Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,142)

Search Parameters:
Keywords = resource flows

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4388 KB  
Article
Deep Temperature and Heat-Flow Characteristics in Uplifted and Depressed Geothermal Areas
by Pengfei Chi, Guoshu Huang, Liang Liu, Jian Yang, Ning Wang, Xueting Jing, Junjun Zhou, Ningbo Bai and Hui Ding
Energies 2025, 18(21), 5610; https://doi.org/10.3390/en18215610 (registering DOI) - 25 Oct 2025
Abstract
To address the high costs and inefficiencies of blind prospecting in deep geothermal exploration, this study develops a three-dimensional heat transfer model for quantitative prediction of geothermal enrichment targets. Unlike traditional qualitative or single-mechanism analyses, this research utilizes a finite element forward modeling [...] Read more.
To address the high costs and inefficiencies of blind prospecting in deep geothermal exploration, this study develops a three-dimensional heat transfer model for quantitative prediction of geothermal enrichment targets. Unlike traditional qualitative or single-mechanism analyses, this research utilizes a finite element forward modeling approach based on step-faulted depressions (sedimentary basins/grabens) and uplifts (domes/uplift belts). We simulate temperature fields and heat flux distributions in multilayered systems incorporating four thermal conductivity types (A, K, H, Q). By systematically comparing the geometric heat flow convergence in depressions with the lateral diffusion in uplifts, this work reveals mirror and anti-mirror relationships between temperature fields and structural morphology at middle and deep levels, as well as local “hot spot” and “cold zone” effects. The results indicate that, in depressional structures, shallow high-temperature reservoirs (<2 km) are mainly concentrated in A- and K-types, while deeper reservoirs (>3 km) are enriched in Q- and H-types. In contrast, uplift structures are characterized by mid- to shallow-depth (<3 km) reservoirs predominantly in A- and K-types, with high temperatures at depth preferentially hosted in A- and H-types, and the highest temperatures observed in the A-type. Thermal conductivity contrasts, layer thicknesses, and structural morphology collectively control the spatial distribution of heat flux. A strong positive correlation between thermal conductivity and heat flux is observed at the central target area, significantly stronger than at the margins, whereas this relationship is notably weakened in Q-type. Crucially, low-conductivity zones display high geothermal gradients coupled with low terrestrial heat flow, disproving the axiom that “elevated geothermal gradients imply high heat flow,” thus establishing “high-gradient/low-heat-flow coupling zones” as strategic exploration targets. The model developed in this study demonstrates high simulation accuracy and computational efficiency. The findings provide a robust theoretical basis for reconstructing geothermal geological evolution and precise geothermal target localization, thereby reducing the risk of “blind heat exploration” and promoting the cost-effective and refined development of deep concealed geothermal resources. Full article
(This article belongs to the Special Issue Advanced Research in Heat and Mass Transfer)
Show Figures

Figure 1

24 pages, 9449 KB  
Article
Assessing the Hydraulic Parameters of an Open Channel Spillway Through Numerical and Experimental Approaches
by Elaheh Motahari Moghadam, Ali Saeidi, Javier Patarroyo, Alain Rouleau and Meghdad Payan
Water 2025, 17(21), 3059; https://doi.org/10.3390/w17213059 (registering DOI) - 25 Oct 2025
Abstract
The effective design and operation of hydraulic structures, particularly open channel spillways, are crucial for water resource management and flood risk reduction in dams. A clear understanding of flow properties, such as velocity fluctuations and discharge, across various depths is essential for optimizing [...] Read more.
The effective design and operation of hydraulic structures, particularly open channel spillways, are crucial for water resource management and flood risk reduction in dams. A clear understanding of flow properties, such as velocity fluctuations and discharge, across various depths is essential for optimizing performance. In this study, experimental analysis and numerical simulation using FLOW-3D were combined to investigate the hydraulic parameters of a scaled model of the Romaine IV spillway located in Quebec, Canada. Measurements focused on flow properties, including velocity fluctuations at various discharge rates in specific flow depths, at selected points along the spillway. The numerical model was assessed by reproducing experimental geometry, initial water levels, and boundary conditions, and through sensitivity analyses to ensure accurate flow representation. Comparisons of flow rates of 180, 240, and 340 L/s showed that while simulations with the renormalized group (RNG) turbulence model reliably predicted average velocities, they underestimated maximum values and overestimated minimum values, especially at higher discharges. The results highlight the difficulty of accurately capturing velocity extremes in turbulent flows and the need for further model refinement. This was evident from the 60% discrepancy in minimum velocities observed at the channel center. Despite these discrepancies, the study advances our understanding of spillway performance and identifies avenues to improve the accuracy of numerical modeling in hydraulic engineering. Full article
(This article belongs to the Special Issue Hydrodynamics Science Experiments and Simulations, 2nd Edition)
Show Figures

