Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,517)

Search Parameters:
Keywords = repetitive control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 378 KB  
Article
An Exploratory Study of Biceps Brachii Electromyographic Activity During Traditional Dumbbell Versus Bayesian Cable Curls
by Koulla Parpa, Antreas Vasiliou, Marcos Michaelides, Karuppasamy Govindasamy, Anton Chernov and Konstantina Intziegianni
Muscles 2025, 4(4), 45; https://doi.org/10.3390/muscles4040045 (registering DOI) - 13 Oct 2025
Abstract
Although previous studies have examined various factors that influence biceps brachii activation, such as grip position, load, and exercise variation, to our knowledge, no prior studies have compared muscle activation during a traditional biceps curl and a Bayesian cable curl. Therefore, this study [...] Read more.
Although previous studies have examined various factors that influence biceps brachii activation, such as grip position, load, and exercise variation, to our knowledge, no prior studies have compared muscle activation during a traditional biceps curl and a Bayesian cable curl. Therefore, this study aimed to examine the differences in biceps brachii muscle activation between these two training modalities. Data from eleven volunteers (age: 25 ± 6 y; weight: 86 ± 13 kg; height: 177 ± 8 cm) were included in the analysis. Muscle activity was assessed using the normalized root mean square (RMS) values obtained from surface electromyography (sEMG). A within-subjects, counterbalanced design was utilized where all participants completed both testing conditions in a randomized order to control for potential order effects. Participants visited the laboratory and fitness center on two occasions. On the first day, anthropometric measurements were obtained, along with one repetition maximum (1-RM) for both the dumbbell biceps curl and the Bayesian curl. On the second day, participants performed an isometric maximal voluntary contraction (MVC), followed by electromyographic assessment of muscle activity during the dumbbell biceps curl and the Bayesian curl, each performed at 80% of their respective 1-RM. When the normal distribution was confirmed via the Shapiro–Wilk test (p > 0.05), a paired t-test was used for statistical analysis. On the other hand, when normality was not confirmed, the Wilcoxon test was utilized. Statistically significant differences (p = 0.003) were observed in the EMG amplitude (%) between the biceps curl (111.46 ± 26.80) and the Bayesian curl (93.39 ± 15.65) with a large effect size (d = 0.82). Based on the EMG analysis, the dumbbell biceps curl elicited significantly greater muscle activation compared to the Bayesian curl, suggesting that the conventional movement places a higher mechanical and neuromuscular demand on the biceps brachii. Full article
Show Figures

Figure 1

12 pages, 811 KB  
Article
Effect of Low-Load and Low-Volume Squat Training Combined with Plyometrics During a Full Season on Physical Performance in Young Soccer Players
by Felipe Franco-Márquez, Carmen Serrano-Cañadillas, Juan Manuel Yáñez-García, Juan José González-Badillo and David Rodríguez-Rosell
Sports 2025, 13(10), 360; https://doi.org/10.3390/sports13100360 (registering DOI) - 11 Oct 2025
Viewed by 103
Abstract
The aim of this study was to analyze the effects of a 24-week low-load, low-volume resistance training (RT) program combined with plyometric exercises on the physical performance of U-15 male soccer players. Thirty-two young soccer players were divided into a strength training group [...] Read more.
The aim of this study was to analyze the effects of a 24-week low-load, low-volume resistance training (RT) program combined with plyometric exercises on the physical performance of U-15 male soccer players. Thirty-two young soccer players were divided into a strength training group (STG) and a control group (CG). The STG added two RT sessions per week—using moderate loads (45–60% 1RM) and a low number of repetitions per set—combined with plyometrics to their regular soccer training, while the CG continued with only the field soccer training. Performance assessments (a running sprint test, a countermovement jump, and a progressive loading test in a full squat exercise) were conducted before and after each of three 8-week periods. Significant ‘time × group’ interaction in favor of STG was observed for T20 (p < 0.05), CMJ (p < 0.001), and all variables (p < 0.001) assessed during the full squat exercise. Significant changes between groups were observed in T10 (Post 1 and Post 3, p < 0.05), CMJ (Post 1, Post 2, and Post 3, p < 0.05–0.001), and all strength variables (Post 1, Post 2, and Post 3, p < 0.05–0.001). The findings of this study suggest that a training program based on weightlifting with light loads for a few repetitions per set combined with jumps and sprint exercises, in addition to regular soccer training, induces greater and earlier improvements in strength and sport-related actions (jumping and sprinting), compared with only field soccer training. Coaches and strength-conditioning coaches should consider using RT with low loads and low volume and performing each repetition as fast as possible as an effective stimulus to improve physical performance in key match-determining actions efficiently. Full article
Show Figures

