Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (739)

Search Parameters:
Keywords = retention index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11494 KB  
Article
Influence of Land Use/Land Cover Dynamics on Urban Surface Metrics in Semi-Arid Heritage Cities
by Saurabh Singh, Ram Avtar, Ankush Kumar Jain, Wafa Saleh Alkhuraiji and Mohamed Zhran
Land 2025, 14(9), 1834; https://doi.org/10.3390/land14091834 (registering DOI) - 8 Sep 2025
Abstract
Rapid urbanization in semi-arid heritage cities is accelerating land use/land cover (LULC) transitions, with critical implications for local climate regulation, surface energy balance, and environmental sustainability. This study investigates Jaipur, Jodhpur, and Udaipur (Rajasthan, India) between 2018 and 2024 to assess the influence [...] Read more.
Rapid urbanization in semi-arid heritage cities is accelerating land use/land cover (LULC) transitions, with critical implications for local climate regulation, surface energy balance, and environmental sustainability. This study investigates Jaipur, Jodhpur, and Udaipur (Rajasthan, India) between 2018 and 2024 to assess the influence of spatio-temporal dynamics of LULC on urban surface metrics. Multi-temporal satellite datasets were used to derive the index-based built-up index (IBI), surface urban heat island intensity (SUHI), Albedo, urban thermal field variance index (UTFVI), and bare soil index (BSI). The results reveal substantial built-up expansion—most pronounced in Udaipur (+26.7%)—coupled with vegetation loss (up to −23.8% in Jaipur) and progressive albedo decline (Sen’s slope ≈ −0.002 yr−1). These transformations highlight suppressed surface reflectivity and enhanced heat absorption. A key and novel finding is the emergence of a counter-intuitive surface urban cool island (SUCI) effect, whereby urban cores exhibited daytime cooling and nighttime warming relative to rural surroundings. This anomaly is attributed to the rapid heating and poor nocturnal heat retention of bare, sparsely vegetated rural soils, contrasted with the thermal inertia and shading of urban surfaces. By documenting negative SUHI patterns and explicitly linking them to LULC trajectories, this study advances the understanding of urban climate dynamics in semi-arid contexts. The findings underscore the need for climate-sensitive planning—strengthening peri-urban green belts, regulating impervious expansion, and adopting albedo-enhancing construction materials—while safeguarding cultural heritage. More broadly, the study contributes empirical evidence from climatically vulnerable yet culturally significant cities, offering insights relevant to global SUHI research and sustainable urban development. Full article
34 pages, 4505 KB  
Article
Partial Replacement of Peat: Effects on Substrate Physico-Hydrological Properties and Sage Growth
by Anna Elisa Sdao, Sonia Cacini, Danilo Loconsole, Giulia Conversa, Giuseppe Cristiano, Antonio Elia and Barbara De Lucia
Plants 2025, 14(17), 2801; https://doi.org/10.3390/plants14172801 - 7 Sep 2025
Abstract
The transformation of organic by-products derived from waste into value-added resources represents a promising strategy to advance circular economy principles and bolster environmental and agricultural sustainability, especially in soilless cultivation. This study evaluates the viability of three organic by-products—wood fiber (WF), coffee silverskin [...] Read more.
The transformation of organic by-products derived from waste into value-added resources represents a promising strategy to advance circular economy principles and bolster environmental and agricultural sustainability, especially in soilless cultivation. This study evaluates the viability of three organic by-products—wood fiber (WF), coffee silverskin (CS), and brewer’s spent grains (BSGs)—as partial peat replacements in horticultural substrates. Ten growing media formulations were assessed, incorporating increased doses (0–40% v/v as peat replacement-PR) of each alternative by-product. The effects on physical and hydraulic substrate properties, along with plant growth traits, were examined using two ornamental Salvia genotypes, ‘Victoria’ and ‘Amistad’. To synthesize the multivariate growth data into a single, biologically meaningful metric, based on the first principal component, a Growth Index (GI), a PC1-derived index, was calculated, providing a powerful, unified metric to rank substrate efficacy. WF-based substrates exhibited increased porosity and diminished water retention, whereas media enriched with CS and BSG enhanced moisture availability, particularly at 20–40 PR. The bulk density was highest at PR40 for both WF and BSG treatments, and at PR20 in CS-based substrates. Electrical conductivity increased in CS and BSG treatments with rising PR levels. The results on the vegetative growth of ornamental sages have highlighted that differential PR rates are required depending on the specific organic by-product and plant genotype. In ‘Victoria’, GI indicates that a 20% replacement of peat with BSG provided the optimal conditions for holistic plant development; the lowest GI for WF substrates across nearly all peat replacement levels indicated that it was the most detrimental alternative for this cultivar. In ‘Amistad’, the analysis of the GI scores revealed that the CS20 and BSG20 of peat replacement yielded the highest overall growth, with GI scores significantly greater than those of the peat control. CS10 and BSG40 also showed high GI scores in ‘Amistad’. WF10 had GI scores similar to those of the peat control. In general, the GI-based approach confirms that moderate inclusion of brewer’s spent grain (BSG20) is a highly effective peat replacement for both genotypes. At the same time, coffee silverskin (CS) is particularly effective for the ‘Amistad’ genotype. This analysis underscores that optimal substrate formulation is not only dependent on the amendment type and rate but also critically on the plant genotype. Full article
Show Figures

