Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = repriming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3172 KiB  
Article
CSB Regulates Pathway Choice in Response to DNA Replication Stress Induced by Camptothecin
by Nicole L. Batenburg, John R. Walker and Xu-Dong Zhu
Int. J. Mol. Sci. 2023, 24(15), 12419; https://doi.org/10.3390/ijms241512419 - 4 Aug 2023
Cited by 1 | Viewed by 2441
Abstract
Topoisomerase inhibitor camptothecin (CPT) induces fork stalling and is highly toxic to proliferating cells. However, how cells respond to CPT-induced fork stalling has not been fully characterized. Here, we report that Cockayne syndrome group B (CSB) protein inhibits PRIMPOL-dependent fork repriming in response [...] Read more.
Topoisomerase inhibitor camptothecin (CPT) induces fork stalling and is highly toxic to proliferating cells. However, how cells respond to CPT-induced fork stalling has not been fully characterized. Here, we report that Cockayne syndrome group B (CSB) protein inhibits PRIMPOL-dependent fork repriming in response to a low dose of CPT. At a high concentration of CPT, CSB is required to promote the restart of DNA replication through MUS81–RAD52–POLD3-dependent break-induced replication (BIR). In the absence of CSB, resumption of DNA synthesis at a high concentration of CPT can occur through POLQ–LIG3-, LIG4-, or PRIMPOL-dependent pathways, which are inhibited, respectively, by RAD51, BRCA1, and BRCA2 proteins. POLQ and LIG3 are core components of alternative end joining (Alt-EJ), whereas LIG4 is a core component of nonhomologous end joining (NHEJ). These results suggest that CSB regulates fork restart pathway choice following high-dosage CPT-induced fork stalling, promoting BIR but inhibiting Alt-EJ, NHEJ, and fork repriming. We find that loss of CSB and BRCA2 is a toxic combination to genomic stability and cell survival at a high concentration of CPT, which is likely due to accumulation of ssDNA gaps, underscoring an important role of CSB in regulating the therapy response in cancers lacking functional BRCA2. Full article
(This article belongs to the Special Issue Latest Progress in DNA Damage and DNA Repair)
Show Figures

Figure 1

29 pages, 2462 KiB  
Review
The Adaptive Mechanisms and Checkpoint Responses to a Stressed DNA Replication Fork
by Joanne Saldanha, Julie Rageul, Jinal A. Patel and Hyungjin Kim
Int. J. Mol. Sci. 2023, 24(13), 10488; https://doi.org/10.3390/ijms241310488 - 22 Jun 2023
Cited by 7 | Viewed by 4761
Abstract
DNA replication is a tightly controlled process that ensures the faithful duplication of the genome. However, DNA damage arising from both endogenous and exogenous assaults gives rise to DNA replication stress associated with replication fork slowing or stalling. Therefore, protecting the stressed fork [...] Read more.
DNA replication is a tightly controlled process that ensures the faithful duplication of the genome. However, DNA damage arising from both endogenous and exogenous assaults gives rise to DNA replication stress associated with replication fork slowing or stalling. Therefore, protecting the stressed fork while prompting its recovery to complete DNA replication is critical for safeguarding genomic integrity and cell survival. Specifically, the plasticity of the replication fork in engaging distinct DNA damage tolerance mechanisms, including fork reversal, repriming, and translesion DNA synthesis, enables cells to overcome a variety of replication obstacles. Furthermore, stretches of single-stranded DNA generated upon fork stalling trigger the activation of the ATR kinase, which coordinates the cellular responses to replication stress by stabilizing the replication fork, promoting DNA repair, and controlling cell cycle and replication origin firing. Deregulation of the ATR checkpoint and aberrant levels of chronic replication stress is a common characteristic of cancer and a point of vulnerability being exploited in cancer therapy. Here, we discuss the various adaptive responses of a replication fork to replication stress and the roles of ATR signaling that bring fork stabilization mechanisms together. We also review how this knowledge is being harnessed for the development of checkpoint inhibitors to trigger the replication catastrophe of cancer cells. Full article
(This article belongs to the Special Issue Endogenous DNA Damage and Repair)
Show Figures