Figure 1

16 pages, 2066 KB  
Article
Dynamic Mobilization Exercises Improve Activity and Stride Parameters Measured with Accelerometry in Sedentary Horses
by Aritz Saitua, Joaquín Pérez-Umbría, Karelhia García-Álamo and Ana Muñoz
Animals 2025, 15(20), 2943; https://doi.org/10.3390/ani15202943 - 10 Oct 2025
Viewed by 129
Abstract
Dynamic mobilization exercises (DME) are an effective strategy to prevent musculoskeletal injuries and promote back health in sport horses. Previous studies focused mainly on multifidus muscle cross-sectional area, with limited data on locomotion and adaptation timing. This study evaluated locomotor changes using accelerometry, [...] Read more.
Dynamic mobilization exercises (DME) are an effective strategy to prevent musculoskeletal injuries and promote back health in sport horses. Previous studies focused mainly on multifidus muscle cross-sectional area, with limited data on locomotion and adaptation timing. This study evaluated locomotor changes using accelerometry, over 8 weeks of DME application in 14 sedentary horses: a DME group (n = 8) performing 10 different DME (3 neck flexions, 1 neck extension and 3 lateral bending exercises to each side), 5 repetitions of each DME per session, 3 sessions/week, and a control group (n = 6), that continued with their daily routine activities without any other training. During the study period, all horses were housed in medium-sized paddocks. Accelerometric measurements were performed at walk and trot before intervention, 2 h and 24 h after a DME session, and at 2, 4, 6, and 8 weeks. The DME group showed significant increases in dorsoventral displacement and dorsoventral and mediolateral activities from week 4, at both walk and trot, which then stabilized. Longitudinal activity increased from week 2 on trot and from week 4 at walk. Locomotor symmetry and stride length improved at week 6, while stride frequency decreased at week 8; velocity remained unchanged. These findings indicate that DME enhances dorsoventral, mediolateral and longitudinal activities, producing longer, more symmetrical strides. Overall, DME appears to promote more symmetrical movement patterns. Full article
Show Figures

Figure 1

22 pages, 476 KB  
Article
The Effect of Hippotherapy Simulator-Assisted Therapy on Motor and Functional Outcomes in Children with Cerebral Palsy
by Canan Günay Yazıcı, Fatih Özden, Osman Çoban, Devrim Tarakçı, Onur Aydoğdu and Zübeyir Sarı
Medicina 2025, 61(10), 1811; https://doi.org/10.3390/medicina61101811 - 9 Oct 2025
Viewed by 156
Abstract
Background and Objectives: Horse riding simulators (HRS) provide rhythmic, repetitive, and multidirectional movements analogous to horseback riding, which may facilitate postural control, balance, and functional abilities in children with cerebral palsy (CP). This study aimed to investigate the effects of the HRS [...] Read more.
Background and Objectives: Horse riding simulators (HRS) provide rhythmic, repetitive, and multidirectional movements analogous to horseback riding, which may facilitate postural control, balance, and functional abilities in children with cerebral palsy (CP). This study aimed to investigate the effects of the HRS application on the muscle tone of the lower extremity, gross motor function, trunk postural control, balance, gait functions, and functional independence in children with CP. Materials and Methods: A quasi-experimental study included 30 children with cerebral palsy (17 hemiparetic, 13 diparetic; mean age, 9.3 ± 3.2 years). All participants received Neurodevelopmental Therapy (NDT) for eight weeks, followed by eight weeks of HRS plus NDT, in a sequential design. Outcomes included the Modified Ashworth Scale (MAS), Myoton®PRO, Gross Motor Function Measures (GMFM)-88, Pedalo® Sensamove Balance Test (Pedalo® SBT), Pediatric Balance Scale (PBS), Trunk Impairment Scale (TIS), gait analysis parameters, and Functional Independence Measure (WeeFIM). Assessments were made at baseline, the 8th, and the 16th week. Results: At week 16, after incorporating HRS, all MAS parameters demonstrated greater improvements compared to those achieved during the first eight weeks of NDT alone (ES: 0.728–0.931, p < 0.05). Myoton®PRO measurements showed a significant reduction in gastrocnemius stiffness (ES = 0.672, p < 0.05) in hemiparetic children and decreases in hip adductor (ES: 0.649, p < 0.05) and gastrocnemius-soleus (ES: 0.766–0.865, p < 0.05) stiffness from week 8 to 16 in diparetic children following HRS intervention. Total scores on the GMFM-88, WeeFIM, TIS, and PBS improved significantly, with large effect sizes observed both from baseline to week 16 and from week 8 to 16 (ES: 0.771–0.886, p < 0.05). Additionally, Pedalo® SBT scores increased following HRS intervention from baseline to week 16 (ES = 0.599–0.602, p < 0.05). Conclusions: HRS integrated with conventional NDT may improve muscle tone, motor function, balance, gait, and functional independence in children with cerebral palsy, representing a valuable adjunct to standard rehabilitation. These findings provide the first evidence that simulator-assisted interventions may benefit daily activities in children with cerebral palsy. Full article
(This article belongs to the Section Pediatrics)
Show Figures