Figure 1

19 pages, 5205 KB  
Article
Characterization of Hemp Hurd-Derived Biochar for Potential Agricultural Applications
by Alberto Assirelli, Elisa Fischetti, Antonio Scarfone, Enrico Santangelo, Monica Carnevale, Enrico Paris, Adriano Palma and Francesco Gallucci
Agronomy 2025, 15(9), 2136; https://doi.org/10.3390/agronomy15092136 (registering DOI) - 5 Sep 2025
Viewed by 152
Abstract
Hemp (Cannabis sativa L.) is a high-yielding crop cultivated for fiber and seed production, generating substantial lignocellulosic residues such as hurds. These byproducts can be valorized through pyro-gasification, a thermochemical process that offers a sustainable alternative to combustion and produces biochar—a promising [...] Read more.
Hemp (Cannabis sativa L.) is a high-yielding crop cultivated for fiber and seed production, generating substantial lignocellulosic residues such as hurds. These byproducts can be valorized through pyro-gasification, a thermochemical process that offers a sustainable alternative to combustion and produces biochar—a promising soil amendment due to its ability to enhance soil quality and mitigate drought stress. This research explores the viability of utilizing industrial hemp hurds as a direct feedstock for biochar production within the context of agricultural exploitation. The study specifically focuses on assessing the feasibility of converting raw, unprocessed hemp hurds into biochar through pyrolysis. A comprehensive characterization of the resulting biochar is conducted to evaluate its properties and potential applications in agriculture, establishing a foundational understanding for future agronomic use. Specific analysis included proximate and ultimate analysis, thermogravimetric analysis (TGA), SEM-EDS, and phytotoxicity testing. The biochar exhibited an alkaline pH (≥9), a low H/C ratio (0.37), and suitable macro- and micronutrient levels. Microstructural analysis revealed a porous architecture favorable for nutrient retention and water absorption. Germination tests with corn (Zea mays L.) showed a germination index above 90% for substrates containing 0.5–1% biochar. These findings establish a foundation for future research aimed at thoroughly exploring the agricultural potential of this material. Full article
(This article belongs to the Special Issue Industrial Crops Production in Mediterranean Climate)
Show Figures

