Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,116)

Search Parameters:
Keywords = resilient planning and management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 19756 KB  
Article
Impact of Climate Change and Other Disasters on Coastal Cultural Heritage: An Example from Greece
by Chryssy Potsiou, Sofia Basiouka, Styliani Verykokou, Denis Istrati, Sofia Soile, Marcos Julien Alexopoulos and Charalabos Ioannidis
Land 2025, 14(10), 2007; https://doi.org/10.3390/land14102007 - 7 Oct 2025
Abstract
Protection of coastal cultural heritage is among the most urgent global priorities, as these sites face increasing threats from climate change, sea level rise, and human activity. This study emphasises the value of innovative geospatial tools and data ecosystems for timely risk assessment. [...] Read more.
Protection of coastal cultural heritage is among the most urgent global priorities, as these sites face increasing threats from climate change, sea level rise, and human activity. This study emphasises the value of innovative geospatial tools and data ecosystems for timely risk assessment. The role of land administration systems, geospatial documentation of coastal cultural heritage sites, and the adoption of innovative techniques that combine various methodologies is crucial for timely action. The coastal management infrastructure in Greece is presented, outlining the key public authorities and national legislation, as well as the land administration and geospatial ecosystems and the various available geospatial ecosystems. We profile the Hellenic Cadastre and the Hellenic Archaeological Cadastre along with open geospatial resources, and introduce TRIQUETRA Decision Support System (DSS), produced through the EU’s Horizon project, and a Digital Twin methodology for hazard identification, quantification, and mitigation. Particular emphasis is given to the role of Digital Twin technology, which acts as a continuously updated virtual replica of coastal cultural heritage sites, integrating heterogeneous geospatial datasets such as cadastral information, photogrammetric 3D models, climate projections, and hazard simulations, allowing for stakeholders to test future scenarios of sea level rise, flooding, and erosion, offering an advanced tool for resilience planning. The approach is validated at the coastal archaeological site of Aegina Kolona, where a UAV-based SfM-MVS survey produced using high-resolution photogrammetric outputs, including a dense point cloud exceeding 60 million points, a 5 cm resolution Digital Surface Model, high-resolution orthomosaics with a ground sampling distance of 1 cm and 2.5 cm, and a textured 3D model using more than 6000 nadir and oblique images. These products provided a geospatial infrastructure for flood risk assessment under extreme rainfall events, following a multi-scale hydrologic–hydraulic modelling framework. Island-scale simulations using a 5 m Digital Elevation Model (DEM) were coupled with site-scale modelling based on the high-resolution UAV-derived DEM, allowing for the nested evaluation of water flow, inundation extents, and velocity patterns. This approach revealed spatially variable flood impacts on individual structures, highlighted the sensitivity of the results to watershed delineation and model resolution, and identified critical intervention windows for temporary protection measures. We conclude that integrating land administration systems, open geospatial data, and Digital Twin technology provides a practical pathway to proactive and efficient management, increasing resilience for coastal heritage against climate change threats. Full article
(This article belongs to the Special Issue Land Modifications and Impacts on Coastal Areas, Second Edition)
Show Figures