Figure 1

13 pages, 4227 KB  
Article
Wear Measurements in Cylindrical Telescopic Crowns Using an Active Piezoresistive Cantilever with an Integrated Gold Microsphere Probe
by Tomasz Dąbrowa, Dominik Badura, Bartosz Pruchnik, Władysław Kopczyński, Ivo W. Rangelow, Edward Kijak and Teodor Gotszalk
Materials 2025, 18(19), 4624; https://doi.org/10.3390/ma18194624 - 7 Oct 2025
Viewed by 295
Abstract
In this paper, we report a novel application of atomic force microscopy (AFM) for measurement of wear of prosthetic materials. In contrast to previously employed methods, we introduce AFM-based wear induction. In this way, we utilize AFM as both measurement technique and the [...] Read more.
In this paper, we report a novel application of atomic force microscopy (AFM) for measurement of wear of prosthetic materials. In contrast to previously employed methods, we introduce AFM-based wear induction. In this way, we utilize AFM as both measurement technique and the mean for surface wear. We describe the methodology along with the metrological advantages of the approach regarding the supreme resolution of volume measurement (down to 1 μm3). We investigate wear between prosthetic gold alloy (Degulor M) and FGP polymeric material from Bredent in nanoscale. For that purpose, we modify active piezoresistive cantilever, replacing the original tip with Degulor M microsphere. We elaborate on the process of modification and present how the mass volume and topology of the tip is controlled throughout the process. Wear process was performed in reciprocal motion over the length of 5 μm in 35,000 repetitions to mimic the actual conditions occurring in human mouth cavity. We present how this method, by focusing on a small area of investigated materials, leads to shortening the overall time of wear measurements from tong term observations down to several minutes. AFM-measured data present consistent relation between wear energy and wear volume. Exemplary results seem to confirm durability of the FGP-Degulor M mechanical contact and occurring strengthening of the mechanical contact with roughening of the polymeric surface. Full article
Show Figures

Figure 1

15 pages, 1239 KB  
Article
Effects of Respiratory Muscle Training on Performance and Inspiratory Strength in Female CrossFit Athletes: A Randomized Controlled Trial
by Juliana Andrade Assis, Lúcio Marques Vieira-Souza, Diego Valenzuela Pérez, Cristiano Diniz da Silva, Carlos Fuentes Veliz, Naiara Ribeiro Almeida, Bianca Miarka, Otávio Toledo Nóbrega and Ciro José Brito
Physiologia 2025, 5(4), 39; https://doi.org/10.3390/physiologia5040039 - 6 Oct 2025
Viewed by 437
Abstract
Background: The high-intensity demands of CrossFit induce respiratory muscle fatigue, potentially impairing performance via the metaboreflex. Respiratory muscle training (RMT) may mitigate this effect, but evidence in female athletes remains limited. Objective: We aimed to investigate the effects of RMT on sport-specific performance [...] Read more.
Background: The high-intensity demands of CrossFit induce respiratory muscle fatigue, potentially impairing performance via the metaboreflex. Respiratory muscle training (RMT) may mitigate this effect, but evidence in female athletes remains limited. Objective: We aimed to investigate the effects of RMT on sport-specific performance and maximal inspiratory pressure (PIMAX) in recreational female CrossFit practitioners. Design: We conducted a parallel-group randomized controlled trial. Setting: The study was conducted in a CrossFit-affiliated gym. Participants: We recruited twenty-nine recreational female practitioners (age: 30.3 ± 7.9 years) with ≥1 year of uninterrupted training who were free from respiratory diseases. Interventions: Participants were randomized to a CrossFit-only group (n = 14) or CrossFit + RMT group (n = 15). Both trained 5 days/week for 6 weeks; the RMT group additionally performed 30 inspiratory efforts at 50% of PIMAX, 5 days/week, with weekly load adjustment. Main Outcome Measures: Primary: Sport-specific performance (total repetitions in a 10-min AMRAP [As Many Rounds As Possible] test). Secondary: PIMAX (cmH2O). Measurements were taken pre- and post-intervention. Results: Baseline performance and PIMAX were similar between groups. After 6 weeks, the CrossFit + RMT group improved in performance more (Δ = +10.5 ± 10.7 reps, p = 0.03, ηp2 = 0.168) than the CrossFit-only group (Δ = +2.3 ± 8.1). PIMAX gains were also greater with RMT (Δ = +19.6 ± 8.4 cmH2O, p = 0.043, ηp2 = 0.148) vs. control (Δ = +10.1 ± 9.7). No adverse events occurred. Conclusions: Adding RMT to CrossFit training enhanced sport-specific performance and inspiratory strength in recreational female practitioners more than CrossFit alone. RMT appears to be a safe and effective complementary strategy for high-intensity functional training. Full article
(This article belongs to the Special Issue Exercise Physiology and Biochemistry: 3rd Edition)
Show Figures