Figure 1

18 pages, 3234 KB  
Article
Start-up Strategies of MBBR and Effects on Nitrification and Microbial Communities in Low-Temperature Marine RAS
by Jixin Yuan, Shuaiyu Lu, Jianghui Du, Kun You, Qian Li, Ying Liu, Gaige Liu, Jianlin Guo and Dezhao Liu
Appl. Sci. 2025, 15(17), 9610; https://doi.org/10.3390/app15179610 - 31 Aug 2025
Viewed by 292
Abstract
The rapid development of marine recirculating aquaculture systems (RASs) worldwide offers an efficient and sustainable approach to aquaculture. However, the slow start-up of the nitrification process under low-temperature conditions remains a significant challenge. This study evaluated multiple start-up strategies for moving bed biofilm [...] Read more.
The rapid development of marine recirculating aquaculture systems (RASs) worldwide offers an efficient and sustainable approach to aquaculture. However, the slow start-up of the nitrification process under low-temperature conditions remains a significant challenge. This study evaluated multiple start-up strategies for moving bed biofilm reactors (MBBRs) operating at 13–15 °C. Among them, the salinity-gradient (SG) strategy exhibited the best performance, reducing the start-up time by 38 days compared to the control, with microbial richness (Chao1 index) reaching 396 and diversity (Shannon index) of 4.89. Inoculation with mature biofilm (MBI) also showed excellent results, shortening the start-up period by 26 days and achieving a stable total ammonia nitrogen (TAN) effluent concentration below 0.5 mg/L within 132 days. MBI exhibited the highest microbial richness (Chao1 index = 808) and diversity (Shannon index = 5.55), significantly higher than those of the control (Chao1 index = 279, Shannon index = 3.90) and other treatments. The hydraulic retention time-gradient (HRT) strategy contributed to performance improvement as well, with a 24-day reduction in start-up time and a Chao1 index of 663 and a Shannon index is 4.69. In contrast, nitrifying bacteria addition (NBA) and carrier adhesion layer modification (CALM) had limited effects on start-up efficiency or microbial diversity, with Chao1 indices of only 255 and 228, and Shannon indices were both 3.24, respectively. Overall, the results indicate that salinity acclimation, mature biofilm inoculation, and extended HRT are effective approaches for promoting microbial community adaptation and enhancing MBBR start-up under low-temperature marine conditions. Full article
44 pages, 5528 KB  
Article
Development and Prediction of a Non-Destructive Quality Index (Qi) for Stored Date Fruits Using VIS–NIR Spectroscopy and Artificial Neural Networks
by Mahmoud G. Elamshity and Abdullah M. Alhamdan
Foods 2025, 14(17), 3060; https://doi.org/10.3390/foods14173060 - 29 Aug 2025
Viewed by 671
Abstract
This study proposes a novel non-destructive approach to assessing and predicting the quality of stored date fruits using a composite quality index (Qi) modeled via visible–near-infrared (VIS–NIR) spectroscopy and artificial neural networks (ANNs). Two leading cultivars, Sukkary and Khlass, were stored for 12 [...] Read more.
This study proposes a novel non-destructive approach to assessing and predicting the quality of stored date fruits using a composite quality index (Qi) modeled via visible–near-infrared (VIS–NIR) spectroscopy and artificial neural networks (ANNs). Two leading cultivars, Sukkary and Khlass, were stored for 12 months using three temperature regimes (25 °C, 5 °C, and −18 °C) and five types of packaging. The samples were grouped into six moisture content categories (4.36–36.70% d.b.), and key physicochemical traits, namely moisture, pH, hardness, total soluble solids (TSSs), density, color, and microbial load, were used to construct a normalized, dimensionless Qi. Spectral data (410–990 nm) were preprocessed using second-derivative transformation and modeled using partial least squares regression (PLSR) and the ANNs. The ANNs outperformed PLSR, achieving the correlation coefficient (R2) values of up to 0.944 (Sukkary) and 0.927 (Khlass), with corresponding root mean square error of prediction (RMSEP) values of 0.042 and 0.049, and the relative error of prediction (REP < 5%). The best quality retention was observed in the dates stored at −18 °C in pressed semi-rigid plastic containers (PSSPCs), with minimal microbial growth and superior sensory scores. The second-order Qi model showed a significantly better fit (p < 0.05, AIC-reduced) over that of linear alternatives, capturing the nonlinear degradation patterns during storage. The proposed system enables real-time, non-invasive quality monitoring and could support automated decision-making in postharvest management, packaging selection, and shelf-life prediction. Full article
Show Figures

Figure 1

25 pages, 4197 KB  
Article
Polyacrylamide-Induced Trade-Offs in Soil Stability and Ecological Function: A Multifunctional Assessment in Granite-Derived Sandy Material
by Junkang Xu, Xin Chen, Guanghui Zhang, Weidong Yu, Chongfa Cai and Yujie Wei
Agronomy 2025, 15(9), 2087; https://doi.org/10.3390/agronomy15092087 - 29 Aug 2025
Viewed by 300
Abstract
Soil erosion in granite-derived weathering mantles poses serious threats to slope stability and ecological sustainability in subtropical regions. While polyacrylamide (PAM) is widely used to improve soil structure, its concentration-dependent effects on multiple soil functions remain unclear. This study developed a multifunctional Soil [...] Read more.
Soil erosion in granite-derived weathering mantles poses serious threats to slope stability and ecological sustainability in subtropical regions. While polyacrylamide (PAM) is widely used to improve soil structure, its concentration-dependent effects on multiple soil functions remain unclear. This study developed a multifunctional Soil Function Index (SFI) framework integrating erosion resistance (SFI1), water regulation (SFI2), and ecological function (SFI3) to evaluate the effects of PAM application (0‰, 1‰, 3‰, 5‰, 7‰) on gully-prone sandy material. Herein, SFI1 was quantified through shear strength (τ) and soil erodibility (Kr); SFI2 was assessed using soil hydraulic parameters (saturated hydraulic conductivity and water retention curves) and SFI3 was derived from the grass root system analysis. The results showed that SFI1 and SFI2 increased nonlinearly with PAM concentration, reaching maximum values of 0.983 and 0.980 at 7‰, with Kr reduced by 77.3% and non-capillary porosity (NAP) increased by 8.1%. In contrast, SFI3 peaked at 0.858 under 3‰ and declined sharply to 0.000 at 7‰, due to micropore over-compaction, reduced aeration, and limited plant-available water. The total SFI exhibited a unimodal trend, with a maximum of 0.755 at 3‰, beyond which ecological suppression offset physical improvements. These findings demonstrate that PAM modifies soil multifunctionality through pore-scale restructuring, inducing function-specific thresholds and trade-offs. A PAM concentration of 3‰ is identified as optimal, achieving a balance between erosion control, hydrological performance, and ecological viability in the management of subtropical granite-derived sandy slopes. Full article
Show Figures