Figure 1

21 pages, 380 KB  
Article
When Home Helps or Hurts: A Moderated Mediation Analysis of Work Meaning, Intrinsic Motivation, and Life Satisfaction Across Family Flexibility Profiles
by Tiberiu Dughi, Dana Rad, Alina Roman, Dana Dughi, Camelia Daciana Stoian, Nicolae Radu Stoian, Cristian Măduța, Remus Runcan, Alina Costin, Anca Egerău, Claudiu Coman, Sonia Ignat, Evelina Balaș, Maria Sinaci and Gavril Rad
Behav. Sci. 2025, 15(11), 1451; https://doi.org/10.3390/bs15111451 (registering DOI) - 24 Oct 2025
Abstract
The present study investigates the twofold effect of home–work spillover on life satisfaction through intrinsic work motivation and meaning derived from work, with family flexibility as a moderator. Based on Self-Determination Theory and the Work–Home Resources model, we test a moderated parallel mediation [...] Read more.
The present study investigates the twofold effect of home–work spillover on life satisfaction through intrinsic work motivation and meaning derived from work, with family flexibility as a moderator. Based on Self-Determination Theory and the Work–Home Resources model, we test a moderated parallel mediation model whereby both positive and negative spillover from home affect life satisfaction through motivational and meaning pathways, depending on the level of family flexibility. 735 working adults completed validated measures of work-related flow, work meaning, home–work interaction (negative and positive), family flexibility, and life satisfaction. PROCESS macro (Model 59) via 5000 bootstrapped samples indicated that home negatively influencing work was associated with lower life satisfaction, mainly via reduced work meaning, particularly for individuals with low family flexibility. Conversely, positive work–home interaction was associated with higher work meaning and, indirectly, greater life satisfaction, with this effect being stronger when family flexibility was lower. Intrinsic motivation was associated with life satisfaction through mediation only when family flexibility was higher. These results indicate work meaning and family context compensatory and buffering effects on well-being. The research adds to integrative work–life interface models by delineating conditional psychological processes that enable employee flourishing. Full article
(This article belongs to the Special Issue Healthy Work Environment: Employee Well-Being and Job Satisfaction)
Show Figures

Figure 1

43 pages, 6958 KB  
Review
From Multi-Field Coupling Behaviors to Self-Powered Monitoring: Triboelectric Nanogenerator Arrays for Deep-Sea Large-Scale Cages
by Kefan Yang, Shengqing Zeng, Keqi Yang, Dapeng Zhang and Yi Zhang
J. Mar. Sci. Eng. 2025, 13(11), 2042; https://doi.org/10.3390/jmse13112042 (registering DOI) - 24 Oct 2025
Abstract
As global Marine resource development continues to expand into deep-sea and ultra-deep-sea domains, the intelligent and green transformation of deep-sea aquaculture equipment has become a key direction for high-quality development of the Marine economy. Large deep-sea cages are considered essential equipment for deep-sea [...] Read more.
As global Marine resource development continues to expand into deep-sea and ultra-deep-sea domains, the intelligent and green transformation of deep-sea aquaculture equipment has become a key direction for high-quality development of the Marine economy. Large deep-sea cages are considered essential equipment for deep-sea aquaculture. However, there are significant challenges associated with ensuring their structural integrity and long-term monitoring capabilities in the complex Marine environments characteristic of deep-sea aquaculture. The present study focuses on large deep-sea cages, addressing their dynamic response challenges and long-term monitoring power supply needs in complex Marine environments. The present study investigates the nonlinear vibration characteristics of flexible net structures under complex fluid loads. To this end, a multi-field coupled dynamic model is constructed to reveal vibration response patterns and instability mechanisms. A self-powered sensing system based on triboelectric nanogenerator (TENG) technology has been developed, featuring a curved surface adaptive TENG array for the real-time monitoring of net vibration states. This review aims to focus on the research of optimizing the design of curved surface adaptive TENG arrays and deep-sea cage monitoring. The present study will investigate the mechanisms of energy transfer and cooperative capture within multi-body coupled cage systems. In addition, the biomechanics of fish–cage flow field interactions and micro-energy capture technologies will be examined. By integrating different disciplinary perspectives and adopting innovative approaches, this work aims to break through key technical bottlenecks, thereby laying the necessary theoretical and technical foundations for optimizing the design and safe operation of large deep-sea cages. Full article
Show Figures