Figure 1

18 pages, 7693 KB  
Article
Assessing Variations in River Networks Under Urbanization Across Metropolitan Plains Using a Multi-Metric Approach
by Zhixin Lin, Shuang Luo, Miao Lu, Shaoqing Dai and Youpeng Xu
Land 2025, 14(10), 1994; https://doi.org/10.3390/land14101994 - 4 Oct 2025
Viewed by 136
Abstract
Urbanization, characterized by rapid construction land expansion, has transformed natural landscapes and significantly altered river networks in emerging metropolitan areas. Understanding the historical and current conditions of river networks is crucial for policy-making in sustainable urban development planning. Based on the topographic maps [...] Read more.
Urbanization, characterized by rapid construction land expansion, has transformed natural landscapes and significantly altered river networks in emerging metropolitan areas. Understanding the historical and current conditions of river networks is crucial for policy-making in sustainable urban development planning. Based on the topographic maps and remote sensing images, this study employs a multi-metric framework to investigate river network variations in the Suzhou-Wuxi-Changzhou metropolitan area, a rapidly urbanized plain with high-density river networks in the Yangtze River Delta, China. The results indicate a significant decline in the quantity of rivers, with the average river density in built-up areas falling from 2.70 km·km−2 in the 1960s to 1.95 km·km−2 in the 2010s, along with notable variations in the river network’s structure, complexity and its storage and regulation capacity. Moreover, shifts in the structural characteristics of river networks reveal that urbanization has a weaker impact on main streams but plays a dominant role in altering tributaries. The analysis demonstrates the extensive burial and modification of rivers across the metropolitan plains. These findings underscore the essence of incorporating river network protection and restoration into sustainable urban planning, providing insights for water resource management and resilient city development in rapidly urbanizing regions. Full article
(This article belongs to the Section Urban Contexts and Urban-Rural Interactions)
25 pages, 4130 KB  
Article
Resilience in Jordan’s Stock Market: Sectoral Volatility Responses to Financial, Political, and Health Crises
by Abdulrahman Alnatour
Risks 2025, 13(10), 194; https://doi.org/10.3390/risks13100194 - 4 Oct 2025
Viewed by 192
Abstract
Sectoral vulnerability to distinct crisis types in small, open, and geopolitically exposed markets—such as Jordan—remains insufficiently quantified, constraining targeted policy design and portfolio allocation. This study’s primary purpose is to establish a transparent, comparable metric of sector-level market resilience that reveals how crisis [...] Read more.
Sectoral vulnerability to distinct crisis types in small, open, and geopolitically exposed markets—such as Jordan—remains insufficiently quantified, constraining targeted policy design and portfolio allocation. This study’s primary purpose is to establish a transparent, comparable metric of sector-level market resilience that reveals how crisis typology reorders vulnerabilities and shapes recovery speed. Applying this framework, we assess Jordan’s equity market across three archetypal episodes—the Global Financial Crisis, the Arab Spring, and COVID-19—to clarify how shock channels reconfigure sectoral risk. Using daily Amman Stock Exchange sector indices (2001–2025), we estimate GARCH(1,1) models for each sector–crisis window and summarize volatility dynamics by persistence (α+β), interpreted as an inverse proxy for resilience; complementary diagnostics include maximum drawdown and days-to-recovery, with nonparametric (Kruskal–Wallis) and rank-based (Spearman, Friedman) tests to evaluate within-crisis differences and cross-crisis reordering. Results show pronounced heterogeneity in every crisis and shifting sectoral rankings: financials—especially banking—display the highest persistence during the GFC; tourism and transportation dominate during COVID-19; and tourism/electric-related industries are most persistent around the Arab Spring. Meanwhile, food & beverages, pharmaceuticals/medical, and education recurrently exhibit lower persistence. Higher persistence aligns with slower post-shock normalization. We conclude that resilience is sector-specific and contingent on crisis characteristics, implying targeted policy and portfolio responses; regulators should prioritize liquidity backstops, timely disclosure, and contingency planning for fragile sectors, while investors can mitigate crisis risk via dynamic sector allocation and volatility-aware risk management in emerging markets. Full article
(This article belongs to the Special Issue Risk Analysis in Financial Crisis and Stock Market)
Show Figures