Figure 1

21 pages, 2319 KB  
Article
Subsurface Banding of Poultry Manure Enhances Photosynthetic Efficiency, Yield, and Nutrient Uptake in Buckwheat
by Sina Fallah, Hossein Abedini Dastgerdi, Hans-Peter Kaul and Aliyeh Salehi
Plants 2025, 14(17), 2700; https://doi.org/10.3390/plants14172700 - 29 Aug 2025
Viewed by 441
Abstract
Manure application may improve plant growth, yield, and ecological sustainability. This study investigates optimized organic fertilizer application methods for enhancing buckwheat (Fagopyrum esculentum) productivity in semi-arid conditions. Treatments include broadcasting (Br) and subsurface banding (Ba) of poultry (PM) and cattle (CM) [...] Read more.
Manure application may improve plant growth, yield, and ecological sustainability. This study investigates optimized organic fertilizer application methods for enhancing buckwheat (Fagopyrum esculentum) productivity in semi-arid conditions. Treatments include broadcasting (Br) and subsurface banding (Ba) of poultry (PM) and cattle (CM) manure and foliar spraying (S) of manure extracts (1:5 and 1:10 ratios), urea fertilizer (UF), and a control. Subsurface-banded poultry manure (BaPM) maximized chlorophyll b (4.0 µg/mL), carotenoids (2.30 µmol/mL), anthocyanin (0.02 µmol/mL), leaf area index (2.03), seed nitrogen (3.4%), and spikes per plant (17). BaPM achieved the highest seed yield (646 kg/ha), comparable to BrPM, BaCM, and SPM(1:5). The maximum seed phosphorus content (0.43%) was observed in the BaPM, BrPM, and SCM(1:10) treatments. Dry matter peaked under UF (4870 kg/ha) and BaPM (4641 kg/ha). Banding placement improved nutrient uptake by enhancing root zone retention, while foliar poultry extract (1:5) mitigated phosphorus deficiency. These findings demonstrate that integrating certain manure types with targeted application methods—particularly subsurface banding of poultry manure—optimizes nutrient use efficiency, crop performance, and environmental sustainability in buckwheat cultivation. Full article
Show Figures

Figure 1

20 pages, 24590 KB  
Article
Ecosystem Service Management Zoning Based on Supply–Demand Coupling Analysis: A Case Study of Jiangxi Province
by Faming Zhong, Zhu-An Chen and Xiuquan Li
Sustainability 2025, 17(17), 7766; https://doi.org/10.3390/su17177766 - 29 Aug 2025
Viewed by 398
Abstract
Against the backdrop of ongoing degradation of ecosystem services and the increasing demand for sustainable development, the scientific delineation of ecological management zones has become a critical means by which to balance human wellbeing and ecological conservation. This study takes Jiangxi Province as [...] Read more.
Against the backdrop of ongoing degradation of ecosystem services and the increasing demand for sustainable development, the scientific delineation of ecological management zones has become a critical means by which to balance human wellbeing and ecological conservation. This study takes Jiangxi Province as the research area and selects four typical ecosystem services—food production, water supply, carbon storage, and soil retention—to systematically evaluate their supply–demand relationships from both static and dynamic dimensions. By introducing the entropy weight method to construct a comprehensive supply–demand index and integrating a coupling coordination degree model with a four-quadrant dynamic evolution model, this paper proposes a coupled “static–dynamic” analytical framework. The findings reveal significant spatial heterogeneity in various ecosystem services; high-supply areas are concentrated in the southern and peripheral mountainous regions while demand is closely linked to population distribution, exhibiting a pattern of high demand in the central areas and high supply in the peripheral areas. Our supply–demand matching analysis uncovers a distinct gradient distribution characterized by core imbalance and peripheral coordination, with prominent supply–demand conflicts in urban expansion areas and enhanced coordination in peripheral ecological barrier zones. Based on these insights, we divide Jiangxi Province into five types of ecological management zones: Degraded Restoration, Conflict Mitigation, Coordination Enhancement, Potential Development, and Maintenance Conservation, with tailored management strategies proposed for each zone type. As a result, this study not only provides scientific support for regional ecological spatial optimization but also offers a new methodological paradigm for ecosystem services management. Full article
Show Figures

Figure 1

27 pages, 3307 KB  
Article
Comparative Evaluation of Marine Algae-Based Biostimulants for Enhancing Growth, Physiological Performance, and Essential Oil Yield in Lavender (Lavandula angustifolia) Under Greenhouse Conditions
by Damiano Spagnuolo, Aftab Jamal and Domenico Prisa
Phycology 2025, 5(3), 41; https://doi.org/10.3390/phycology5030041 - 28 Aug 2025
Viewed by 357
Abstract
The application of marine algae-derived biostimulants offers a sustainable approach to improving plant performance in aromatic and medicinal crops. This study investigated the effects of four macroalgal extracts and two commercial biostimulant products on the growth, physiology, and essential oil production of Lavandula [...] Read more.
The application of marine algae-derived biostimulants offers a sustainable approach to improving plant performance in aromatic and medicinal crops. This study investigated the effects of four macroalgal extracts and two commercial biostimulant products on the growth, physiology, and essential oil production of Lavandula angustifolia cultivated under greenhouse conditions at CREA, Pescia (Italy). Treatments included extracts from Ascophyllum nodosum (France and Greenland), Laminaria digitata (Iceland), Sargassum muticum (Italy), two commercial formulations (a seaweed-based and an amino acid-based biostimulant), and a control receiving only standard fertilization. Over a 10-week period, plants were evaluated for multiple parameters: plant height, leaf number and area, SPAD index (chlorophyll content), above- and below-ground biomass, flower production, microbial activity in the growth substrate, and essential oil yield. Algae extracts, particularly those from A. nodosum (Greenland) and S. muticum (Venice), significantly enhanced most parameters compared to the control and commercial products. These treatments yielded higher biomass, greater chlorophyll retention, increased flower number, and improved essential oil content. Rhizosphere microbial counts were also elevated, indicating a positive interaction between algae treatments and substrate biology. The study highlights the multifunctional nature of marine algae, whose complex composition of bioactive compounds appears to promote plant growth and secondary metabolism through multiple pathways. The superior performance of cold- and temperate-climate algae suggests a relationship between environmental origin and biostimulant efficacy. Compared to commercial inputs, the tested algae extracts showed broader and more consistent effects. These findings support the integration of macroalgae-based biostimulants into sustainable lavender cultivation strategies. Further research is recommended to optimize formulations, validate field performance, and explore synergistic effects with beneficial microbes or organic inputs. Full article
Show Figures

Figure 1

30 pages, 297 KB  
Article
Creation and Validation of the Major Pediatric Mitochondrial Cytopathies Minimum Data Set: Consensus from a Moroccan–Tunisian Delphi Study
by Sara El Guessabi, Jihane Belayachi, Ilhem Ben Youssef Turki, Ichraf Kraoua, Said Galai, Hind Lachraf, Ilham Ratbi, Redouane Abouqal and Yamna Kriouile
Children 2025, 12(9), 1121; https://doi.org/10.3390/children12091121 - 26 Aug 2025
Viewed by 1062
Abstract
Background: Pediatric mitochondrial cytopathies (MCs) are rare, multisystemic, and heterogeneous disorders that require harmonized collection of clinical, biochemical, and genetic data to better understand their natural history, optimize patient care, and support translational research. In this context, developing a regionally adapted Minimum [...] Read more.
Background: Pediatric mitochondrial cytopathies (MCs) are rare, multisystemic, and heterogeneous disorders that require harmonized collection of clinical, biochemical, and genetic data to better understand their natural history, optimize patient care, and support translational research. In this context, developing a regionally adapted Minimum Data Set (MDS) is a critical step toward establishing a structured registry. Methods: A two-round Delphi study was conducted involving 16 Moroccan–Tunisian experts from diverse specialties to assess the relevance of 382 initially proposed variables. Robust statistical analyses were applied to all composite questions using Content Validity Index (CVI), Kappa coefficient, and Content Validity Ratio (CVR), alongside retention rate assessments. Results: The overall relevance score assigned by the experts was high (4.5 ± 0.41), with a final retention rate of 90.1% (347 variables retained out of 382). Section-wise S-CVI/Ave scores ranged from 0.91 to 0.99, with the paraclinical section achieving the highest value (0.99) and the evolutive section the lowest (0.91). The more stringent S-CVI/UA revealed greater variability (from 0.36 in clinical data to 0.83 in paraclinical data). Kappa index calculations led to the exclusion of a subclass of five therapeutic variables due to insufficient inter-rater agreement. The CVR further supported the content validity of the 46 retained subclasses. The results demonstrated strong consensus, particularly across the neurological, biochemical, molecular, and medical follow-up domains. Additionally, the registry design survey revealed strong expert support for a secure and interoperable digital platform incorporating longitudinal follow-up and advanced search and reporting functionalities. Conclusions: This validated Moroccan–Tunisian pediatric MDS offers a solid foundation for a regional mitochondrial cytopathy registry. It standardizes data collection, strengthens clinical research, and improves diagnosis and care for affected children in the Maghreb. Moreover, it lays the groundwork for future interoperability with international registries, contributing to a more inclusive and collaborative precision medicine landscape. Full article
(This article belongs to the Section Global Pediatric Health)
19 pages, 590 KB  
Review
Nutritional Status Assessment Tools in Cardiovascular Patients
by Izabela Jarosz, Kamil Gorecki, Grzegorz Kalisz and Joanna Popiolek-Kalisz
Nutrients 2025, 17(16), 2703; https://doi.org/10.3390/nu17162703 - 20 Aug 2025
Viewed by 665
Abstract
Background: Malnutrition is a prevalent but underrecognized condition in cardiovascular disease (CVD) patients, associated with adverse outcomes including longer hospitalizations, higher readmission rates, and increased mortality. Traditional measures such as body mass index (BMI) often fail to detect malnutrition, especially in patients with [...] Read more.
Background: Malnutrition is a prevalent but underrecognized condition in cardiovascular disease (CVD) patients, associated with adverse outcomes including longer hospitalizations, higher readmission rates, and increased mortality. Traditional measures such as body mass index (BMI) often fail to detect malnutrition, especially in patients with fluid retention, sarcopenia, or obesity. Methods: This review critically examines current tools used to assess nutritional status in CVD populations. Screening instruments such as Nutritional Risk Screening 2002 (NRS 2002), Mini Nutritional Assessment (MNA, MNA-SF), Malnutrition Universal Screening Tool (MUST), Subjective Global Assessment (SGA), and the Controlling Nutritional Status (CONUT) score are discussed, alongside diagnostic frameworks including the Global Leadership Initiative on Malnutrition (GLIM) criteria. The role of body composition assessment, particularly bioelectrical impedance analysis (BIA) and phase angle (PA), is also highlighted. Results: These tools differ in diagnostic performance and applicability, with many influenced by the pathophysiological features of CVD, such as inflammation, altered fluid balance, and pharmacotherapy. GLIM criteria provide a standardized two-step approach, combining phenotypic and etiologic factors, but require further validation in cardiology settings. Conclusions: A tailored, multimodal approach could be recommended: initial screening followed by confirmatory assessment using GLIM criteria and objective measures of muscle mass or cellular integrity. Clinicians should be aware of tool-specific limitations and interpret findings in the context of CVD-specific challenges. Full article
(This article belongs to the Special Issue Nutritional Aspects of Cardiovascular Disease Risk Factors)
Show Figures

Graphical abstract

24 pages, 4059 KB  
Article
Nanostructured Lipid Carriers for Sustained Release and Enhanced Delivery of Vanda coerulea Protocorm Extract
by Piyatida Amnuaykan, Pimporn Anantaworasakul, Kodpaka Lueadnakrob, Pongsagon Kunkul, Wilasinee Chokrungsarid, Aiya Thummanuwong, Saranya Juntrapirom, Watchara Kanjanakawinkul and Wantida Chaiyana
Pharmaceutics 2025, 17(8), 1076; https://doi.org/10.3390/pharmaceutics17081076 - 20 Aug 2025
Viewed by 508
Abstract
Background/Objectives: This study aimed to develop a nanostructured lipid carrier (NLC) system incorporating a catechin-rich Vanda coerulea extract for topical cosmetic applications and to evaluate its physicochemical properties, release behavior, and skin retention performance. Methods: Blank NLCs were prepared using hot emulsification followed [...] Read more.
Background/Objectives: This study aimed to develop a nanostructured lipid carrier (NLC) system incorporating a catechin-rich Vanda coerulea extract for topical cosmetic applications and to evaluate its physicochemical properties, release behavior, and skin retention performance. Methods: Blank NLCs were prepared using hot emulsification followed by sonication, with glyceryl monostearate, caprylic triglyceride, Poloxamer® 188, and Tween® 80 as the formulation components. NLCs with varying solid-to-liquid lipid ratios were developed while maintaining a constant total lipid content of 5% w/w. The formulations were characterized based on their particle size, polydispersity index (PDI), zeta potential, and physical stability, including stability after a heating–cooling cycle test. The effect of ultrasonication duration was also evaluated. The optimized NLC was then loaded with a V. coerulea extract and evaluated for in vitro release and skin retention using catechin as a marker. Results: The NLC with a particle size of 235.5 ± 29.8 nm, a narrow PDI range of 0.382 ± 0.090, and a strong zeta potential of −29.8 ± 0.3 mV was selected for the incorporation of the V. coerulea extract. The extract-loaded NLC exhibited a sustained release over 24 h, significantly different from the V. coerulea extract solution (p < 0.05). Skin retention studies revealed that the NLC achieved approximately twice the catechin retention compared to the solution at the 1 h time point (1.30 ± 0.01% vs. 0.68 ± 0.03% w/w). Conclusions: The V. coerulea-extract-loaded NLC demonstrated favorable physicochemical properties, sustained release behavior, and enhanced skin retention. These findings support its potential as a promising topical delivery system for antioxidant-rich botanical extracts in cosmetic applications. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

20 pages, 12201 KB  
Article
A Hybrid Decision-Making Adaptive Median Filtering Algorithm with Dual-Window Detection and PSO Co-Optimization
by Jing Mao, Lianming Sun and Jie Chen
Modelling 2025, 6(3), 85; https://doi.org/10.3390/modelling6030085 - 18 Aug 2025
Viewed by 431
Abstract
Traditional median filtering with a fixed window easily leads to edge blurring and adaptive median filtering requires manual presetting of the maximum window parameter and has insufficient retention of details when dealing with high-density salt-and-pepper noise. Aiming at these problems, this paper proposes [...] Read more.
Traditional median filtering with a fixed window easily leads to edge blurring and adaptive median filtering requires manual presetting of the maximum window parameter and has insufficient retention of details when dealing with high-density salt-and-pepper noise. Aiming at these problems, this paper proposes a hybrid decision-making adaptive median filtering algorithm with dual-window detection in collaboration with particle swarm optimization (PSO). The algorithm quickly locates suspected noise points through a 3 × 3 small window and enhances noise identification accuracy by using a PSO dynamically optimized 5–35-pixel large window. Meanwhile, a hybrid decision-making mechanism based on local statistical properties was introduced to dynamically select median filtering, weighted average based on spatial distance, or pixel preservation strategy to balance noise suppression and detail preservation, and the PSO algorithm was used to automatically find the optimal parameters of the large window’s size to avoid the manual parameter-tuning process. Experiments were conducted on standard grayscale and color images and compared with four traditional methods and two more advanced methods. The experiments showed that the algorithm improved the peak signal-to-noise ratio (PSNR) value by 2–4 dB and the structural similarity index measure (SSIM) metric by 0.05–0.2 under high salt-and-pepper noise density compared with the traditional methods, which effectively improved the contradiction between noise suppression and detail retention in traditional filtering algorithms and provided a highly efficient and intelligent solution for image denoising in high-noise scenarios. Full article
Show Figures