Figure 1

33 pages, 2850 KB  
Review
Network Traffic Analysis Based on Graph Neural Networks: A Scoping Review
by Ruonan Wang, Jinjing Zhao, Hongzheng Zhang, Liqiang He, Hu Li and Minhuan Huang
Big Data Cogn. Comput. 2025, 9(11), 270; https://doi.org/10.3390/bdcc9110270 (registering DOI) - 24 Oct 2025
Abstract
Network traffic analysis is crucial for understanding network behavior and identifying underlying applications, protocols, and service groups. The increasing complexity of network environments, driven by the evolution of the Internet, poses significant challenges to traditional analytical approaches. Graph Neural Networks (GNNs) have recently [...] Read more.
Network traffic analysis is crucial for understanding network behavior and identifying underlying applications, protocols, and service groups. The increasing complexity of network environments, driven by the evolution of the Internet, poses significant challenges to traditional analytical approaches. Graph Neural Networks (GNNs) have recently garnered considerable attention in network traffic analysis due to their ability to model complex relationships within network flows and between communicating entities. This scoping review systematically surveys major academic databases, employing predefined eligibility criteria to identify and synthesize key research in the field, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) methodology. We present a comprehensive overview of a generalized architecture for GNN-based traffic analysis and categorize recent methods into three primary types: node prediction, edge prediction, and graph prediction. We discuss challenges in network traffic analysis, summarize solutions from various methods, and provide practical recommendations for model selection. This review also compiles publicly available datasets and open-source code, serving as valuable resources for further research. Finally, we outline future research directions to advance this field. This work offers an updated understanding of GNN applications in network traffic analysis and provides practical guidance for researchers and practitioners. Full article
Show Figures

Figure 1

24 pages, 3609 KB  
Article
Experimental Characterization and Modelling of a Humidification–Dehumidification (HDH) System Coupled with Photovoltaic/Thermal (PV/T) Modules
by Giovanni Picotti, Riccardo Simonetti, Luca Molinaroli and Giampaolo Manzolini
Energies 2025, 18(21), 5586; https://doi.org/10.3390/en18215586 - 24 Oct 2025
Abstract
Water scarcity is a relevant issue whose impact can be mitigated through sustainable solutions. Humidification–dehumidification (HDH) cycles powered by photovoltaic thermal (PVT) modules enable pure water production in remote areas. In this study, models have been developed and validated for the main components [...] Read more.
Water scarcity is a relevant issue whose impact can be mitigated through sustainable solutions. Humidification–dehumidification (HDH) cycles powered by photovoltaic thermal (PVT) modules enable pure water production in remote areas. In this study, models have been developed and validated for the main components of the system, the humidifier and the dehumidifier. A unique HDH-PVT prototype was built and experimentally tested at the SolarTech Lab of Politecnico di Milano in Milan, Italy. The experimental system is a Closed Air Closed Water—Water Heated (CACW-WH) that mimics a Closed Air Open Water—Water Heated (CAOW-WH) cycle through brine cooling, pure water mixing, and recirculation, avoiding a continuous waste of water. Tests were performed varying the mass flow ratio (MR) between 0.346 and 2.03 during summer and autumn in 2023 and 2024. The experimental results enabled the verification of the developed models. The optimal system performance was obtained for an MR close to 1 and a maximum cycle temperature of 44 °C, enabling a 0.51 gain output ratio (GOR) and 0.72% recovery ratio (RR). The electrical and thermal energy generation of the PVT modules satisfied the whole consumption of the system enabling pure water production exploiting only the solar resource available. The PVT-HDH system proved the viability of the proposed solution for a sustainable self-sufficient desalination system in remote areas, thus successfully addressing water scarcity issues exploiting a renewable energy source. Full article
Show Figures