Figure 1

53 pages, 7641 KB  
Article
The Italian Actuarial Climate Index: A National Implementation Within the Emerging European Framework
by Barbara Rogo, José Garrido and Stefano Demartis
Risks 2025, 13(10), 192; https://doi.org/10.3390/risks13100192 - 3 Oct 2025
Viewed by 115
Abstract
This paper presents the development of a high-resolution composite index to monitor and quantify climate-related risks across Italy. The country’s complex climatic variability, extensive coastline, and low insurance penetration highlight the urgent need for robust, locally calibrated tools to bridge the climate protection [...] Read more.
This paper presents the development of a high-resolution composite index to monitor and quantify climate-related risks across Italy. The country’s complex climatic variability, extensive coastline, and low insurance penetration highlight the urgent need for robust, locally calibrated tools to bridge the climate protection gap. Building on the methodological framework of existing actuarial climate indices, previously adapted for France and the Iberian Peninsula, the index integrates six standardised indicators capturing warm and cool temperature extremes, heavy precipitation intensity, dry spell duration, high wind frequency, and sea level change. It leverages hourly ERA5-Land reanalysis data and monthly sea level observations from tide gauges. Results show a clear upward trend in climate anomalies, with regional and seasonal differentiation. Among all components, sea level is most strongly correlated with the composite index, underscoring Italy’s vulnerability to marine-related risks. Comparative analysis with European indices confirms both the robustness and specificity of the Italian exposure profile, reinforcing the need for tailored risk metrics. The index can support innovative risk transfer mechanisms, including climate-related insurance, regulatory stress testing, and resilience planning. Combining scientific rigour with operational relevance, it offers a consistent, transparent, and policy-relevant tool for managing climate risk in Italy and contributing to harmonised European frameworks. Full article
(This article belongs to the Special Issue Climate Change and Financial Risks)
32 pages, 2499 KB  
Article
MiMapper: A Cloud-Based Multi-Hazard Mapping Tool for Nepal
by Catherine A. Price, Morgan Jones, Neil F. Glasser, John M. Reynolds and Rijan B. Kayastha
GeoHazards 2025, 6(4), 63; https://doi.org/10.3390/geohazards6040063 - 3 Oct 2025
Viewed by 397
Abstract
Nepal is highly susceptible to natural hazards, including earthquakes, flooding, and landslides, all of which may occur independently or in combination. Climate change is projected to increase the frequency and intensity of these natural hazards, posing growing risks to Nepal’s infrastructure and development. [...] Read more.
Nepal is highly susceptible to natural hazards, including earthquakes, flooding, and landslides, all of which may occur independently or in combination. Climate change is projected to increase the frequency and intensity of these natural hazards, posing growing risks to Nepal’s infrastructure and development. To the authors’ knowledge, the majority of existing geohazard research in Nepal is typically limited to single hazards or localised areas. To address this gap, MiMapper was developed as a cloud-based, open-access multi-hazard mapping tool covering the full national extent. Built on Google Earth Engine and using only open-source spatial datasets, MiMapper applies an Analytical Hierarchy Process (AHP) to generate hazard indices for earthquakes, floods, and landslides. These indices are combined into an aggregated hazard layer and presented in an interactive, user-friendly web map that requires no prior GIS expertise. MiMapper uses a standardised hazard categorisation system for all layers, providing pixel-based scores for each layer between 0 (Very Low) and 1 (Very High). The modal and mean hazard categories for aggregated hazard in Nepal were Low (47.66% of pixels) and Medium (45.61% of pixels), respectively, but there was high spatial variability in hazard categories depending on hazard type. The validation of MiMapper’s flooding and landslide layers showed an accuracy of 0.412 and 0.668, sensitivity of 0.637 and 0.898, and precision of 0.116 and 0.627, respectively. These validation results show strong overall performance for landslide prediction, whilst broad-scale exposure patterns are predicted for flooding but may lack the resolution or sensitivity to fully represent real-world flood events. Consequently, MiMapper is a useful tool to support initial hazard screening by professionals in urban planning, infrastructure development, disaster management, and research. It can contribute to a Level 1 Integrated Geohazard Assessment as part of the evaluation for improving the resilience of hydropower schemes to the impacts of climate change. MiMapper also offers potential as a teaching tool for exploring hazard processes in data-limited, high-relief environments such as Nepal. Full article
15 pages, 2076 KB  
Article
Forecasting Urban Water Demand Using Multi-Scale Artificial Neural Networks with Temporal Lag Optimization
by Elias Farah and Isam Shahrour
Water 2025, 17(19), 2886; https://doi.org/10.3390/w17192886 - 3 Oct 2025
Viewed by 268
Abstract
Accurate short-term forecasting of urban water demand is a persistent challenge for utilities seeking to optimize operations, reduce energy costs, and enhance resilience in smart distribution systems. This study presents a multi-scale Artificial Neural Network (ANN) modeling approach that integrates temporal lag optimization [...] Read more.
Accurate short-term forecasting of urban water demand is a persistent challenge for utilities seeking to optimize operations, reduce energy costs, and enhance resilience in smart distribution systems. This study presents a multi-scale Artificial Neural Network (ANN) modeling approach that integrates temporal lag optimization to predict daily and hourly water consumption across heterogeneous user profiles. Using high-resolution smart metering data from the SunRise Smart City Project in Lille, France, four demand nodes were analyzed: a District Metered Area (DMA), a student residence, a university restaurant, and an engineering school. Results demonstrate that incorporating lagged consumption variables substantially improves prediction accuracy, with daily R2 values increasing from 0.490 to 0.827 at the DMA and from 0.420 to 0.806 at the student residence. At the hourly scale, the 1-h lag model consistently outperformed other configurations, achieving R2 up to 0.944 at the DMA, thus capturing both peak and off-peak consumption dynamics. The findings confirm that short-term autocorrelation is a dominant driver of demand variability, and that ANN-based forecasting enhanced by temporal lag features provides a robust, computationally efficient tool for real-time water network management. Beyond improving forecasting performance, the proposed methodology supports operational applications such as leakage detection, anomaly identification, and demand-responsive planning, contributing to more sustainable and resilient urban water systems. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