Graphical abstract

7 pages, 457 KB  
Case Report
Functional Magnetic Stimulation in the Management of Lower Urinary Tract Dysfunction in Children with Asperger Syndrome: A Case Report
by Edva Anna Frunda, Orsolya Katalin Ilona Mártha, András Kiss, Árpád Olivér Vida, Tibor Lóránd Reman, Raul-Dumitru Gherasim, Veronica Maria Ghirca, Bogdan Călin Chibelean, Daniel Porav-Hodade and Carmen Viorica Muntean
Children 2025, 12(10), 1340; https://doi.org/10.3390/children12101340 - 5 Oct 2025
Viewed by 259
Abstract
Background/Objectives: A variant of autism spectrum disorder (ASD) known as Asperger syndrome (AS) shows increasing incidence worldwide, affecting between 0.02% and 0.03% of children. Patients display abnormal conduct, are limited in social interaction and communication, and are more often affected by micturition disorders, [...] Read more.
Background/Objectives: A variant of autism spectrum disorder (ASD) known as Asperger syndrome (AS) shows increasing incidence worldwide, affecting between 0.02% and 0.03% of children. Patients display abnormal conduct, are limited in social interaction and communication, and are more often affected by micturition disorders, incontinence, and voiding symptoms than typically developing children. Methods: The present study aimed to review the literature related to the current management of lower urinary tract conditions in children with Asperger syndrome and to present a case of a 14-year-old girl with ASD, with characteristic impairments, including communication challenges, stereotyped, repetitive behaviors, and chronic constipation with concomitant bladder dysfunction, presenting recurrent urinary tract infections (UTIs) and lower urinary tract symptoms (LUTS), including voiding and filling storage symptoms. For the AS, she was treated with a selective serotonin reuptake inhibitor (Sertraline). An abdominal ultrasound, PLUTTS—pediatric lower urinary symptoms scoring (21); QL-quality of life (3); voiding diary; and uroflowmetry were performed, revealing an incomplete urinary retention (incomplete bladder emptying of 120 mL), a prolonged and interrupted curve, a maximum urinary flow rate (Qmax) 7 mL/s, and a UTI with Enterococcus. Results: Besides psychiatric reevaluation and antibiotic therapy, functional magnetic stimulation (FMS) sessions were performed. After eight sessions (20 min, 35 MHz, every second day), the ultrasound control and the uroflowmetry showed no residual urine, and the Qmax was 17 mL/s. The curve continued to be interrupted: PLUTSS-11, QL-1. FMS was continued at two sessions per week. At the 3-month follow-up, no residual urine was detected, and Qmax reached 24 mL/s. Conclusions: ASD is an incapacitating/debilitating condition that significantly impairs social functioning. In many cases, in addition to psychological symptoms, other conditions such as LUTS and constipation may coexist. Antipsychotics and antidepressants are frequently prescribed for these patients, often leading to various side effects, including micturition disorders. Therefore, screening for LUTS is recommended, and, if indicated, treatment—especially non-pharmacological and non-invasive approaches, such as FMS—should be considered. Full article
(This article belongs to the Section Pediatric Neurology & Neurodevelopmental Disorders)
Show Figures