Figure 1

19 pages, 4799 KB  
Article
Seepage Response of Fractured Sandstone to the True Triaxial Gas–Solid Coupling Effect
by Yangwen Gao, Tong Zhang, Xiang Yu, Yanfang Li and Xin Yang
Appl. Sci. 2025, 15(21), 11371; https://doi.org/10.3390/app152111371 - 23 Oct 2025
Abstract
The fluid flow in underground reservoirs is directly related to resource recovery and hazard prevention. In this study, the evolution of fractured sandstone deformation and permeability under an in situ stress influence is investigated using the true triaxial percolation system. The results show [...] Read more.
The fluid flow in underground reservoirs is directly related to resource recovery and hazard prevention. In this study, the evolution of fractured sandstone deformation and permeability under an in situ stress influence is investigated using the true triaxial percolation system. The results show that the strain of fractured sandstone increases logarithmically with the increase in axial stress. The evolution of axial strain is dominated by the maximum principal stress, and the minimum principal stress and the intermediate principal stress affect the strain amplitude. The fracture morphology of low-permeability sandstone affects permeability and strain evolution. Small fractures are more sensitive to the increase in the maximum principal stress, and the response in principal strain to the increase in principal stress is obvious in large fractures. There is a negative exponential relationship between pore pressure and the conductivity of fractures. When pore pressure is 0.3 MPa, the conductivity is the highest; meanwhile, when pore pressure is 1.8 MPa, the conductivity is the lowest. The decreasing range of the conductivity increases with the increase in fracture size. In situ stress significantly affects the evolution of principal strain and related permeability. The permeability decreases with an increase in the minimum and middle principal stresses. Under low pore pressure (0.3–0.6 MPa), the permeability decreases with an increase in the principal stress; meanwhile, under high pore pressure (0.6–1.8 MPa), permeability changes slightly with an increase in the principal stress. The findings provide reference to the engineering practice of underground mining. Full article
(This article belongs to the Special Issue Advanced Methodology and Analysis in Coal Mine Gas Control)
Show Figures

Figure 1

20 pages, 2740 KB  
Article
Genome-Wide SNP Analysis Reveals the Unique Genetic Diversity Represented by Fat-Tailed Coarse-Wooled Sheep Breeds of Kazakhstan
by Kairat Dossybayev, Makpal Amandykova, Daniya Ualiyeva, Tilek Kapassuly, Altynay Kozhakhmet, Elena Ciani, Bakytzhan Bekmanov and Rauan Amzeyev
Biology 2025, 14(11), 1478; https://doi.org/10.3390/biology14111478 (registering DOI) - 23 Oct 2025
Abstract
Background: The fat-tailed coarse-wooled sheep breeds exhibit excellent reproductive performance, exceptional adaptability to pasture conditions, and high precocity, contributing to enhanced meat, fat, and wool productivity in sheep breeding. Despite the significant role of these sheep breeds in Kazakhstan’s livestock production, their genetics [...] Read more.
Background: The fat-tailed coarse-wooled sheep breeds exhibit excellent reproductive performance, exceptional adaptability to pasture conditions, and high precocity, contributing to enhanced meat, fat, and wool productivity in sheep breeding. Despite the significant role of these sheep breeds in Kazakhstan’s livestock production, their genetics remain poorly studied. This raises concerns about the potential loss of unique, breed-specific traits that could be important for the future development and resilience of Kazakh stan’s sheep farming sector. This study aimed to analyze genome-wide genotyping SNP data of local fat-tailed coarse-wooled sheep breeds (Kazakh fat-tailed coarse-wooled, Edilbay, and Gissar) to reveal their genetic diversity, breed characteristics, and phylogenetic relationships with worldwide domestic sheep breeds and wild sheep. Methods: The OvineSNP50 Genotyping BeadChip was used to obtain genome-wide SNP genotyping data from 160 fat-tailed coarse-wooled sheep from Kazakhstan. Population structure analysis, principal component analysis, phylogenetic and the maximum likelihood tree analysis were performed in comparison with foreign domestic sheep breeds and wild sheep populations. Results: Kazakh breeds exhibited high genetic diversity, with Edilbay showing the greatest allelic richness. PCA and Admixture revealed clear differentiation among the three breeds: Edilbay and Gissar formed homogeneous clusters, while Kazakh fat-tailed coarse-wooled sheep displayed admixture and substructure. Evidence of gene flow from Edilbay into other Kazakh populations supports its role as a genetic source for regional breeds. Phylogenetic analysis placed Kazakhstani sheep close to other Central Asian breeds, while clearly distinct from East Asian and European populations. Wild sheep (Argali and Urial) formed separate clades, with Kerman wild sheep clustering closer to Urial. Conclusions: Our results highlight the value of genotyping data for studying genetic diversity and population structure. Developing genetic resources for Kazakhstan’s native sheep breeds will help preserve their unique diversity and ensure it remains available for future use in breeding and adaptation efforts. Full article
(This article belongs to the Special Issue Genetic Variability within and between Populations)
Show Figures