30 pages, 13414 KB  
Article
An Integrated Framework for Assessing Dynamics of Ecological Spatial Network Resilience Under Climate Change Scenarios: A Case Study of the Yunnan Central Urban Agglomeration
by Bingui Qin, Junsan Zhao, Guoping Chen, Rongyao Wang and Yilin Lin
Land 2025, 14(10), 1988; https://doi.org/10.3390/land14101988 - 2 Oct 2025
Viewed by 301
Abstract
Rapid climate change has exacerbated global ecosystem degradation, leading to habitat fragmentation and landscape connectivity loss. Constructing ecological networks (EN) with resilient conduction functions and conservation priorities is crucial for maintaining regional ecological security and promoting sustainable development. However, the spatiotemporal modeling and [...] Read more.
Rapid climate change has exacerbated global ecosystem degradation, leading to habitat fragmentation and landscape connectivity loss. Constructing ecological networks (EN) with resilient conduction functions and conservation priorities is crucial for maintaining regional ecological security and promoting sustainable development. However, the spatiotemporal modeling and dynamic resilience assessment of EN under the combined impacts of future climate and land use/land cover (LULC) changes remain underexplored. This study focuses on the Central Yunnan Urban Agglomeration (CYUA), China, and integrates landscape ecology with complex network theory to develop a dynamic resilience assessment framework that incorporates multi-scenario LULC projections, multi-temporal EN construction, and node-link disturbance simulations. Under the Shared Socioeconomic Pathways and Representative Concentration Pathways (SSP-RCP) scenarios, we quantified spatiotemporal variations in EN resilience and identified resilience-based conservation priority areas. The results show that: (1) Future EN patterns exhibit a westward clustering trend, with expanding habitat areas and enhanced connectivity. (2) From 2000 to 2040, EN resilience remains generally stable, but diverges significantly across scenarios—showing steady increases under SSP1-2.6 and SSP5-8.5, while slightly declining under SSP2-4.5. (3) Approximately 20% of nodes and 40% of links are identified as critical components for maintaining structural-functional resilience, and are projected to form conservation priority patterns characterized by larger habitat areas and more compact connectivity under future scenarios. The multi-scenario analysis provides differentiated strategies for EN planning and ecological conservation. This framework offers adaptive and resilient solutions for regional ecosystem management under climate change. Full article
(This article belongs to the Section Landscape Ecology)
Show Figures