Figure 1

28 pages, 2136 KiB  
Review
Regulation of Cardiac Cav1.2 Channels by Calmodulin
by Masaki Kameyama, Etsuko Minobe, Dongxue Shao, Jianjun Xu, Qinghua Gao and Liying Hao
Int. J. Mol. Sci. 2023, 24(7), 6409; https://doi.org/10.3390/ijms24076409 - 29 Mar 2023
Cited by 7 | Viewed by 3998
Abstract
Cav1.2 Ca2+ channels, a type of voltage-gated L-type Ca2+ channel, are ubiquitously expressed, and the predominant Ca2+ channel type, in working cardiac myocytes. Cav1.2 channels are regulated by the direct interactions with calmodulin (CaM), a Ca2+-binding protein that [...] Read more.
Cav1.2 Ca2+ channels, a type of voltage-gated L-type Ca2+ channel, are ubiquitously expressed, and the predominant Ca2+ channel type, in working cardiac myocytes. Cav1.2 channels are regulated by the direct interactions with calmodulin (CaM), a Ca2+-binding protein that causes Ca2+-dependent facilitation (CDF) and inactivation (CDI). Ca2+-free CaM (apoCaM) also contributes to the regulation of Cav1.2 channels. Furthermore, CaM indirectly affects channel activity by activating CaM-dependent enzymes, such as CaM-dependent protein kinase II and calcineurin (a CaM-dependent protein phosphatase). In this article, we review the recent progress in identifying the role of apoCaM in the channel ‘rundown’ phenomena and related repriming of channels, and CDF, as well as the role of Ca2+/CaM in CDI. In addition, the role of CaM in channel clustering is reviewed. Full article
(This article belongs to the Special Issue Calcium Channels and Calcium-Binding Proteins)
Show Figures

Figure 1

26 pages, 6801 KiB  
Review
PrimPol: A Breakthrough among DNA Replication Enzymes and a Potential New Target for Cancer Therapy
by Alberto Díaz-Talavera, Cristina Montero-Conde, Luis Javier Leandro-García and Mercedes Robledo
Biomolecules 2022, 12(2), 248; https://doi.org/10.3390/biom12020248 - 3 Feb 2022
Cited by 10 | Viewed by 6172 | Correction
Abstract
DNA replication can encounter blocking obstacles, leading to replication stress and genome instability. There are several mechanisms for evading this blockade. One mechanism consists of repriming ahead of the obstacles, creating a new starting point; in humans, PrimPol is responsible for carrying out [...] Read more.
DNA replication can encounter blocking obstacles, leading to replication stress and genome instability. There are several mechanisms for evading this blockade. One mechanism consists of repriming ahead of the obstacles, creating a new starting point; in humans, PrimPol is responsible for carrying out this task. PrimPol is a primase that operates in both the nucleus and mitochondria. In contrast with conventional primases, PrimPol is a DNA primase able to initiate DNA synthesis de novo using deoxynucleotides, discriminating against ribonucleotides. In vitro, PrimPol can act as a DNA primase, elongating primers that PrimPol itself sythesizes, or as translesion synthesis (TLS) DNA polymerase, elongating pre-existing primers across lesions. However, the lack of evidence for PrimPol polymerase activity in vivo suggests that PrimPol only acts as a DNA primase. Here, we provide a comprehensive review of human PrimPol covering its biochemical properties and structure, in vivo function and regulation, and the processes that take place to fill the gap-containing lesion that PrimPol leaves behind. Finally, we explore the available data on human PrimPol expression in different tissues in physiological conditions and its role in cancer. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics)
Show Figures