Figure 1

18 pages, 650 KB  
Article
The Influence of Sewage on the Quantitative and Functional Diversity of Nematode Communities in Constructed Wetlands (VFCW): Analysis of Trophic Relationships Using Canonical Methods
by Magdalena Bagińska, Tomasz Warężak, Wacław Romaniuk, Dawid Kozacki, Zbigniew Skibko, Andrzej Borusiewcz and Jarosław Dąbrowski
Water 2025, 17(21), 3044; https://doi.org/10.3390/w17213044 - 23 Oct 2025
Abstract
Given the increasing demand for water and the need to reduce energy consumption, modern wastewater treatment systems should be characterised by high pollutant removal efficiency while consuming low resources. Hydrophytic wastewater treatment plants with vertical flow through a soil-plant bed (VFCW) are one [...] Read more.
Given the increasing demand for water and the need to reduce energy consumption, modern wastewater treatment systems should be characterised by high pollutant removal efficiency while consuming low resources. Hydrophytic wastewater treatment plants with vertical flow through a soil-plant bed (VFCW) are one solution that meets these requirements. The efficiency of these systems largely depends on the biological activity of the bed, of which free-living soil nematodes are an important component. The study presented in this paper aimed to assess the relationship between the quality of domestic wastewater flowing into VFCW beds and the abundance and trophic structure of soil nematode communities. The analysis was carried out on two real-world sites, where VFCW beds were the third stage of the plant bed system. Both treatment plants received only domestic wastewater. Statistical analysis showed no significant differences (p > 0.05) in the physicochemical composition of the wastewater flowing into the two treatment plants, indicating homogeneous system feed conditions. Nevertheless, canonical correspondence analysis (CCA) showed that the relationships between effluent parameters and the abundance of individual nematode trophic groups differed in each bed, suggesting the influence of local environmental and biocenotic conditions. In particular, bacterivorous nematodes—key to bed function—were shown to be sensitive to different sets of variables at the two sites despite similar effluent composition. These results confirm that the rhizosphere—a zone of intense interactions between plant roots, microorganisms, and soil microfauna—plays a critical role in shaping the biological activity of the bed. Nematodes, particularly bacterivorous nematodes, support the mineralisation of organic matter and nutrient cycling, resulting in increased efficiency of treatment processes. The stability of the total nematode abundance, irrespective of inflow conditions, demonstrates the bed biocenosis high ecological resilience to external disturbances. The study’s results highlight the importance of an ecosystem approach in designing and managing nature-based solutions (NBS) treatment plants, which can be a sustainable component of sustainable water and wastewater management. Full article
(This article belongs to the Special Issue Rural Wastewater Treatment by Nature-Based Solutions)
Show Figures