Figure 1

16 pages, 860 KB  
Article
Exploratory Analysis on Physiological and Biomechanical Correlates of Performance in the CrossFit Benchmark Workout Fran
by Alexandra Malheiro, Pedro Forte, David Rodríguez Rosell, Diogo L. Marques and Mário C. Marques
J. Funct. Morphol. Kinesiol. 2025, 10(4), 387; https://doi.org/10.3390/jfmk10040387 - 5 Oct 2025
Viewed by 388
Abstract
Background: The multifactorial nature of CrossFit performance remains incompletely understood, particularly regarding sex- and experience-related physiological and biomechanical factors. Methods: Fifteen trained athletes (8 males, 7 females) completed assessments of anthropometry, estimated one-repetition maximums (bench press, back squat, deadlift), squat jump [...] Read more.
Background: The multifactorial nature of CrossFit performance remains incompletely understood, particularly regarding sex- and experience-related physiological and biomechanical factors. Methods: Fifteen trained athletes (8 males, 7 females) completed assessments of anthropometry, estimated one-repetition maximums (bench press, back squat, deadlift), squat jump (SJ), maximal oxygen uptake (VO2max), ventilatory responses (V˙E), and heart rate (HR). Spearman, Pearson, and partial correlations were calculated with Holm and false discovery rate (FDR) corrections. Results: Males displayed greater body mass, lean and muscle mass, maximal strength, and aerobic capacity than females (all Holm-adjusted p < 0.01). Experienced athletes completed Fran faster than beginners despite broadly similar anthropometric and aerobic profiles. In the pooled sample, WOD time showed moderate negative relationships with estimated 1RM back squat (ρ = −0.54), deadlift (ρ = −0.56), and bench press (ρ = −0.65) before correction; none remained significant after Holm/FDR adjustment, and partial correlations controlling for training years were further attenuated. Conclusions: This exploratory study provides preliminary evidence suggesting that maximal strength may contribute to Fran performance, whereas conventional aerobic measures were less influential. However, given the very small sample (n = 15, 8 males and 7 females) and the fact that no relationships remained statistically significant after correction for multiple testing, the results must be regarded as preliminary, hypothesis-generating evidence only, requiring confirmation in larger and adequately powered studies. Full article
(This article belongs to the Special Issue Biomechanical Analysis in Physical Activity and Sports—2nd Edition)
Show Figures

Figure 1

13 pages, 6175 KB  
Article
Integrated Terahertz FMCW Radar and FSK Communication Enabled by High-Speed Wavelength Tunable Lasers
by Ryota Kaide, Shenghong Ye, Yiqing Wang, Yuya Mikami, Yuta Ueda and Kazutoshi Kato
Photonics 2025, 12(10), 977; https://doi.org/10.3390/photonics12100977 - 1 Oct 2025
Viewed by 322
Abstract
In future 6G systems, integrated sensing and communication (ISAC) in the terahertz (THz) band are emerging as a key technology. Photomixing-based approaches offer advantages for the generation and control of THz waves due to their wide bandwidth and frequency tunability. This paper proposes [...] Read more.
In future 6G systems, integrated sensing and communication (ISAC) in the terahertz (THz) band are emerging as a key technology. Photomixing-based approaches offer advantages for the generation and control of THz waves due to their wide bandwidth and frequency tunability. This paper proposes and experimentally demonstrates a THz-band ISAC system that employs high-speed wavelength tunable lasers. Leveraging the rapid wavelength tunability of the laser, the system simultaneously generates a frequency-modulated continuous-wave (FMCW) radar signal and a frequency-shift keying (FSK) communication signal. Experimental results show successful ranging with a centimeter-level distance measurement error using a 7.9 GHz sweep-bandwidth THz-FMCW signal. The system achieves a short repetition period of 800 ns, significantly enhancing real-time performance in dynamic environments. Moreover, 2FSK communication at 2 Gbit/s was demonstrated without the use of an external modulator, achieving a BER below the HD-FEC threshold. These results confirm that radar and communication functionalities can be integrated into a single transmitter. The proposed system contributes to reducing system complexity and cost and offers a promising solution for 6G applications. Full article
(This article belongs to the Special Issue Recent Advancements in Tunable Laser Technology)
Show Figures

Figure 1

16 pages, 619 KB  
Systematic Review
Risk Factors and Prevention of Musculoskeletal Injuries in Adolescent and Adult High-Performance Tennis Players: A Systematic Review
by María Soledad Amor-Salamanca, Eva María Rodríguez-González, Domingo Rosselló, María de Lluc-Bauza, Francisco Hermosilla-Perona, Adrián Martín-Castellanos and Ivan Herrera-Peco
Sports 2025, 13(10), 336; https://doi.org/10.3390/sports13100336 - 1 Oct 2025
Viewed by 574
Abstract
Background: High-performance tennis exposes players to repetitive high-load strokes and abrupt directional changes, which substantially increase musculoskeletal injury risk. This systematic review synthesized evidence on epidemiology, risk factors, and physiotherapy-led preventive strategies in elite adolescent and adult players. Methods: Following a PROSPERO-registered protocol, [...] Read more.
Background: High-performance tennis exposes players to repetitive high-load strokes and abrupt directional changes, which substantially increase musculoskeletal injury risk. This systematic review synthesized evidence on epidemiology, risk factors, and physiotherapy-led preventive strategies in elite adolescent and adult players. Methods: Following a PROSPERO-registered protocol, MEDLINE, Web of Science, and Scopus were searched (2011–2024) for observational studies reporting epidemiological outcomes in high-performance tennis. Methodological quality was appraised with NIH tools, and certainty of evidence was graded with GRADE. Results: Thirty-seven studies met inclusion criteria: 16 in adolescents, 18 in adults, and 3 mixed. Incidence ranged from 2.1 to 3.5 injuries/1000 h in juniors and 1.25 to 56.6/1000 h in adults. Seasonal prevalence was 46–54% in juniors and 30–54% in professionals. Lower-limb trauma (48–56%) predominated, followed by lumbar (12–39%) and shoulder overuse syndromes. Across age groups, abrupt increases in the acute-to-chronic workload ratio (≥1.3 in juniors; ≥1.5 in adults) were the strongest extrinsic predictor of injury. Intrinsic contributors included reduced glenohumeral internal rotation, scapular dyskinesis, and poor core stability. Three prevention clusters emerged: (1) External load control, four-week “ramp-up” strategies reduced injury incidence by up to 21%; (2) Kinetic-chain conditioning, core stability plus eccentric rotator-cuff training decreased overuse by 26% and preserved shoulder mobility; and (3) Technique/equipment adjustments, grip-size personalization halved lateral epicondylalgia, while serve-timing modifications reduced shoulder torque. Conclusions: Injury risk in high-performance tennis is quantifiable and preventable. Progressive load management targeted kinetic-chain conditioning, and tailored technique/equipment modifications represent the most effective evidence-based safeguards for adolescent and adult elite players. Full article
Show Figures

Figure 1

15 pages, 3871 KB  
Review
Comparative Effectiveness of Treatments for Shoulder Subluxation After Stroke: A Systematic Review and Network Meta-Analysis
by Jong-Mi Park, Hee-Jae Park, Seo-Yeon Yoon, Yong-Wook Kim, Jae-Il Shin and Sang-Chul Lee
J. Clin. Med. 2025, 14(19), 6913; https://doi.org/10.3390/jcm14196913 - 29 Sep 2025
Viewed by 622
Abstract
Background: Shoulder subluxation and pain are common complications of stroke that impair upper limb function. Objectives: This study conducted a systematic review and network meta-analysis to compare multiple therapeutic interventions for post-stroke shoulder subluxation, establishing an evidence-based hierarchy of treatment efficacy [...] Read more.
Background: Shoulder subluxation and pain are common complications of stroke that impair upper limb function. Objectives: This study conducted a systematic review and network meta-analysis to compare multiple therapeutic interventions for post-stroke shoulder subluxation, establishing an evidence-based hierarchy of treatment efficacy to optimize rehabilitation strategies and guide clinical practice. Methods: A comprehensive search was conducted using the MEDLINE, EMBASE, Cochrane, Scopus, and Web of Science databases until 8 August 2025. Randomized controlled trials evaluating treatments for shoulder subluxation, including neuromuscular electrical stimulation (NMES), Kinesio taping, corticosteroid injections, slings, repetitive peripheral magnetic stimulation, and electroacupuncture, were included. The follow-up duration in the included trials ranged from 1 to 12 weeks. Effect sizes were calculated using standardized mean differences with a random-effects model, and treatment rankings were determined using surface under the cumulative ranking curve (SUCRA). Results: Thirteen studies including 402 patients were analyzed. NMES was the most effective intervention for reducing subluxation distance (SUCRA: 84.9), while corticosteroid injections provided the greatest pain relief at rest (SUCRA: 73.6). Kinesio taping was most effective for functional recovery, as measured by the Fugl–Meyer Assessment (SUCRA: 98.5), and for pain relief during activity (SUCRA: 87.7). Conclusions: Our network meta-analysis suggests that different interventions are optimal for specific aspects of post-stroke shoulder impairment. NMES most effectively reduces subluxation distance, whereas corticosteroid injections are most effective for alleviating pain at rest. Kinesio taping appears superior for enhancing functional recovery and reducing pain during movement. These findings, based on short-term follow-up durations (1–12 weeks), provide an evidence-based ranking of interventions to support multimodal rehabilitation and inform clinical decision-making. The observed heterogeneity across studies underscores the need for standardized treatment protocols and rigorous long-term investigations. Full article
(This article belongs to the Section Clinical Rehabilitation)
Show Figures

Figure 1

18 pages, 2622 KB  
Article
Phase-Based Fractional-Order Repetitive Control for Single-Phase Grid-Tied Inverters
by Qiangsong Zhao, Hao Dong, Guohui Zhou and Yongqiang Ye
Fractal Fract. 2025, 9(10), 626; https://doi.org/10.3390/fractalfract9100626 - 26 Sep 2025
Viewed by 203
Abstract
A novel fractional-order repetitive control based on phase angle information interpolation is proposed for single-phase LCL-type inverters in this paper. Conventional fractional-order repetitive control typically relies on inaccurate grid frequency information detected by a phase-locked loop or the frequency-locked loop, which may result [...] Read more.
A novel fractional-order repetitive control based on phase angle information interpolation is proposed for single-phase LCL-type inverters in this paper. Conventional fractional-order repetitive control typically relies on inaccurate grid frequency information detected by a phase-locked loop or the frequency-locked loop, which may result in a potential degradation in harmonics suppression capability. To address this issue, phase information is investigated to implement the fractional order of the repetitive controller through the linear interpolation method. A major advantage of the proposed scheme lies in that it avoids explicit frequency calculation and reduces sensitivity to frequency estimation fluctuations compared with conventional fractional-order repetitive control, enhancing its frequency adaptability. The stability analysis and the design process for the proposed scheme based on a plug-in-type repetitive control are given. Experimental results support the efficacy and advantages of the proposed control strategy. Full article
Show Figures

Figure 1

30 pages, 4943 KB  
Article
Multivariate Decoding and Drift-Diffusion Modeling Reveal Adaptive Control in Trilingual Comprehension
by Yuanbo Wang, Yingfang Meng, Qiuyue Yang and Ruiming Wang
Brain Sci. 2025, 15(10), 1046; https://doi.org/10.3390/brainsci15101046 - 26 Sep 2025
Viewed by 365
Abstract
Background/Objectives: The Adaptive Control Hypothesis posits varying control demands across language contexts in production, but its role in comprehension is underexplored. We investigated if trilinguals, who manage three dual-language contexts (L1–L2, L2–L3, L1–L3), exhibit differential proactive and reactive control demands during comprehension across [...] Read more.
Background/Objectives: The Adaptive Control Hypothesis posits varying control demands across language contexts in production, but its role in comprehension is underexplored. We investigated if trilinguals, who manage three dual-language contexts (L1–L2, L2–L3, L1–L3), exhibit differential proactive and reactive control demands during comprehension across these contexts. Methods: Thirty-six Uyghur–Chinese–English trilinguals completed an auditory word-picture matching task across three dual-language contexts during EEG recording. We employed behavioral analysis, drift-diffusion modeling, event-related potential (ERP) analysis, and multivariate pattern analysis (MVPA) to examine comprehension efficiency, evidence accumulation, and neural mechanisms. The design crossed context (L1–L2, L2–L3, L1–L3) with trial type (switch vs. repetition) and switching direction (to dominant vs. non-dominant language). Results: Despite comparable behavioral performance, drift-diffusion modeling revealed distinct processing profiles across contexts, with the L1–L2 context showing the lowest comprehension efficiency due to slower evidence accumulation. In the L1–L3 context, comprehension-specific proactive control was indexed by a larger P300 and smaller N400 for L1-to-L3 switches. Notably, no reactive control (switch costs) was observed across any dual-language context. MVPA successfully classified contexts and switching directions, revealing distinct spatiotemporal neural patterns. Conclusions: Trilingual comprehension switching mechanisms differ from production. Reactive control is not essential, while proactive control is context-dependent, emerging only in the high-conflict L1–L3 context. This proactive strategy involves allocating more bottom-up attention to the weaker L3, which, unlike in production, enhances rather than hinders overall efficiency. Full article
(This article belongs to the Section Neurolinguistics)
Show Figures

