Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (377)

Search Parameters:
Keywords = residential mobility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2676 KB  
Article
Hyper-Localized Pollution Mapping Using Low-Cost Wearable Monitors and Citizen Science in Hong Kong
by Xiujie Li, Cheuk Ming Mak, Yuwei Dai, Kuen Wai Ma and Hai Ming Wong
Buildings 2025, 15(17), 3131; https://doi.org/10.3390/buildings15173131 - 1 Sep 2025
Abstract
Low-cost sensors have demonstrated their advances in acquiring hyper-localized data compared to traditional, high-maintenance air quality monitoring stations. The study aims to leverage the mobility of participants equipped with low-cost wearable monitors (LWMs) by comparing their exposure to particulate matter (PM) across indoor-home, [...] Read more.
Low-cost sensors have demonstrated their advances in acquiring hyper-localized data compared to traditional, high-maintenance air quality monitoring stations. The study aims to leverage the mobility of participants equipped with low-cost wearable monitors (LWMs) by comparing their exposure to particulate matter (PM) across indoor-home, outdoor-walking, and hybrid-commuting micro-environments. The LWMs would be calibrated first through field co-location and the multiple linear regression models. The coefficient of determination (R2) of PM1.0 and PM2.5 increased to over 0.85 after calibration, along with the reduced root mean square error of 2.25 and 3.46 μg/m3, respectively. The 26-day PM data collection with geographic locations could identify individual exposure patterns, local source contributions, and hotspot maps. Commuting constituted a small fraction of daily time (4–8%) but contributed a disproportionate impact, accounting for 11% of individual PM exposure. Indoor-home PM2.5 exposure varied significantly among the urban districts. Based on the PM2.5 hotspot map, the elevated concentration was mainly concentrated in dense residential areas and historical industrial areas, as well as interchanges of major roads and the highway system. LWMs acting as non-regulatory instruments can complement monitoring stations to provide missing short-term and hyper-localized air pollution data. Future studies should integrate long-term monitoring and citizen science across seasons and geographical regions to address pollutant spatiotemporal variability for building and city sustainability. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Graphical abstract

26 pages, 9891 KB  
Article
Real-Time Energy Management of a Microgrid Using MPC-DDQN-Controlled V2H and H2V Operations with Renewable Energy Integration
by Mohammed Alsolami, Ahmad Alferidi and Badr Lami
Energies 2025, 18(17), 4622; https://doi.org/10.3390/en18174622 - 30 Aug 2025
Viewed by 198
Abstract
This paper presents the design and implementation of an Intelligent Home Energy Management System in a smart home. The system is based on an economically decentralized hybrid concept that includes photovoltaic technology, a proton exchange membrane fuel cell, and a hydrogen refueling station, [...] Read more.
This paper presents the design and implementation of an Intelligent Home Energy Management System in a smart home. The system is based on an economically decentralized hybrid concept that includes photovoltaic technology, a proton exchange membrane fuel cell, and a hydrogen refueling station, which together provide a reliable, secure, and clean power supply for smart homes. The proposed design enables power transfer between Vehicle-to-Home (V2H) and Home-to-Vehicle (H2V) systems, allowing electric vehicles to function as mobile energy storage devices at the grid level, facilitating a more adaptable and autonomous network. Our approach employs Double Deep Q-networks for adaptive control and forecasting. A Multi-Agent System coordinates actions between home appliances, energy storage systems, electric vehicles, and hydrogen power devices to ensure effective and cost-saving energy distribution for users of the smart grid. The design validation is carried out through MATLAB/Simulink-based simulations using meteorological data from Tunis. Ultimately, the V2H/H2V system enhances the utilization, reliability, and cost-effectiveness of residential energy systems compared with other management systems and conventional networks. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

26 pages, 41775 KB  
Article
The Role of Street Elements on the Social Activities of the Elderly in Severe Winter Conditions: A Case Study of Harbin, China
by Kexin Yang, Ying Xu, Mengda Wang, Simon Bell and Yang Yu
Buildings 2025, 15(17), 3079; https://doi.org/10.3390/buildings15173079 - 28 Aug 2025
Viewed by 254
Abstract
The phenomenon of global population aging poses considerable mobility challenges for older adults, particularly in cold climate regions, where the accessibility and configuration of street elements exert a significant impact on social participation and safety during severe winter conditions. Employing a combination of [...] Read more.
The phenomenon of global population aging poses considerable mobility challenges for older adults, particularly in cold climate regions, where the accessibility and configuration of street elements exert a significant impact on social participation and safety during severe winter conditions. Employing a combination of non-participatory observation, behavior mapping, and spatial analysis across different winter periods, this study investigates three residential streets in Harbin, China. The research systematically documents the types, frequencies, and spatial distributions of both social activities and street infrastructure utilized by the elderly. Subsequently, kernel density overlays of elderly social activity and street element distributions enable a nuanced analysis of the influence of environmental features on older adults’ social engagement throughout the three delineated winter phases. The findings reveal the following: (1) There is persistent demand for outdoor social interaction among the elderly, with participation rates inversely proportional to the severity of winter, peaking in early winter and declining through late and harsh winter stages; (2) Variations in activity types and durations are closely associated with spatial configurations: dynamic activities are predominantly observed along linear street segments, whereas passive behaviors cluster at intersections and broader street expanses; (3) There are several key aspects of street design and street furniture provision that help to support the use of streets in winter by the elderly. However, the influence of seating and fitness elements on mobile activities is limited. This study contributes to promoting inclusive urban design for older people in cold climates. Full article
(This article belongs to the Special Issue Architecture and Landscape Architecture)
Show Figures

Figure 1

20 pages, 4720 KB  
Article
Dynamic Optimization of Emergency Infrastructure Layouts Based on Population Influx: A Macao Case Study
by Zhen Wang, Zheyu Wang, On Kei Yeung, Mengmeng Zheng, Yitao Zhong and Sanqing He
ISPRS Int. J. Geo-Inf. 2025, 14(9), 322; https://doi.org/10.3390/ijgi14090322 - 23 Aug 2025
Viewed by 402
Abstract
This study investigates the spatiotemporal optimization of small-scale emergency infrastructure in high-density urban environments, using nucleic acid testing sites in Macao as a case study. The objective is to enhance emergency responsiveness during future public health crises by aligning infrastructure deployment with dynamic [...] Read more.
This study investigates the spatiotemporal optimization of small-scale emergency infrastructure in high-density urban environments, using nucleic acid testing sites in Macao as a case study. The objective is to enhance emergency responsiveness during future public health crises by aligning infrastructure deployment with dynamic patterns of population influx. A behaviorally informed spatial decision-making framework is developed through the integration of kernel density estimation, point-of-interest (POI) distribution, and origin–destination (OD) path simulation based on an Ant Colony Optimization (ACO) algorithm. The results reveal pronounced temporal fluctuations in testing demand—most notably with crowd peaks occurring around 12:00 and 18:00—and highlight spatial mismatches between existing facility locations and key residential or functional clusters. The proposed approach illustrates the feasibility of coupling infrastructure layout with real-time mobility behavior and offers transferable insights for emergency planning in compact urban settings. Full article
Show Figures

