strength and weakness in individual learners. Full article
(This article belongs to the Section Contributions to the Measurement of Intelligence)
16 pages, 860 KB  
Article
Exploratory Analysis on Physiological and Biomechanical Correlates of Performance in the CrossFit Benchmark Workout Fran
by Alexandra Malheiro, Pedro Forte, David Rodríguez Rosell, Diogo L. Marques and Mário C. Marques
J. Funct. Morphol. Kinesiol. 2025, 10(4), 387; https://doi.org/10.3390/jfmk10040387 - 5 Oct 2025
Viewed by 219
Abstract
Background: The multifactorial nature of CrossFit performance remains incompletely understood, particularly regarding sex- and experience-related physiological and biomechanical factors. Methods: Fifteen trained athletes (8 males, 7 females) completed assessments of anthropometry, estimated one-repetition maximums (bench press, back squat, deadlift), squat jump [...] Read more.
Background: The multifactorial nature of CrossFit performance remains incompletely understood, particularly regarding sex- and experience-related physiological and biomechanical factors. Methods: Fifteen trained athletes (8 males, 7 females) completed assessments of anthropometry, estimated one-repetition maximums (bench press, back squat, deadlift), squat jump (SJ), maximal oxygen uptake (VO2max), ventilatory responses (V˙E), and heart rate (HR). Spearman, Pearson, and partial correlations were calculated with Holm and false discovery rate (FDR) corrections. Results: Males displayed greater body mass, lean and muscle mass, maximal strength, and aerobic capacity than females (all Holm-adjusted p < 0.01). Experienced athletes completed Fran faster than beginners despite broadly similar anthropometric and aerobic profiles. In the pooled sample, WOD time showed moderate negative relationships with estimated 1RM back squat (ρ = −0.54), deadlift (ρ = −0.56), and bench press (ρ = −0.65) before correction; none remained significant after Holm/FDR adjustment, and partial correlations controlling for training years were further attenuated. Conclusions: This exploratory study provides preliminary evidence suggesting that maximal strength may contribute to Fran performance, whereas conventional aerobic measures were less influential. However, given the very small sample (n = 15, 8 males and 7 females) and the fact that no relationships remained statistically significant after correction for multiple testing, the results must be regarded as preliminary, hypothesis-generating evidence only, requiring confirmation in larger and adequately powered studies. Full article
(This article belongs to the Special Issue Biomechanical Analysis in Physical Activity and Sports—2nd Edition)
Show Figures

Figure 1

18 pages, 5933 KB  
Article
The Impact of Reservoir Parameters and Fluid Properties on Seepage Characteristics and Fracture Morphology Using Water-Based Fracturing Fluid
by Zhaowei Zhang, Qiang Sun, Hongge Wang, Chaoxian Chen, Changyu Chen, Qian Zhou, Qisen Gong, Xiaoyue Zhuo and Peng Zhuo
Processes 2025, 13(10), 3166; https://doi.org/10.3390/pr13103166 - 5 Oct 2025
Viewed by 258
Abstract
This study, motivated by the pronounced fluid loss characteristics of water-based fracturing fluids, developed a fluid–solid coupling model to investigate water-based fracturing in geological reservoirs. The model was further employed to analyse the effects of multiple factors on fracture propagation and the seepage [...] Read more.
This study, motivated by the pronounced fluid loss characteristics of water-based fracturing fluids, developed a fluid–solid coupling model to investigate water-based fracturing in geological reservoirs. The model was further employed to analyse the effects of multiple factors on fracture propagation and the seepage capacity of water-based fracturing fluids. Moreover, the underlying mechanisms of fracture propagation and seepage enhancement were elucidated from a microscopic molecular perspective. The results obtained that the high apparent viscosity of water-based fracturing fluids not only enhances the fracturing efficiency of reservoir rocks but also results in a reduced seepage volume (−17 mL) in low-permeability reservoirs. Furthermore, the reservoir porosity (+2.5%) exhibits a clear inverse proportional relationship with fracturing efficiency (−0.9 m), while the seepage volume (+7 mL) of water-based fracturing fluids continues to increase. The strength and quantity of hydrogen bonds between molecules in water-based fracturing fluid, influenced by external factors, directly affect fluid seepage. The seepage behaviour of water-based fracturing fluids in geological reservoirs, together with the influence of reservoir conditions on fracture propagation, provides valuable reference data for rock fracturing and reservoir stimulation. However, the absence of data analysis and microscopic images of microscopic molecular dynamics constitutes a challenging problem that demands attention. Full article
Show Figures

Figure 1

Back to TopTop