Figure 1

18 pages, 1301 KB  
Article
Bruxism as a Biopsychosocial Disorder: An Interdisciplinary Cross-Sectional Study
by Karolina Walczyńska-Dragon, Dominika Grzybowska-Ganszczyk, Paweł Hadzik, Jakub Fiegler-Rudol, Izabela Dubiel-Holecko, Aleksandra Nitecka-Buchta and Stefan Baron
J. Clin. Med. 2025, 14(19), 6803; https://doi.org/10.3390/jcm14196803 - 26 Sep 2025
Viewed by 667
Abstract
Background: Bruxism is a multifactorial biopsychosocial condition involving repetitive jaw muscle activity, influenced by psychological stress, anxiety, and maladaptive coping strategies. Methods: In this cross-sectional observational study, 111 health sciences students (mean age 22.29 ± 3.10 years; 66.6% women) underwent standardized [...] Read more.
Background: Bruxism is a multifactorial biopsychosocial condition involving repetitive jaw muscle activity, influenced by psychological stress, anxiety, and maladaptive coping strategies. Methods: In this cross-sectional observational study, 111 health sciences students (mean age 22.29 ± 3.10 years; 66.6% women) underwent standardized DC/TMD clinical evaluation and completed the GAD-7, COPE Inventory, and a 105-item Stroop Test. Results: Bruxism prevalence was 63.96% (71/111). Students with bruxism had higher GAD-7 scores (10.63 ± 5.78 vs. 5.80 ± 3.66; mean difference 4.83, 95% CI 2.88–6.78; p < 0.001, g = 0.94), with clinically relevant anxiety nearly three times more frequent (55.4% vs. 19.6%; RR = 2.83, 95% CI 1.68–4.76). Stroop interference times were slower in the bruxism group (42.19 ± 16.87 s vs. 34.57 ± 16.25 s; mean difference 7.63 s, 95% CI 0.90–14.35; p = 0.027, g = 0.46), though accuracy was similar. COPE results showed a shift toward emotion-focused and avoidance strategies with increasing muscle pain. Conclusions: Bruxism is strongly linked to elevated anxiety, maladaptive coping strategies, and reduced inhibitory control speed. Integrating psychological screening tools such as GAD-7 and COPE into dental and medical practice could enable early identification and referral, supporting comprehensive management that combines dental treatment with psychological interventions to prevent chronic pain and long-term complications. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

15 pages, 10639 KB  
Article
Waveform Self-Referencing Algorithm for Low-Repetition-Rate Laser Coherent Combination
by Zhuoyi Yang, Haitao Zhang, Dongxian Geng, Yixuan Huang and Jinwen Zhang
Appl. Sci. 2025, 15(19), 10430; https://doi.org/10.3390/app151910430 - 25 Sep 2025
Viewed by 255
Abstract
Indirect detection phase control algorithms, such as the dithering algorithm and the stochastic parallel gradient descent algorithm (SPGD), have simple system structures and are applicable to filled-aperture coherent combinations with high efficiency. The performances of these algorithms are limited when applied to a [...] Read more.
Indirect detection phase control algorithms, such as the dithering algorithm and the stochastic parallel gradient descent algorithm (SPGD), have simple system structures and are applicable to filled-aperture coherent combinations with high efficiency. The performances of these algorithms are limited when applied to a coherent combination of pulsed fiber lasers with a low repetition rate (≤5 kHz). Firstly, due to the overlap of the phase noise frequency and repetition rate, conventional algorithms cannot effectively distinguish the phase noise from the pulse fluctuation, and directly applying filtering will result in the phase information being filtered out. Secondly, if the pulse fluctuation is ignored and only the continuous part of the phase information is utilized, it relies on the presetting of conditions to separate the pulse from the continuous part and loses the phase information of the pulse part. In this article, we propose a waveform self-referencing algorithm (WSRA) based on a two-channel near-infrared laser coherent combination system to overcome the above challenges. Firstly, by modelling a self-referencing waveform, a nonlinear scaling operation is performed on the combined signal to generate a pseudo-continuous signal, which removes the intrinsic pulse fluctuation while preserving the phase noise information. Secondly, the phase control signal is calculated based on the pseudo-continuous signals after parallel perturbation. Finally, the phase noise is corrected by optimization. The results show that our method effectively suppresses the waveform fluctuation at a 5 kHz repetition rate, the light intensity reaches an ideal value (0.9939 Imax), and the root-mean-square (RMS) phase error is only 0.0130 λ. This method does not require the presetting of pulse detection thresholds or conditions, and solves the challenge of coherent combination at a low repetition rate, with adaptability to different pulse waveforms. Full article
(This article belongs to the Special Issue Near/Mid-Infrared Lasers: Latest Advances and Applications)
Show Figures

Figure 1

Back to TopTop