Figure 1

17 pages, 2321 KB  
Article
Variations in the Surface Atmospheric Electric Field on the Qinghai–Tibet Plateau: Observations at China’s Gar Station
by Jia-Nan Peng, Shuai Fu, Yan-Yan Xu, Gang Li, Tao Chen and En-Ming Xu
Atmosphere 2025, 16(8), 976; https://doi.org/10.3390/atmos16080976 - 17 Aug 2025
Viewed by 463
Abstract
The Qinghai-Tibet Plateau, known as the “third pole” of the Earth with an average elevation of approximately 4500 m, offers a unique natural laboratory for probing the dynamic behavior of the global electric circuit. In this study, we conduct a comprehensive analysis of [...] Read more.
The Qinghai-Tibet Plateau, known as the “third pole” of the Earth with an average elevation of approximately 4500 m, offers a unique natural laboratory for probing the dynamic behavior of the global electric circuit. In this study, we conduct a comprehensive analysis of near-surface vertical atmospheric electric field (AEF) measurements collected at the Gar Station (80.1° E, 32.5° N; 4259 m a.s.l.) on the western Tibetan Plateau, spanning the period from November 2021 to December 2024. Fair-weather conditions are imposed. The annual mean AEF at Gar is ∼0.331 kV/m, significantly higher than values observed at lowland and plain sites, indicating a pronounced enhancement in atmospheric electricity associated with high-altitude conditions. Moreover, the AEF exhibits marked seasonal variability, peaking in December (∼0.411–0.559 kV/m) and valleying around July–August (∼0.150–0.242 kV/m), yielding an overall amplitude of approximately 0.3 kV/m. We speculate that this seasonal pattern is primarily driven by variations in aerosol concentration. During winter, increased aerosol loading from residential heating and vehicle emissions due to incomplete combustion reduces atmospheric conductivity by depleting free ions and decreasing ion mobility, thereby enhancing the near-surface AEF. In contrast, lower aerosol concentrations in summer lead to weaker AEF. This seasonal decline in aerosol levels is likely facilitated by stronger winds and more frequent rainfall in summer, which enhance aerosol dispersion and wet scavenging, whereas weaker winds and limited precipitation in winter favor near-surface aerosol accumulation. On diurnal timescales, the Gar AEF curve deviates significantly from the classical Carnegie curve, showing a distinct double-peak and double-trough structure, with maxima at ∼03:00 and 14:00 UT and minima near 00:00 and 10:00 UT. This deviation may partly reflect local influences related to sunrise and sunset. This study presents the longest ground-based AEF observations over the Qinghai–Tibet Plateau, providing a unique reference for future studies on altitude-dependent AEF variations and their coupling with space weather and climate processes. Full article
Show Figures

Figure 1

22 pages, 573 KB  
Article
The Effects of Socioeconomic Contextual Factors on Racial Differences in Foster Care Placement Stability
by Leanne Heaton, William Sabol, Miranda Baumann, Arya Harison and Charlotte Goodell
Int. J. Environ. Res. Public Health 2025, 22(8), 1274; https://doi.org/10.3390/ijerph22081274 - 14 Aug 2025
Viewed by 557
Abstract
This study investigated how county- and state-level socioeconomic factors influence racial differences in placement stability outcomes for children in foster care. Using a sample drawn from the Adoption and Foster Care Analysis and Reporting System (AFCARS) covering 2012–2020, we employed linear mixed modeling [...] Read more.
This study investigated how county- and state-level socioeconomic factors influence racial differences in placement stability outcomes for children in foster care. Using a sample drawn from the Adoption and Foster Care Analysis and Reporting System (AFCARS) covering 2012–2020, we employed linear mixed modeling (LMMs) to nest individual- and case-level data within counties and states. Our analysis focused on Black and White children, examining how variables such as poverty, unemployment, public welfare expenditures, residential mobility, and family structure affect the number of placement moves experienced by children. The findings indicated that Black children experience higher rates of placement instability compared to White children, although the gap narrows over time. Key factors associated with improved stability included county-administered child welfare systems and higher rates of multigenerational households and owner-occupied housing, particularly benefiting Black children. In contrast, higher levels of Supplemental Nutrition Assistance Program (SNAP) participation and increased residential mobility were linked to greater instability. The implementation of program improvement plans (PIPs) during the third round of the Child and Family Services Reviews (CFSR-3) produced mixed outcomes, with PIPs contributing to a reduction in the racial gap primarily by increasing placement moves for White children. These findings underscore the importance of analyzing data by race and incorporating broader socioeconomic contexts into child welfare improvement strategies, while also emphasizing the need for localized, context-sensitive approaches to improve placement stability. Full article
Show Figures

Figure 1

28 pages, 19126 KB  
Article
Digital Geospatial Twinning for Revaluation of a Waterfront Urban Park Design (Case Study: Burgas City, Bulgaria)
by Stelian Dimitrov, Bilyana Borisova, Antoaneta Ivanova, Martin Iliev, Lidiya Semerdzhieva, Maya Ruseva and Zoya Stoyanova
Land 2025, 14(8), 1642; https://doi.org/10.3390/land14081642 - 14 Aug 2025
Viewed by 1080
Abstract
Digital twins play a crucial role in linking data with practical solutions. They convert raw measurements into actionable insights, enabling spatial planning that addresses environmental challenges and meets the needs of local communities. This paper presents the development of a digital geospatial twin [...] Read more.
Digital twins play a crucial role in linking data with practical solutions. They convert raw measurements into actionable insights, enabling spatial planning that addresses environmental challenges and meets the needs of local communities. This paper presents the development of a digital geospatial twin for a residential district in Burgas, the largest port city on Bulgaria’s southern Black Sea coast. The aim is to provide up-to-date geospatial data quickly and efficiently, and to merge available data into a single, accurate model. This model is used to test three scenarios for revitalizing coastal functions and improving a waterfront urban park in collaboration with stakeholders. The methodology combines aerial photogrammetry, ground-based mobile laser scanning (MLS), and airborne laser scanning (ALS), allowing for robust 3D modeling and terrain reconstruction across different land cover conditions. The current topography, areas at risk from geological hazards, and the vegetation structure with detailed attribute data for each tree are analyzed. These data are used to evaluate the strengths and limitations of the site concerning the desired functionality of the waterfront, considering urban priorities, community needs, and the necessity of addressing contemporary climate challenges. The carbon storage potential under various development scenarios is assessed. Through effective visualization and communication with residents and professional stakeholders, collaborative development processes have been facilitated through a series of workshops focused on coastal transformation. The results aim to support the design of climate-neutral urban solutions that mitigate natural risks without compromising the area’s essential functions, such as residential living and recreation. Full article
Show Figures

Figure 1

33 pages, 3472 KB  
Article
Real-Time Detection and Response to Wormhole and Sinkhole Attacks in Wireless Sensor Networks
by Tamara Zhukabayeva, Lazzat Zholshiyeva, Yerik Mardenov, Atdhe Buja, Shafiullah Khan and Noha Alnazzawi
Technologies 2025, 13(8), 348; https://doi.org/10.3390/technologies13080348 - 7 Aug 2025
Viewed by 358
Abstract
Wireless sensor networks have become a vital technology that is extensively applied across multiple industries, including agriculture, industrial operations, and smart cities, as well as residential smart homes and environmental monitoring systems. Security threats emerge in these systems through hidden routing-level attacks such [...] Read more.
Wireless sensor networks have become a vital technology that is extensively applied across multiple industries, including agriculture, industrial operations, and smart cities, as well as residential smart homes and environmental monitoring systems. Security threats emerge in these systems through hidden routing-level attacks such as Wormhole and Sinkhole attacks. The aim of this research was to develop a methodology for detecting security incidents in WSNs by conducting real-time analysis of Wormhole and Sinkhole attacks. Furthermore, the paper proposes a novel detection methodology combined with architectural enhancements to improve network robustness, measured by hop counts, delays, false data ratios, and route integrity. A real-time WSN infrastructure was developed using ZigBee and Global System for Mobile Communications/General Packet Radio Service (GSM/GPRS) technologies. To realistically simulate Wormhole and Sinkhole attack scenarios and conduct evaluations, we developed a modular cyber–physical architecture that supports real-time monitoring, repeatability, and integration of ZigBee- and GSM/GPRS-based attacker nodes. During the experimentation, Wormhole attacks caused the hop count to decrease from 4 to 3, while the average delay increased by 40%, and false sensor readings were introduced in over 30% of cases. Additionally, Sinkhole attacks led to a 27% increase in traffic concentration at the malicious node, disrupting load balancing and route integrity. The proposed multi-stage methodology includes data collection, preprocessing, anomaly detection using the 3-sigma rule, and risk-based decision making. Simulation results demonstrated that the methodology successfully detected route shortening, packet loss, and data manipulation in real time. Thus, the integration of anomaly-based detection with ZigBee and GSM/GPRS enables a timely response to security threats in critical WSN deployments. Full article
(This article belongs to the Special Issue New Technologies for Sensors)
Show Figures

Figure 1

25 pages, 8686 KB  
Article
Urban Shrinkage in the Qinling–Daba Mountains: Spatiotemporal Patterns and Influencing Factors
by Yuan Lv, Shanni Yang, Dan Zhao, Yilin He and Shuaibin Li
Sustainability 2025, 17(15), 7084; https://doi.org/10.3390/su17157084 - 5 Aug 2025
Viewed by 438
Abstract
With the global economic restructuring and the consequent population mobility, urban shrinkage has become a common phenomenon. The Qinling–Daba Mountains, a zone with a key ecological function in China, have long experienced population decline and functional degradation. Clarifying the dynamics and influencing factors [...] Read more.
With the global economic restructuring and the consequent population mobility, urban shrinkage has become a common phenomenon. The Qinling–Daba Mountains, a zone with a key ecological function in China, have long experienced population decline and functional degradation. Clarifying the dynamics and influencing factors of urban shrinkage plays a vital role in supporting the sustainable development of the region. This study, using permanent resident population growth rates and nighttime light data, classified cities in the region into four spatial patterns: expansion–growth, intensive growth, expansion–shrinkage, and intensive shrinkage. It further examined the spatial characteristics of shrinkage across four periods (2005–2010, 2010–2015, 2015–2020, and 2020–2022). A Geographically and Temporally Weighted Regression (GTWR) model was applied to examine core influencing factors and their spatiotemporal heterogeneity. The results indicated the following: (1) The dominant pattern of urban shrinkage in the Qinling–Daba Mountains shifted from expansion–growth to expansion–shrinkage, highlighting the paradox of population decline alongside continued spatial expansion. (2) Three critical indicators significantly influenced urban shrinkage: the number of students enrolled in general secondary schools (X5), the per capita disposable income of urban residents (X7), and the number of commercial and residential service facilities (X12), with their effects exhibiting significant spatiotemporal heterogeneity. Temporally, X12 was the most influential factor in 2005 and 2010, while in 2015, 2020, and 2022, X5 and X7 became the dominant factors. Spatially, X7 significantly affected both eastern and western areas; X5’s influence was most pronounced in the west; and X12 had the greatest impact in the east. This study explored the patterns and underlying drivers of urban shrinkage in underdeveloped areas, aiming to inform sustainable development practices in regions facing comparable challenges. Full article
(This article belongs to the Special Issue Sustainable Urban Planning and Regional Development)
Show Figures

Figure 1

11 pages, 567 KB  
Proceeding Paper
When Accounting for People Behavior Is Hard: Evaluation of Some Spatiotemporal Features for Electricity Load Demand Forecasting
by Guillaume Habault, Shinya Wada and Chihiro Ono
Eng. Proc. 2025, 101(1), 14; https://doi.org/10.3390/engproc2025101014 - 1 Aug 2025
Viewed by 131
Abstract
Understanding human behavior is crucial for accurately predicting Electricity Load Demand (ELD), as daily habits and routines directly influence electricity consumption patterns across temporal and spatial domains. Two approaches for representing human mobility are explored: (i) incorporating location-based Human Dynamics (HD) data, and [...] Read more.
Understanding human behavior is crucial for accurately predicting Electricity Load Demand (ELD), as daily habits and routines directly influence electricity consumption patterns across temporal and spatial domains. Two approaches for representing human mobility are explored: (i) incorporating location-based Human Dynamics (HD) data, and (ii) leveraging electricity consumption data from different contract types—Low Voltage (LV) for residential areas and High Voltage (HV) for industrial and office spaces. This study investigates which of these representations allows deep learning models to better capture the influence of human mobility on LV consumption. Focusing on mesh-level predictions, our experiments demonstrate that combining LV and HV data can reduce the spatiotemporal prediction error (STPE) of LV consumption by an average of 13.37%. Similarly, integrating HD data with LV can achieve a 14.3% average reduction in STPE for sufficiently large areas. While combining all three—LV, HV, and HD—can improve consistency across different areas, it does not universally lower the overall prediction error. Importantly, these experiments suggest that HV data provides more reliable results across various configurations, particularly in urban regions with strong business activity. In contrast, HD data is more effective for widespread regions characterized by significant human movement or densely populated areas. This study highlights the complementary roles of HV and HD data in improving spatiotemporal LV consumption predictions and offers valuable insights into tailoring feature selection based on area characteristics and forecasting objectives. Full article
Show Figures

Figure 1

33 pages, 16026 KB  
Article
Spatiotemporal Analysis of BTEX and PM Using Me-DOAS and GIS in Busan’s Industrial Complexes
by Min-Kyeong Kim, Jaeseok Heo, Joonsig Jung, Dong Keun Lee, Jonghee Jang and Duckshin Park
Toxics 2025, 13(8), 638; https://doi.org/10.3390/toxics13080638 - 29 Jul 2025
Viewed by 750
Abstract
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for [...] Read more.
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for the rapid dispersion of hazardous air pollutants (HAPs). In this study, we conducted spatiotemporal data collection and analysis for the first time in Korea using real-time measurements obtained through mobile extractive differential optical absorption spectroscopy (Me-DOAS) mounted on a solar occultation flux (SOF) vehicle. The measurements were conducted in the Saha Sinpyeong–Janglim Industrial Complex in Busan, which comprises the Sasang Industrial Complex and the Sinpyeong–Janglim Industrial Complex. BTEX compounds were selected as target volatile organic compounds (VOCs), and real-time measurements of both BTEX and fine particulate matter (PM) were conducted simultaneously. Correlation analysis revealed a strong relationship between PM10 and PM2.5 (r = 0.848–0.894), indicating shared sources. In Sasang, BTEX levels were associated with traffic and localized facilities, while in Saha Sinpyeong–Janglim, the concentrations were more influenced by industrial zoning and wind patterns. Notably, inter-compound correlations such as benzene–m-xylene and p-xylene–toluene suggested possible co-emission sources. This study proposes a GIS-based, three-dimensional air quality management approach that integrates variables such as traffic volume, wind direction, and speed through real-time measurements. The findings are expected to inform effective pollution control strategies and future environmental management plans for industrial complexes. Full article
Show Figures

Graphical abstract

26 pages, 3356 KB  
Article
Integrating Urban Factors as Predictors of Last-Mile Demand Patterns: A Spatial Analysis in Thessaloniki
by Dimos Touloumidis, Michael Madas, Panagiotis Kanellopoulos and Georgia Ayfantopoulou
Urban Sci. 2025, 9(8), 293; https://doi.org/10.3390/urbansci9080293 - 29 Jul 2025
Viewed by 462
Abstract
While the explosive growth in e-commerce stresses urban logistics systems, city planners lack of fine-grained data in order to anticipate and manage the resulting freight flows. Using a three-stage analytical approach combining descriptive zonal statistics, hotspot analysis and different regression modeling from univariate [...] Read more.
While the explosive growth in e-commerce stresses urban logistics systems, city planners lack of fine-grained data in order to anticipate and manage the resulting freight flows. Using a three-stage analytical approach combining descriptive zonal statistics, hotspot analysis and different regression modeling from univariate to geographically weighted regression, this study integrates one year of parcel deliveries from a leading courier with open spatial layers of land-use zoning, census population, mobile-signal activity and household income to model last-mile demand across different land use types. A baseline linear regression shows that residential population alone accounts for roughly 30% of the variance in annual parcel volumes (2.5–3.0 deliveries per resident) while adding daytime workforce and income increases the prediction accuracy to 39%. In a similar approach where coefficients vary geographically with Geographically Weighted Regression to capture the local heterogeneity achieves a significant raise of the overall R2 to 0.54 and surpassing 0.70 in residential and institutional districts. Hot-spot analysis reveals a highly fragmented pattern where fewer than 5% of blocks generate more than 8.5% of all deliveries with no apparent correlation to the broaden land-use classes. Commercial and administrative areas exhibit the greatest intensity (1149 deliveries per ha) yet remain the hardest to explain (global R2 = 0.21) underscoring the importance of additional variables such as retail mix, street-network design and tourism flows. Through this approach, the calibrated models can be used to predict city-wide last-mile demand using only public inputs and offers a transferable, privacy-preserving template for evidence-based freight planning. By pinpointing the location and the land uses where demand concentrates, it supports targeted interventions such as micro-depots, locker allocation and dynamic curb-space management towards more sustainable and resilient urban-logistics networks. Full article
Show Figures

Figure 1

22 pages, 3429 KB  
Article
Indoor Positioning and Tracking System in a Multi-Level Residential Building Using WiFi
by Elmer Magsino, Joshua Kenichi Sim, Rica Rizabel Tagabuhin and Jan Jayson Tirados
Information 2025, 16(8), 633; https://doi.org/10.3390/info16080633 - 24 Jul 2025
Viewed by 516
Abstract
The implementation of an Indoor Positioning System (IPS) in a three-storey residential building employing WiFi signals that can also be used to track indoor movements is presented in this study. The movement of inhabitants is monitored through an Android smartphone by detecting the [...] Read more.
The implementation of an Indoor Positioning System (IPS) in a three-storey residential building employing WiFi signals that can also be used to track indoor movements is presented in this study. The movement of inhabitants is monitored through an Android smartphone by detecting the Received Signal Strength Indicator (RSSI) signals from WiFi Anchor Points (APs).Indoor movement is detected through a successive estimation of a target’s multiple positions. Using the K-Nearest Neighbors (KNN) and Particle Swarm Optimization (PSO) algorithms, these RSSI measurements are trained for estimating the position of an indoor target. Additionally, the Density-based Spatial Clustering of Applications with Noise (DBSCAN) has been integrated into the PSO method for removing RSSI-estimated position outliers of the mobile device to further improve indoor position detection and monitoring accuracy. We also employed Time Reversal Resonating Strength (TRRS) as a correlation technique as the third method of localization. Our extensive and rigorous experimentation covers the influence of various weather conditions in indoor detection. Our proposed localization methods have maximum accuracies of 92%, 80%, and 75% for TRRS, KNN, and PSO + DBSCAN, respectively. Each method also has an approximate one-meter deviation, which is a short distance from our targets. Full article
Show Figures

Graphical abstract

31 pages, 7121 KB  
Article
Bidirectional Adaptation of Shared Autonomous Vehicles and Old Towns’ Urban Spaces: The Views of Residents on the Present
by Sucheng Yao, Kanjanee Budthimedhee, Sakol Teeravarunyou, Xinhao Chen and Ziqiang Zhang
World Electr. Veh. J. 2025, 16(7), 395; https://doi.org/10.3390/wevj16070395 - 14 Jul 2025
Viewed by 440
Abstract
The integration of shared autonomous vehicles into historic urban areas presents both opportunities and challenges. In heritage-rich environments like very old Asian (such as Suzhou old town, which serves as a use case example) or European (especially Mediterranean coastal cities) areas—characterized by narrow [...] Read more.
The integration of shared autonomous vehicles into historic urban areas presents both opportunities and challenges. In heritage-rich environments like very old Asian (such as Suzhou old town, which serves as a use case example) or European (especially Mediterranean coastal cities) areas—characterized by narrow alleys, dense development, and sensitive cultural landscapes—shared autonomous vehicle adoption raises critical spatial and social questions. This study employs a qualitative, user-centered approach based on the ripple model to examine residents’ perceptions across four dimensions: residential patterns, parking land use, regional accessibility, and street-level infrastructure. Semi-structured interviews with 27 participants reveal five key findings: (1) public trust depends on transparent decision-making and safety guarantees; (2) shared autonomous vehicles may reshape generational residential clustering; (3) the short-term parking demand remains stable, but the long-term reuse of space is feasible; (4) shared autonomous vehicles could enhance accessibility in historic cores; (5) transport systems may evolve toward intelligent, human-centered designs. Based on these insights, the study proposes three strategies: (1) transparent risk assessment using explainable artificial intelligence and digital twins; (2) polycentric development to diversify land use; (3) hierarchical street retrofitting to balance mobility and preservation. While this study is limited by its qualitative scope and absence of simulation, it offers a framework for culturally sensitive, small-scale interventions supporting sustainable mobility transitions in historic urban contexts. Full article
Show Figures

Figure 1

21 pages, 2170 KB  
Article
IoT-Driven Intelligent Energy Management: Leveraging Smart Monitoring Applications and Artificial Neural Networks (ANN) for Sustainable Practices
by Azza Mohamed, Ibrahim Ismail and Mohammed AlDaraawi
Computers 2025, 14(7), 269; https://doi.org/10.3390/computers14070269 - 9 Jul 2025
Cited by 1 | Viewed by 1034
Abstract
The growing mismanagement of energy resources is a pressing issue that poses significant risks to both individuals and the environment. As energy consumption continues to rise, the ramifications become increasingly severe, necessitating urgent action. In response, the rapid expansion of Internet of Things [...] Read more.
The growing mismanagement of energy resources is a pressing issue that poses significant risks to both individuals and the environment. As energy consumption continues to rise, the ramifications become increasingly severe, necessitating urgent action. In response, the rapid expansion of Internet of Things (IoT) devices offers a promising and innovative solution due to their adaptability, low power consumption, and transformative potential in energy management. This study describes a novel, integrative strategy that integrates IoT and Artificial Neural Networks (ANNs) in a smart monitoring mobile application intended to optimize energy usage and promote sustainability in residential settings. While both IoT and ANN technologies have been investigated separately in previous research, the uniqueness of this work is the actual integration of both technologies into a real-time, user-adaptive framework. The application allows for continuous energy monitoring via modern IoT devices and wireless sensor networks, while ANN-based prediction models evaluate consumption data to dynamically optimize energy use and reduce environmental effect. The system’s key features include simulated consumption scenarios and adaptive user profiles, which account for differences in household behaviors and occupancy patterns, allowing for tailored recommendations and energy control techniques. The architecture allows for remote device control, real-time feedback, and scenario-based simulations, making the system suitable for a wide range of home contexts. The suggested system’s feasibility and effectiveness are proved through detailed simulations, highlighting its potential to increase energy efficiency and encourage sustainable habits. This study contributes to the rapidly evolving field of intelligent energy management by providing a scalable, integrated, and user-centric solution that bridges the gap between theoretical models and actual implementation. Full article
Show Figures

Figure 1

Back to TopTop