Figure 1

18 pages, 2568 KB  
Article
Transmission Network Expansion Planning Method Based on Feasible Region Description of Virtual Power Plant
by Li Guo, Guiyuan Xue, Zheng Xu, Wenjuan Niu, Chenyu Wang, Jiacheng Li, Huixiang Li and Xun Dou
World Electr. Veh. J. 2025, 16(11), 590; https://doi.org/10.3390/wevj16110590 - 23 Oct 2025
Viewed by 41
Abstract
In response to China’s “Dual Carbon” goals, this paper proposes a Transmission Network Expansion Planning (TNEP) model that explicitly incorporates the operational flexibility of Virtual Power Plants (VPPs). Unlike conventional approaches that focus mainly on transmission investment, the proposed method accounts for the [...] Read more.
In response to China’s “Dual Carbon” goals, this paper proposes a Transmission Network Expansion Planning (TNEP) model that explicitly incorporates the operational flexibility of Virtual Power Plants (VPPs). Unlike conventional approaches that focus mainly on transmission investment, the proposed method accounts for the aggregated dispatchable capability of VPPs, providing a more accurate representation of distributed resources. The VPP aggregation model is characterized by the inclusion of electric vehicles, which act not only as load-side demand but also as flexible energy storage units through vehicle-to-grid interaction. By coordinating EV charging/discharging with photovoltaics, wind generation, and other distributed resources, the VPP significantly enhances system flexibility and provides essential support for grid operation. The vertex search method is employed to delineate the boundary of the VPP’s dispatchable feasible region, from which an equivalent model is established to capture its charging, discharging, and energy storage characteristics. This model is then integrated into the TNEP framework, which minimizes the comprehensive cost, including annualized line investment and the operational costs of both the VPP and the power grid. The resulting non-convex optimization problem is solved using the Quantum Particle Swarm Optimization (QPSO) algorithm. A case study based on the Garver-6 bus and Garver-18 bus systems demonstrates the effectiveness of the approach. The results show that, compared with traditional planning methods, strategically located VPPs can save up to 6.65% in investment costs. This VPP-integrated TNEP scheme enhances system flexibility, improves economic efficiency, and strengthens operational security by smoothing load profiles and optimizing power flows, thereby offering a more reliable and sustainable planning solution. Full article
Show Figures

Figure 1

18 pages, 4149 KB  
Article
Enhanced Chromite Recovery from Tailings via a Custom-Designed Shaking Table: Optimization and Performance
by Savas Ozun and Ahmet Kerim Guraslan
Minerals 2025, 15(11), 1100; https://doi.org/10.3390/min15111100 - 23 Oct 2025
Viewed by 44
Abstract
Significant chromite losses to tailings in gravity separation plants arise from both suboptimal separator design and inefficient beneficiation processes, posing major challenges to resource utilization, energy efficiency, and environmental sustainability. These losses are particularly critical because the material, already comminuted to liberation size, [...] Read more.
Significant chromite losses to tailings in gravity separation plants arise from both suboptimal separator design and inefficient beneficiation processes, posing major challenges to resource utilization, energy efficiency, and environmental sustainability. These losses are particularly critical because the material, already comminuted to liberation size, is discarded, leading to reduced concentrate yield, wasted energy input, and increased environmental pollution. To address this issue, an industrial-scale custom-designed shaking table was developed and tested to recover marketable-grade chromite concentrate (≥42% Cr2O3) from processing plant tailings containing 3.25%–4.25% Cr2O3, which had accumulated over years of chromite beneficiation. Experimental results showed that, under optimized operating parameters (320 rpm stroke frequency, 13 mm stroke length, 1° deck slope, 1300 g/L pulp density, 800 kg/h feed rate, and 7 tph wash water flow rate), Cr2O3 recovery increased from 8% to 27% for the first and second floor operations and from approximately 17% to 41% for the third and fourth floor operations compared with existing plant performance. The results revealed a strong interdependence between Cr2O3 recovery and concentrate grade, both of which are critical indicators of process efficiency. Intermediate particle sizes (−0.250 + 0.150 mm) provided the most favorable balance, yielding high recovery rates without substantially compromising the concentrated grade. Full article
Show Figures