Figure 1

17 pages, 1859 KiB  
Article
Human PrimPol Discrimination against Dideoxynucleotides during Primer Synthesis
by Gustavo Carvalho, Alberto Díaz-Talavera, Patricia A. Calvo, Luis Blanco and María I. Martínez-Jiménez
Genes 2021, 12(10), 1487; https://doi.org/10.3390/genes12101487 - 24 Sep 2021
Cited by 6 | Viewed by 2568
Abstract
PrimPol is required to re-prime DNA replication at both nucleus and mitochondria, thus facilitating fork progression during replicative stress. ddC is a chain-terminating nucleotide that has been widely used to block mitochondrial DNA replication because it is efficiently incorporated by the replicative polymerase [...] Read more.
PrimPol is required to re-prime DNA replication at both nucleus and mitochondria, thus facilitating fork progression during replicative stress. ddC is a chain-terminating nucleotide that has been widely used to block mitochondrial DNA replication because it is efficiently incorporated by the replicative polymerase Polγ. Here, we show that human PrimPol discriminates against dideoxynucleotides (ddNTP) when elongating a primer across 8oxoG lesions in the template, but also when starting de novo synthesis of DNA primers, and especially when selecting the 3′nucleotide of the initial dimer. PrimPol incorporates ddNTPs with a very low efficiency compared to dNTPs even in the presence of activating manganese ions, and only a 40-fold excess of ddNTP would significantly disturb PrimPol primase activity. This discrimination against ddNTPs prevents premature termination of the primers, warranting their use for elongation. The crystal structure of human PrimPol highlights Arg291 residue as responsible for the strong dNTP/ddNTP selectivity, since it interacts with the 3′-OH group of the incoming deoxynucleotide, absent in ddNTPs. Arg291, shown here to be critical for both primase and polymerase activities of human PrimPol, would contribute to the preferred binding of dNTPs versus ddNTPs at the 3′elongation site, thus avoiding synthesis of abortive primers. Full article
(This article belongs to the Special Issue Mechanisms of Replication of Damaged DNA)
Show Figures

Figure 1

13 pages, 2059 KiB  
Article
Interleukin-15 after Near-Infrared Photoimmunotherapy (NIR-PIT) Enhances T Cell Response against Syngeneic Mouse Tumors
by Yasuhiro Maruoka, Aki Furusawa, Ryuhei Okada, Fuyuki Inagaki, Hiroaki Wakiyama, Takuya Kato, Tadanobu Nagaya, Peter L. Choyke and Hisataka Kobayashi
Cancers 2020, 12(9), 2575; https://doi.org/10.3390/cancers12092575 - 10 Sep 2020
Cited by 28 | Viewed by 3604
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a newly developed and highly selective cancer treatment that employs a monoclonal antibody (mAb) conjugated to a photo-absorber dye, IRDye700DX, which is activated by 690 nm light. Cancer cell-targeted NIR-PIT induces rapid necrotic/immunogenic cell death (ICD) that induces [...] Read more.
Near infrared photoimmunotherapy (NIR-PIT) is a newly developed and highly selective cancer treatment that employs a monoclonal antibody (mAb) conjugated to a photo-absorber dye, IRDye700DX, which is activated by 690 nm light. Cancer cell-targeted NIR-PIT induces rapid necrotic/immunogenic cell death (ICD) that induces antitumor host immunity including re-priming and proliferation of T cells. Interleukin-15 (IL-15) is a cytokine that activates natural killer (NK)-, B- and T-cells while having minimal effect on regulatory T cells (Tregs) that lack the IL-15 receptor. Here, we hypothesized that IL-15 administration with cancer cell-targeted NIR-PIT could further inhibit tumor growth by increasing antitumor host immunity. Three syngeneic mouse tumor models, MC38-luc, LL/2, and MOC1, underwent combined CD44-targeted NIR-PIT and short-term IL-15 administration with appropriate controls. Comparing with the single-agent therapy, the combination therapy of IL-15 after NIR-PIT inhibited tumor growth, prolonged survival, and increased tumor infiltrating CD8+ T cells more efficiently in tumor-bearing mice. IL-15 appears to enhance the therapeutic effect of cancer-targeted NIR-PIT. Full article
(This article belongs to the Special Issue Challenges and Opportunities for Effective Cancer Immunotherapies)
Show Figures

Graphical abstract

12 pages, 2774 KiB  
Article
Two Novel Peptide Toxins from the Spider Cyriopagopus longipes Inhibit Tetrodotoxin-Sensitive Sodium Channels
by Qingfeng Zhang, Yuxin Si, Li Yang, Li Wang, Shuijiao Peng, Yiming Chen, Minzhi Chen, Xi Zhou and Zhonghua Liu
Toxins 2020, 12(9), 529; https://doi.org/10.3390/toxins12090529 - 19 Aug 2020
Cited by 7 | Viewed by 4159
Abstract
Sodium channels play a critical role in the generation and propagation of action potentials in excitable tissues, such as nerves, cardiac muscle, and skeletal muscle, and are the primary targets of toxins found in animal venoms. Here, two novel peptide toxins (Cl6a and [...] Read more.
Sodium channels play a critical role in the generation and propagation of action potentials in excitable tissues, such as nerves, cardiac muscle, and skeletal muscle, and are the primary targets of toxins found in animal venoms. Here, two novel peptide toxins (Cl6a and Cl6b) were isolated from the venom of the spider Cyriopagopus longipes and characterized. Cl6a and Cl6b were shown to be inhibitors of tetrodotoxin-sensitive (TTX-S), but not TTX-resistant, sodium channels. Among the TTX-S channels investigated, Cl6a and Cl6b showed the highest degree of inhibition against NaV1.7 (half-maximal inhibitory concentration (IC50) of 11.0 ± 2.5 nM and 18.8 ± 2.4 nM, respectively) in an irreversible manner that does not alter channel activation, inactivation, or repriming kinetics. Moreover, analysis of NaV1.7/NaV1.8 chimeric channels revealed that Cl6b is a site 4 neurotoxin. Site-directed mutagenesis analysis indicated that D816, V817, and E818 observably affected the efficacy of the Cl6b-NaV1.7 interaction, suggesting that these residues might directly affect the interaction of NaV1.7 with Cl6b. Taken together, these two novel peptide toxins act as potent and sustained NaV1.7 blockers and may have potential in the pharmacological study of sodium channels. Full article
(This article belongs to the Special Issue Animal Venoms and Their Components: Molecular Mechanisms of Action)
Show Figures

Figure 1

15 pages, 1617 KiB  
Review
Mechanisms of DNA Replication and Repair: Insights from the Study of G-Quadruplexes
by Tracy M. Bryan
Molecules 2019, 24(19), 3439; https://doi.org/10.3390/molecules24193439 - 22 Sep 2019
Cited by 67 | Viewed by 8672
Abstract
G-quadruplexes are four-stranded guanine-rich structures that have been demonstrated to occur across the genome in humans and other organisms. They provide regulatory functions during transcription, translation and immunoglobulin gene rearrangement, but there is also a large amount of evidence that they can present [...] Read more.
G-quadruplexes are four-stranded guanine-rich structures that have been demonstrated to occur across the genome in humans and other organisms. They provide regulatory functions during transcription, translation and immunoglobulin gene rearrangement, but there is also a large amount of evidence that they can present a potent barrier to the DNA replication machinery. This mini-review will summarize recent advances in understanding the many strategies nature has evolved to overcome G-quadruplex-mediated replication blockage, including removal of the structure by helicases or nucleases, or circumventing the deleterious effects on the genome through homologous recombination, alternative end-joining or synthesis re-priming. Paradoxically, G-quadruplexes have also recently been demonstrated to provide a positive role in stimulating the initiation of DNA replication. These recent studies have not only illuminated the many roles and consequences of G-quadruplexes, but have also provided fundamental insights into the general mechanisms of DNA replication and its links with genetic and epigenetic stability. Full article
(This article belongs to the Special Issue Recent Advances in Non-Canonical Nucleic Acid Structures)
Show Figures

Figure 1

14 pages, 2686 KiB  
Article
Dehydrocrenatidine Inhibits Voltage-Gated Sodium Channels and Ameliorates Mechanic Allodia in a Rat Model of Neuropathic Pain
by Fang Zhao, Qinglian Tang, Jian Xu, Shuangyan Wang, Shaoheng Li, Xiaohan Zou and Zhengyu Cao
Toxins 2019, 11(4), 229; https://doi.org/10.3390/toxins11040229 - 18 Apr 2019
Cited by 16 | Viewed by 4363
Abstract
Picrasma quassioides (D. Don) Benn, a medical plant, is used in clinic to treat inflammation, pain, sore throat, and eczema. The alkaloids are the main active components in P. quassioides. In this study, we examined the analgesic effect of dehydrocrenatidine (DHCT), a [...] Read more.
Picrasma quassioides (D. Don) Benn, a medical plant, is used in clinic to treat inflammation, pain, sore throat, and eczema. The alkaloids are the main active components in P. quassioides. In this study, we examined the analgesic effect of dehydrocrenatidine (DHCT), a β-carboline alkaloid abundantly found in P. quassioides in a neuropathic pain rat model of a sciatic nerve chronic constriction injury. DHCT dose-dependently attenuated the mechanic allodynia. In acutely isolated dorsal root ganglion, DHCT completely suppressed the action potential firing. Further electrophysiological characterization demonstrated that DHCT suppressed both tetrodotoxin-resistant (TTX-R) and sensitive (TTX-S) voltage-gated sodium channel (VGSC) currents with IC50 values of 12.36 μM and 4.87 µM, respectively. DHCT shifted half-maximal voltage (V1/2) of inactivation to hyperpolarizing direction by ~16.7 mV in TTX-S VGSCs. In TTX-R VGSCs, DHCT shifted V1/2 of inactivation voltage to hyperpolarizing direction and V1/2 of activation voltage to more depolarizing potential by ~23.9 mV and ~12.2 mV, respectively. DHCT preferred to interact with an inactivated state of VGSCs and prolonged the repriming time in both TTX-S and TTX-R VGSCs, transiting the channels into a slow inactivated state from a fast inactivated state. Considered together, these data demonstrated that the analgesic effect of DHCT was likely though the inhibition of neuronal excitability. Full article
(This article belongs to the Special Issue Biological Activities of Alkaloids: From Toxicology to Pharmacology)
Show Figures

Figure 1

25 pages, 2860 KiB  
Review
PrimPol—Prime Time to Reprime
by Thomas A. Guilliam and Aidan J. Doherty
Genes 2017, 8(1), 20; https://doi.org/10.3390/genes8010020 - 6 Jan 2017
Cited by 49 | Viewed by 14836
Abstract
The complex molecular machines responsible for genome replication encounter many obstacles during their progression along DNA. Tolerance of these obstructions is critical for efficient and timely genome duplication. In recent years, primase-polymerase (PrimPol) has emerged as a new player involved in maintaining eukaryotic [...] Read more.
The complex molecular machines responsible for genome replication encounter many obstacles during their progression along DNA. Tolerance of these obstructions is critical for efficient and timely genome duplication. In recent years, primase-polymerase (PrimPol) has emerged as a new player involved in maintaining eukaryotic replication fork progression. This versatile replicative enzyme, a member of the archaeo-eukaryotic primase (AEP) superfamily, has the capacity to perform a range of template-dependent and independent synthesis activities. Here, we discuss the emerging roles of PrimPol as a leading strand repriming enzyme and describe the mechanisms responsible for recruiting and regulating the enzyme during this process. This review provides an overview and update of the current PrimPol literature, as well as highlighting unanswered questions and potential future avenues of investigation. Full article
(This article belongs to the Special Issue DNA Replication Controls)
Show Figures

Figure 1

Back to TopTop