Figure 1

23 pages, 2752 KB  
Article
AI-Driven Outage Management with Exploratory Data Analysis, Predictive Modeling, and LLM-Based Interface Integration
by Kian Ansarinejad, Ying Huang and Nita Yodo
Energies 2025, 18(19), 5244; https://doi.org/10.3390/en18195244 - 2 Oct 2025
Viewed by 263
Abstract
Power outages pose considerable risks to the reliability of electric grids, affecting both consumers and utilities through service disruptions and potential economic losses. This study analyzes a historical outage dataset from a Regional Transmission Organization (RTO) to reveal key patterns and trends that [...] Read more.
Power outages pose considerable risks to the reliability of electric grids, affecting both consumers and utilities through service disruptions and potential economic losses. This study analyzes a historical outage dataset from a Regional Transmission Organization (RTO) to reveal key patterns and trends that suggest outage management strategies. By integrating exploratory data analysis, predictive modeling, and a Large Language Model (LLM)-based interface integration, as well as data visualization techniques, we identify and present critical drivers of outage duration and frequency. A random forest regressor trained on features including planned duration, facility name, outage owner, priority, season, and equipment type proved highly effective for predicting outage duration with high accuracy. This predictive framework underscores the practical value of incorporating planning information and seasonal context in anticipating outage timelines. The findings of this study not only deepen the understanding of temporal and spatial outage dynamics but also provide valuable insights for utility companies and researchers. Utility companies can use these results to better predict outage durations, allocate resources more effectively, and improve service restoration time. Researchers can leverage this analysis to enhance future models and methodologies for studying outage patterns, ensuring that artificial intelligence (AI)-driven methods can contribute to improving management strategies. The broader impact of this study is to ensure that the insights gained can be applied to strengthen the reliability and resilience of power grids or energy systems in general. Full article
(This article belongs to the Special Issue Artificial Intelligence in Energy Sector)
Show Figures

Figure 1

54 pages, 5812 KB  
Review
Advancing Renewable-Dominant Power Systems Through Internet of Things and Artificial Intelligence: A Comprehensive Review
by Temitope Adefarati, Gulshan Sharma, Pitshou N. Bokoro and Rajesh Kumar
Energies 2025, 18(19), 5243; https://doi.org/10.3390/en18195243 - 2 Oct 2025
Viewed by 370
Abstract
The sudden increase in global energy demand has prompted the integration of Artificial Intelligence and the Internet of Things into the utility grid. The synergy of Artificial Intelligence and the Internet of Things in renewable energy sources has emerged as a promising solution [...] Read more.
The sudden increase in global energy demand has prompted the integration of Artificial Intelligence and the Internet of Things into the utility grid. The synergy of Artificial Intelligence and the Internet of Things in renewable energy sources has emerged as a promising solution for the development of smart grids and a transformative catalyst that restructures centralized power systems into resilient and sustainable systems. The state-of-the-art of the Internet of Things and Artificial Intelligence is presented in this paper to support the design, planning, operation, management and optimization of renewable energy-based power systems. This paper outlines the benefits of smart and resilient energy systems and the contributions of the Internet of Things across several applications, devices and networks. Artificial Intelligence can be utilized for predictive maintenance, demand-side management, fault detection, forecasting and scheduling. This paper highlights crucial future research directions aimed at overcoming the challenges that are associated with the adoption of emerging technologies in the power system by focusing on market policy and regulation and the human-centric and ethical aspects of Artificial Intelligence and the Internet of Things. The outcomes of this study can be used by policymakers, researchers and development agencies to improve global access to electricity and accelerate the development of sustainable energy systems. Full article
Show Figures

Figure 1

16 pages, 319 KB  
Article
Fuzzy Graphic Binary Matroid Approach to Power Grid Communication Network Analysis
by Jing Li, Buvaneswari Rangasamy, Saranya Shanmugavel and Aysha Khan
Symmetry 2025, 17(10), 1628; https://doi.org/10.3390/sym17101628 - 2 Oct 2025
Viewed by 175
Abstract
Matroid is a mathematical structure that extends the concept of independence. The fuzzy graphic binary matroid serves as a generalization of linear dependence, and its properties are examined. Power grid networks, which manage the generation, transmission, and distribution of electrical energy from power [...] Read more.
Matroid is a mathematical structure that extends the concept of independence. The fuzzy graphic binary matroid serves as a generalization of linear dependence, and its properties are examined. Power grid networks, which manage the generation, transmission, and distribution of electrical energy from power plants to consumers, are inherently a complex system. A key objective in analyzing these networks is to ensure a reliable and uninterrupted supply of electricity. However, several critical issues must be addressed, including uncertainty in communication links, detection of redundant or sensitive circuits, evaluation of network resilience under partial failures, and optimization of reliability in interconnected network systems. To support this goal, the concept of a fuzzy graphic binary matroid is applied in the analysis of power grid communication network, offering a framework that not only incorporates fuzziness and binary conditions but also enables systematic identification of weak circuits, redundancy planning, and reliability enhancement. This approach provides a more realistic representation of operational conditions, ensuring better fault tolerance and improved efficiency of the grid. Full article
Show Figures

Figure 1

30 pages, 1774 KB  
Review
A Systematic Literature Review on AI-Based Cybersecurity in Nuclear Power Plants
by Marianna Lezzi, Luigi Martino, Ernesto Damiani and Chan Yeob Yeun
J. Cybersecur. Priv. 2025, 5(4), 79; https://doi.org/10.3390/jcp5040079 - 1 Oct 2025
Viewed by 394
Abstract
Cybersecurity management plays a key role in preserving the operational security of nuclear power plants (NPPs), ensuring service continuity and system resilience. The growing number of sophisticated cyber-attacks against NPPs requires cybersecurity experts to detect, analyze, and defend systems and data from cyber [...] Read more.
Cybersecurity management plays a key role in preserving the operational security of nuclear power plants (NPPs), ensuring service continuity and system resilience. The growing number of sophisticated cyber-attacks against NPPs requires cybersecurity experts to detect, analyze, and defend systems and data from cyber threats in near real time. However, managing a large numbers of attacks in a timely manner is impossible without the support of Artificial Intelligence (AI). This study recognizes the need for a structured and in-depth analysis of the literature in the context of NPPs, referring to the role of AI technology in supporting cyber risk assessment processes. For this reason, a systematic literature review (SLR) is adopted to address the following areas of analysis: (i) critical assets to be preserved from cyber-attacks through AI, (ii) security vulnerabilities and cyber threats managed using AI, (iii) cyber risks and business impacts that can be assessed by AI, and (iv) AI-based security countermeasures to mitigate cyber risks. The SLR procedure follows a macro-step approach that includes review planning, search execution and document selection, and document analysis and results reporting, with the aim of providing an overview of the key dimensions of AI-based cybersecurity in NPPs. The structured analysis of the literature allows for the creation of an original tabular outline of emerging evidence (in the fields of critical assets, security vulnerabilities and cyber threats, cyber risks and business impacts, and AI-based security countermeasures) that can help guide AI-based cybersecurity management in NPPs and future research directions. From an academic perspective, this study lays the foundation for understanding and consciously addressing cybersecurity challenges through the support of AI; from a practical perspective, it aims to assist managers, practitioners, and policymakers in making more informed decisions to improve the resilience of digital infrastructure. Full article
(This article belongs to the Section Security Engineering & Applications)
Show Figures

Figure 1

29 pages, 843 KB  
Article
Human Behavioral Drivers of Sustainable Supply Chains: The Role of Green Talent Management in Ecuadorian MSMEs
by Alexander Sánchez-Rodríguez, Reyner Pérez-Campdesuñer, Gelmar García-Vidal, Yandi Fernández-Ochoa, Rodobaldo Martínez-Vivar and Freddy Ignacio Alvarez-Subía
Sustainability 2025, 17(19), 8810; https://doi.org/10.3390/su17198810 - 1 Oct 2025
Viewed by 248
Abstract
This study examines how green talent management (GTM) practices foster sustainable supply chains in micro, small, and medium-sized enterprises (MSMEs) in Quito, Ecuador. It analyzes how sustainable leadership, green organizational culture, and sustainability-oriented training influence employees’ pro-environmental motivation, organizational commitment, and sustainability attitudes, [...] Read more.
This study examines how green talent management (GTM) practices foster sustainable supply chains in micro, small, and medium-sized enterprises (MSMEs) in Quito, Ecuador. It analyzes how sustainable leadership, green organizational culture, and sustainability-oriented training influence employees’ pro-environmental motivation, organizational commitment, and sustainability attitudes, which in turn mediate the adoption of green logistics practices, supply chain efficiency, and organizational resilience. A quantitative design was employed, using survey data from 280 MSMEs analyzed through structural equation modeling. The findings demonstrate that GTM enhances employees’ motivation, commitment, and sustainability attitudes, which act as the primary behavioral mechanisms translating managerial practices into sustainability outcomes. Theoretically, the study integrates Green HRM and supply chain research with multiple organizational behavior theories, including Social Exchange Theory, the AMO model, the Theory of Planned Behavior, and the Resource-Based View. Empirically, it contributes novel evidence from Ecuadorian MSMEs, a context often underexplored in sustainability research. Practically, the study highlights leadership, culture, and training as strategic levers for building greener, more efficient, and more resilient supply chains. The results offer actionable recommendations for MSME managers and policymakers in Ecuador, highlighting the importance of investing in people as the foundation of sustainable competitiveness. Full article
Show Figures

Figure 1

43 pages, 5662 KB  
Article
Coordinating V2V Energy Sharing for Electric Fleets via Multi-Granularity Modeling and Dynamic Spatiotemporal Matching
by Zhaonian Ye, Qike Han, Kai Han, Yongzhen Wang, Changlu Zhao, Haoran Yang and Jun Du
Sustainability 2025, 17(19), 8783; https://doi.org/10.3390/su17198783 - 30 Sep 2025
Viewed by 199
Abstract
The increasing adoption of electric delivery fleets introduces significant challenges related to uneven energy utilization and suboptimal scheduling efficiency. Vehicle-to-Vehicle (V2V) energy sharing presents a promising solution, but its effectiveness critically depends on precise matching and co-optimization within dynamic urban traffic environments. This [...] Read more.
The increasing adoption of electric delivery fleets introduces significant challenges related to uneven energy utilization and suboptimal scheduling efficiency. Vehicle-to-Vehicle (V2V) energy sharing presents a promising solution, but its effectiveness critically depends on precise matching and co-optimization within dynamic urban traffic environments. This paper proposes a hierarchical optimization framework to minimize total fleet operational costs, incorporating a comprehensive analysis that includes battery degradation. The core innovation of the framework lies in coupling high-level path planning with low-level real-time speed control. First, a high-fidelity energy consumption surrogate model is constructed through model predictive control simulations, incorporating vehicle dynamics and signal phase and timing information. Second, the spatiotemporal longest common subsequence algorithm is employed to match the spatio-temporal trajectories of energy-provider and energy-consumer vehicles. A battery aging model is integrated to quantify the long-term costs associated with different operational strategies. Finally, a multi-objective particle swarm optimization algorithm, integrated with MPC, co-optimizes the rendezvous paths and speed profiles. In a case study based on a logistics network, simulation results demonstrate that, compared to the conventional station-based charging mode, the proposed V2V framework reduces total fleet operational costs by a net 12.5% and total energy consumption by 17.4% while increasing the energy utilization efficiency of EV-Ps by 21.4%. This net saving is achieved even though the V2V strategy incurs a marginal increase in battery aging costs, which is overwhelmingly offset by substantial savings in logistical efficiency. This study provides an efficient and economical solution for the dynamic energy management of electric fleets under realistic traffic conditions, contributing to a more sustainable and resilient urban logistics ecosystem. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