Figure 1

17 pages, 2715 KB  
Article
Assessment of Variability in Cerebral Blood Flow and Cerebral Blood Volume in Cerebral Arteries of Ischemic Stroke Patients Using Dynamic Contrast-Enhanced MRI
by Bilal Bashir, Babar Ali, Saeed Alqahtani and Benjamin Klugah-Brown
Tomography 2025, 11(11), 117; https://doi.org/10.3390/tomography11110117 - 22 Oct 2025
Viewed by 107
Abstract
Background/Objectives: Cerebral blood flow (CBF) and cerebral blood volume (CBV) are critical perfusion metrics in diagnosing ischemic stroke. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) enables the evaluation of these cerebral perfusion metrics; however, accurately assessing them remains challenging. This study aimed to: (1) [...] Read more.
Background/Objectives: Cerebral blood flow (CBF) and cerebral blood volume (CBV) are critical perfusion metrics in diagnosing ischemic stroke. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) enables the evaluation of these cerebral perfusion metrics; however, accurately assessing them remains challenging. This study aimed to: (1) assess CBF asymmetry by quantifying and comparing it between contralateral hemispheres (right vs. left) within the MCA, ACA, and PCA territories using paired t-tests, and describe pattern of CBV; (2) evaluate overall inter-territorial regional variations in CBF across the different cerebral arterial territories (MCA, ACA, PCA), irrespective of the hemisphere, using ANOVA; (3) determine the correlation between CBF and CBV using both Pearson’s and Spearman’s correlation analyses; and (4) assess the influence of age and gender on CBF using multiple regression analysis. Methods: A cross-sectional study of 55 ischemic stroke patients was conducted. DCE-MRI was used to measure CBF and CBV. Paired t-tests compared contralateral hemispheric CBF in MCA, PCA, and ACA, one-way ANOVA assessed overall inter-territorial CBF variations, correlation analyses (Pearson/Spearman) evaluated the CBF-CBV relationship, and linear regression modeled demographic effects. Results: Significant contralateral asymmetries in CBF were observed for each cerebral pair of cerebral arteries using a paired t-test, with descriptive asymmetries noted in CBV. Separately, ANOVA revealed significant overall variability in CBF between the different cerebral arteries, irrespective of hemisphere. A strong positive correlation was found between CBF and CBV (Pearson r = 0.976; Spearman r = 0.928), with multiple regression analysis identifying age and gender as significant predictors of CBF. Conclusions: This study highlights hemispheric asymmetry and inter-territorial variation, the impact of age, and gender on CBF. DCE-MRI provides perfusion metrics that can guide individualized stroke treatment, offering valuable insights for therapeutic planning, particularly in resource-limited settings. Full article
Show Figures

Figure 1

32 pages, 12269 KB  
Article
Geological and Geotechnical Studies Aimed at the Project and Construction of Rockfill Recharge Dams: The Case Study of the Wadi Sulayf Dam, Wilayat Ibri Region, Oman
by Vincenzo Canzoneri, Alessandro Bonfardeci, Simona Bongiovanni, Lavinia Coletta, Enrico Paolo Curcuruto, Maurizio Gasparo Morticelli, Attilio Sulli and Alessandro Canzoneri
Geotechnics 2025, 5(4), 74; https://doi.org/10.3390/geotechnics5040074 - 22 Oct 2025
Viewed by 60
Abstract
In recent years the Government of the Sultanate of Oman has planned the construction of recharge dams in the semi-desert region of Wilayat Ibri, according to the growing domestic water demand for drinking and agricultural use. For this reason, the Engineering Company SERING [...] Read more.
In recent years the Government of the Sultanate of Oman has planned the construction of recharge dams in the semi-desert region of Wilayat Ibri, according to the growing domestic water demand for drinking and agricultural use. For this reason, the Engineering Company SERING International planned the construction of rockfill dams, well positioned according to the local morphological and geological context. Using temporary floodwaters and releasing them slowly downstream, these dams increase the water flow of the Aflaj. The latter is the existing traditional irrigation system devised to manage the scarce water resources of the Sultanate. In this paper, we describe the IBRI 14 Dam, namely Wadi Sulayf Dam, with a total length of about 3200 m and lying close to the settlements of Ibri Town, the largest one among those projected. This paper shows the criteria that guided the design studies of the dam linked to the geological and geotechnical features of the area, the main dam characteristic and the activities developed until the work was completed in 2020. This work represents an interesting and useful case study about the complete cycle of realization of a dam, in particular considering that it had been affected by huge flooding during the construction but reporting no significant damage. Full article
Show Figures