Figure 1

19 pages, 4055 KB  
Article
Effects of Cassava and Modified Starch on the Structural and Functional Characteristics of Peanut Protein-Based Meat Analogs
by Yuhan Su, Jiale Guan, Shuhong Liu, Yiqun Zhu, Liangyan Hu, Yifan Zhang, Fei Lu and Minpeng Zhu
Foods 2025, 14(16), 2849; https://doi.org/10.3390/foods14162849 - 17 Aug 2025
Viewed by 476
Abstract
Meat analog manufacturing via high-moisture extrusion technology is a complex process wherein the properties of protein materials constitute a critical determining factor. In this study, we enhanced the fiber structure properties of high-moisture extruded peanut protein-based meat analogs by incorporating different starches (cassava [...] Read more.
Meat analog manufacturing via high-moisture extrusion technology is a complex process wherein the properties of protein materials constitute a critical determining factor. In this study, we enhanced the fiber structure properties of high-moisture extruded peanut protein-based meat analogs by incorporating different starches (cassava starch, acetyl distarch phosphate [ADSP], and hydroxypropyl starch) to address challenges in water retention, emulsification, and digestibility. The impact of the starch content (0, 3, 6, 9, 12%) was assessed using low-field nuclear magnetic resonance, ultraviolet/fluorescence spectroscopy, differential scanning calorimetry, sodium dodecyl sulfate–polyacrylamide gel electrophoresis, and functional tests. Compared with controls without starch, adding 6% ADSP significantly improved the water retention by forming a dense, charged network, reducing T2b (0.37 ms) and T22 (175.30 ms). ADSP (12%) enhanced the emulsification (activity index 10.28 m2/g, stability index 75%); the cassava starch (12%) increased the in vitro protein digestibility to 83% due to amylopectin degradation. Hydroxypropyl starch (6%) elevated the thermal stability (peak temperature 125.71 °C) by forming a viscous protective matrix (p < 0.05). Ultraviolet and fluorescence spectra indicated protein–starch interactions, with ADSP inducing the most pronounced conformational changes. This study demonstrated that the starch type and concentration critically modulate protein–starch interactions, offering guidance for enhancing the quality of meat analogs. Full article
Show Figures

Graphical abstract

38 pages, 14177 KB  
Article
Spatiotemporal Responses and Threshold Mechanisms of Urban Landscape Patterns to Ecosystem Service Supply–Demand Dynamics in Central Shenyang, China
by Mengqiu Yang, Zhenguo Hu, Rui Wang and Ling Zhu
Sustainability 2025, 17(16), 7419; https://doi.org/10.3390/su17167419 - 16 Aug 2025
Viewed by 512
Abstract
Clarifying the spatiotemporal relationship between urban ecosystem services and changes in landscape patterns is essential, as it has significant implications for balancing ecological protection with socio-economic development. However, existing studies have largely focused on the one-sided impact of landscape patterns on either the [...] Read more.
Clarifying the spatiotemporal relationship between urban ecosystem services and changes in landscape patterns is essential, as it has significant implications for balancing ecological protection with socio-economic development. However, existing studies have largely focused on the one-sided impact of landscape patterns on either the supply or demand of ESs, with limited investigation into how changes in these patterns affect the growth rates of both supply and demand. The central urban area, characterized by complex urban functions, intricate land use structures, and diverse environmental challenges, further complicates this relationship; yet, the spatiotemporal differentiation patterns of ecosystem services’ supply–demand dynamics in such regions, along with the underlying influencing mechanisms, remain insufficiently explored. To address this gap, the present study uses Shenyang’s central urban area, China as a case study, integrating multiple data sources to quantify the spatiotemporal variations in landscape pattern indices and five ecosystem services: water retention, flood regulation, air purification, carbon sequestration, and habitat quality. The XGBoost model is employed to construct non-linear relationships between landscape pattern indices and the supply–demand ratios of these services. Using SHAP values and LOWESS analysis, this study evaluates both the magnitude and direction of each landscape pattern index’s influence on the ecological supply–demand ratio. The findings outlined above indicate that: there are distinct disparities in the spatiotemporal distribution of landscape pattern indices at the patch type level. Additionally, the changing trends in the supply, demand, and supply–demand ratios of ecosystem services show spatiotemporal differentiation. Overall, the ecosystem services in the study area are developing negatively. Further, the impact of landscape pattern characteristics on ecosystem services is non-linear. Each index has a unique effect, and there are notable threshold intervals. This study provides a novel analytical approach for understanding the intricate relationship between landscape patterns and ESs, offering a scientific foundation and practical guidance for urban ecological protection, restoration initiatives, and territorial spatial planning. Full article
(This article belongs to the Special Issue Green Landscape and Ecosystem Services for a Sustainable Urban System)
Show Figures

Figure 1

Back to TopTop