26 pages, 14847 KB  
Article
An Open-Source Urban Digital Twin for Enhancing Outdoor Thermal Comfort in the City of Huelva (Spain)
by Victoria Patricia Lopez-Cabeza, Marta Videras-Rodriguez and Sergio Gomez-Melgar
Smart Cities 2025, 8(5), 160; https://doi.org/10.3390/smartcities8050160 - 29 Sep 2025
Viewed by 1091
Abstract
Climate change and urbanization are intensifying the urban heat island effect and negatively impacting outdoor thermal comfort in cities. Innovative planning strategies are required to design more livable and resilient urban spaces. Building on a state of the art of current Urban Digital [...] Read more.
Climate change and urbanization are intensifying the urban heat island effect and negatively impacting outdoor thermal comfort in cities. Innovative planning strategies are required to design more livable and resilient urban spaces. Building on a state of the art of current Urban Digital Twins (UDTs) for outdoor thermal comfort analysis, this paper presents the design and implementation of a functional UDT prototype. Developed for a pilot area in Huelva, Spain, the system integrates real-time environmental data, spatial modeling, and simulation tools within an open-source architecture. The literature reveals that while UDTs are increasingly used in urban management, their application to outdoor thermal comfort remains limited and technically challenging, especially in terms of real-time data, modeling accuracy, and user interaction. The case study demonstrates the feasibility of a modular, open-source UDT capable of simulating mean radiant temperature and outdoor thermal comfort indexes at high resolution and visualizing the results in a 3D interactive environment. UDTs have strong potential for supporting microclimate-sensitive planning and improving outdoor thermal comfort. However, important challenges remain, particularly in simulation efficiency, model detail, and stakeholder accessibility. The proposed prototype addresses several of these gaps and provides a basis for future improvements. Full article
(This article belongs to the Collection Digital Twins for Smart Cities)
Show Figures

Figure 1

24 pages, 1149 KB  
Article
Sustainable Development of Smart Regions via Cybersecurity of National Infrastructure: A Fuzzy Risk Assessment Approach
by Oleksandr Korchenko, Oleksandr Korystin, Volodymyr Shulha, Svitlana Kazmirchuk, Serhii Demediuk and Serhii Zybin
Sustainability 2025, 17(19), 8757; https://doi.org/10.3390/su17198757 - 29 Sep 2025
Viewed by 206
Abstract
This article proposes a scientifically grounded approach to risk assessment for infrastructural and functional systems that underpin the development of digitally transformed regional territories under conditions of high threat dynamics and sociotechnical instability. The core methodology is based on modeling of multifactorial threats [...] Read more.
This article proposes a scientifically grounded approach to risk assessment for infrastructural and functional systems that underpin the development of digitally transformed regional territories under conditions of high threat dynamics and sociotechnical instability. The core methodology is based on modeling of multifactorial threats through the application of fuzzy set theory and logic–linguistic analysis, enabling consideration of parameter uncertainty, fragmented expert input, and the lack of a unified risk landscape within complex infrastructure environments. A special emphasis is placed on components of technogenic, informational, and mobile infrastructure that ensure regional viability across planning, response, and recovery phases. The results confirm the relevance of the approach for assessing infrastructure resilience risks in regional spatial–functional systems, which demonstrates the potential integration into sustainable development strategies at the level of regional governance, cross-sectoral planning, and cultural reevaluation of the role of analytics as an ethically grounded practice for cultivating trust, transparency, and professional maturity. Full article
Show Figures

Figure 1

Back to TopTop