Figure 1

37 pages, 3734 KB  
Article
A Surrogate Modeling Approach for Aggregated Flexibility Envelopes in Transmission–Distribution Coordination: A Case Study on Resilience
by Marco Rossi, Andrea Pitto, Emanuele Ciapessoni and Giacomo Viganò
Energies 2025, 18(21), 5567; https://doi.org/10.3390/en18215567 - 22 Oct 2025
Viewed by 123
Abstract
The role of distributed energy resources in distribution networks is evolving to support system operation, facilitated by their participation in local flexibility markets. Future scenarios envision a significant share of low-power resources providing ancillary services to efficiently manage network congestions, offering a competitive [...] Read more.
The role of distributed energy resources in distribution networks is evolving to support system operation, facilitated by their participation in local flexibility markets. Future scenarios envision a significant share of low-power resources providing ancillary services to efficiently manage network congestions, offering a competitive alternative to conventional grid reinforcement. Additionally, the interaction between distribution and transmission systems enables the provision of flexibility services at higher voltage levels for various applications. In such cases, the aggregated flexibility of low-power resources is typically represented as a capability envelope at the interface between the distribution and transmission network, constructed by accounting for distribution grid constraints and subsequently communicated to the transmission system operator. This paper revisits this concept and introduces a novel approach for envelope construction. The proposed method is based on a surrogate model composed of a limited set of standard power flow components—loads, generators, and storage units—enhancing the integration of distribution network flexibility into transmission-level optimization frameworks. Notably, this advantage can potentially be achieved without significant modifications to the optimization tools currently available to grid operators. The effectiveness of the approach is demonstrated through a case study in which the adoption of distribution network surrogate models within a coordinated framework between transmission and distribution operators enables the provision of ancillary services for transmission resilience support. This results in improved resilience indicators and lower control action costs compared to conventional shedding schemes. Full article
(This article belongs to the Section F1: Electrical Power System)
26 pages, 6810 KB  
Article
Numerical Simulation Study of Wear in a Segmented-Blade Helical Centrifugal Deep-Sea Mining Pump
by Hao Lv, Tao Yu, Ibra Fall, Desheng Zhang and Ruijie Zhao
J. Mar. Sci. Eng. 2025, 13(11), 2028; https://doi.org/10.3390/jmse13112028 - 22 Oct 2025
Viewed by 68
Abstract
The deep-sea mining pump is a core component in deep-sea mineral resource extraction, whose performance directly determines the transportation efficiency of coarse-grained ore and overall system reliability. However, deep-sea mining pumps suffer from severe abrasion of internal components due to continuous impact by [...] Read more.
The deep-sea mining pump is a core component in deep-sea mineral resource extraction, whose performance directly determines the transportation efficiency of coarse-grained ore and overall system reliability. However, deep-sea mining pumps suffer from severe abrasion of internal components due to continuous impact by coarse ore particles, leading to short service life and high maintenance costs. These issues adversely impact the economics and continuity of mining operations. Consequently, studying the solid-liquid flow to understand wear mechanisms and develop optimized, wear-resistant designs is crucial for enhancing pump performance. This paper establishes a fully coupled solid-liquid two-phase flow platform by integrating Fluent and EDEM, based on an artificial diffusion-based coarse-particle CFD-DEM (Computational Fluid Dynamics-Discrete Element Method) approach, to systematically investigate the critical technical issue of internal pump wear. The study finds that wear in traditional spiral centrifugal pump blades is primarily concentrated on the leading edge and the middle section. On the leading edge, wear comprises 56.4% cutting wear and 44.7% impact wear; in contrast, cutting wear accounts for 96.8% of the total wear in the middle section. To address the premature failure of traditional impeller blades caused by localized wear concentration, this paper proposes an optimized design for a novel spiral centrifugal impeller with segmented blades. By modifying the impeller structure, the proposed design relocates the primary wear zones to the leading edges of the two blade segments, thereby facilitating the application of anti-wear treatments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop