Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (199)

Search Parameters:
Keywords = rho-kinase inhibitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
62 pages, 1053 KB  
Review
Challenge of Corneal Ulcer Healing: A Novel Conceptual Framework, the “Triad” of Corneal Ulcer Healing/Corneal Neovascularization/Intraocular Pressure, and Avascular Tendon Healing, for Evaluation of Corneal Ulcer Therapy, Therapy of Neovascularization, Glaucoma Therapy, and Pentadecapeptide BPC 157 Efficacy
by Sanja Masnec, Antonio Kokot, Tamara Kralj, Mirna Zlatar, Kristina Loncaric, Marko Sablic, Miro Kalauz, Iva Beslic, Katarina Oroz, Bozana Mrvelj, Lidija Beketic Oreskovic, Ivana Oreskovic, Sanja Strbe, Borna Staresinic, Goran Slivsek, Alenka Boban Blagaic, Sven Seiwerth, Anita Skrtic and Predrag Sikiric
Pharmaceuticals 2025, 18(12), 1822; https://doi.org/10.3390/ph18121822 - 28 Nov 2025
Viewed by 42
Abstract
To better address the challenge of corneal ulcer healing, with already available standard agents, and those recently introduced, such as stable gastric pentadecapeptide BPC 157, we introduced a novel conceptual framework—the “triad” of corneal ulcer healing↔corneal neovascularization↔intraocular pressure—and extended it to avascular tissues [...] Read more.
To better address the challenge of corneal ulcer healing, with already available standard agents, and those recently introduced, such as stable gastric pentadecapeptide BPC 157, we introduced a novel conceptual framework—the “triad” of corneal ulcer healing↔corneal neovascularization↔intraocular pressure—and extended it to avascular tissues such as tendon. Within this framework, cytoprotection serves as the unifying principle, underscoring that therapeutic effects are not isolated but interconnected. Preclinical studies with BPC 157 therapy, as a cytoprotection agent, illustrate this integration. BPC 157 rapidly normalizes elevated intraocular pressure in glaucomatous rats, preserves retinal integrity, restores pupil function, maintains corneal transparency during ulcer or abrasion healing, and counteracts both corneal neovascularization and dry eye. In parallel, its consistent efficacy in tendon injury models highlights a cytoprotective specificity across avascular tissues. The cornea’s “angiogenic privilege,” preserved during healing and tendon recovery together, provides strong proof of concept. Furthermore, mapping standard therapeutic agents used for corneal ulcers, neovascularization, or glaucoma onto this triad, and linking them with tendon healing, reveals both shared pathways and inconsistencies across existing drug classes. Analyzed were the ascorbate, fibronectin, hyaluronic acid, metalloproteinase inhibitors, EGF, FGF, NGF, insulin, and IGF-1 (corneal ulcer healing), the antiangiogenic agents (endostatin, PAI-1, PEDF, angiostatin, TSP-1, TSP-2, IFN-α), corticosteroids, NSAIDs, cyclosporine A, anti-VEGF drops (treatment of corneal neovascularization), and alpha 2-agonists, beta-blockers, carboanhydrase inhibitors, muscarinic agonists, Rho-kinase inhibitors, and prostaglandin analogs (glaucoma). Taken together, these findings advance cytoprotection as a unifying therapeutic paradigm, with BPC 157 emerging as its first exemplar, and encourage further translational research toward clinical application. Full article
13 pages, 3414 KB  
Article
9-Methylfascaplysin, a Marine-Derived Bioactive Compound, Promotes Neurite Outgrowth via the Inhibition of ROCK2
by Meilin Zheng, Kangyang Gao, Yirui Hong, Jingyang Le, Jingjing Cai, Hongze Liang and Wei Cui
Pharmaceuticals 2025, 18(11), 1751; https://doi.org/10.3390/ph18111751 - 17 Nov 2025
Viewed by 276
Abstract
Background: The impairment of neurite outgrowth is an early pathological hallmark underlying various neurodegenerative disorders. The promotion of neurite outgrowth was considered as a feasible strategy to treat neurodegenerative disorders. 9-Methylfascaplysin (9-MF), a marine-derived, bioactive compound, has exhibited multiple neuroprotective activities. Methods and [...] Read more.
Background: The impairment of neurite outgrowth is an early pathological hallmark underlying various neurodegenerative disorders. The promotion of neurite outgrowth was considered as a feasible strategy to treat neurodegenerative disorders. 9-Methylfascaplysin (9-MF), a marine-derived, bioactive compound, has exhibited multiple neuroprotective activities. Methods and Result: In this study, 9-MF at nanomolar concentrations promoted neurite outgrowth, upregulated the expression of growth-associated protein-43 (GAP-43), and increased the mitochondrial positive area with similar efficacy as retinoic acid in PC12 cells. 9-MF-associated differentiated expressed genes were enriched in mitochondria and synapse, forming a Rho-associated coiled-coil containing a protein kinase 2 (ROCK2)-centralized network. CMap analysis further identified positive connections between 9-MF-induced perturbation and perturbations caused by the inhibition of the ROCK2 pathway. Molecular docking analysis demonstrated a high binding affinity between 9-MF and ROCK2, indicating that 9-MF could inhibit ROCK2. Furthermore, 9-MF significantly reduced the phosphorylation of ROCK2 with a similar efficacy as fasudil, a ROCK2 inhibitor. Narciclasine, a known ROCK2 activator, almost completely abolished the effects of 9-MF on the induction of neurite outgrowth in PC12 cells. Conclusions: 9-MF effectively promoted neurite outgrowth possibly via the inhibition of ROCK2, providing supporting evidence that 9-MF might be developed as a novel neurological drug. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

17 pages, 609 KB  
Review
RhoA/Rho-Kinase Signaling in Vascular Smooth Muscle and Endothelium: Mechanistic Insights and Translational Implications in Hypertension
by Stephanie Randar, Diana L. Silva-Velasco, Fernanda Priviero and R. Clinton Webb
Biomolecules 2025, 15(11), 1607; https://doi.org/10.3390/biom15111607 - 16 Nov 2025
Viewed by 608
Abstract
The small GTPase RhoA and its downstream effector Rho-kinase (ROCK) have emerged as pivotal regulators of vascular smooth muscle cell (VSMC) contraction, endothelial function, and vascular remodeling. Activation of the RhoA/ROCK pathway enhances calcium (Ca2+) sensitivity by inhibiting myosin light chain [...] Read more.
The small GTPase RhoA and its downstream effector Rho-kinase (ROCK) have emerged as pivotal regulators of vascular smooth muscle cell (VSMC) contraction, endothelial function, and vascular remodeling. Activation of the RhoA/ROCK pathway enhances calcium (Ca2+) sensitivity by inhibiting myosin light chain phosphatase (MLCP), thereby promoting sustained vascular tone independent of intracellular Ca2+ levels. In endothelial cells (ECs), RhoA/ROCK signaling contributes to nitric oxide (NO) dysregulation, oxidative stress, cytoskeletal reorganization, and inflammatory activation. Cumulative evidence implicates this pathway in the development and progression of hypertension and other cardiovascular diseases, where maladaptive vascular remodeling, VSMC proliferation, and endothelial dysfunction drive increased vascular resistance. Translational studies have identified ROCK inhibitors and indirect modulators such as statins as promising therapeutic strategies. This review integrates recent mechanistic insights into RhoA/ROCK regulation of vascular function with clinical and translational perspectives on targeting this pathway in hypertension. Full article
Show Figures

Figure 1

15 pages, 4353 KB  
Article
The ErbB2–Dock7 Signaling Axis Mediates Excessive Cell Morphogenesis Induced by Autism Spectrum Disorder- and Intellectual Disability-Associated Sema5A p.Arg676Cys
by Mikito Takahashi, Hideji Yako, Ayaka Suzuki, Ryuma Isa, Yuki Miyamoto and Junji Yamauchi
Int. J. Mol. Sci. 2025, 26(21), 10656; https://doi.org/10.3390/ijms262110656 - 1 Nov 2025
Viewed by 367
Abstract
Characterized by social communication deficits and the presence of restricted and repetitive behaviors, autism spectrum disorder (ASD) is a significant neurodevelopmental condition. Genetic studies have revealed a strong association between ASD and numerous mutations that alter the function of key proteins, either through [...] Read more.
Characterized by social communication deficits and the presence of restricted and repetitive behaviors, autism spectrum disorder (ASD) is a significant neurodevelopmental condition. Genetic studies have revealed a strong association between ASD and numerous mutations that alter the function of key proteins, either through activation or inactivation. These alterations are widely hypothesized to affect neuronal morphogenesis; however, a comprehensive understanding of the specific molecular cascades driving these cellular and symptomatic changes remains lacking. In this study, we report for the first time that signaling through the atypical Rho family guanine-nucleotide exchange factor (GEF) Dock7 and ErbB2, an activator acting upstream of Dock7, drives the excessive elongation of neuronal processes observed in association with the ASD- and intellectual disability (ID)-linked semaphorin-5A (Sema5A) Arg676Cys variant (p.Arg676Cys). Knockdown of Dock7 using short hairpin RNA or inhibition of ErbB2 kinase signaling with a specific chemical inhibitor reduced this excessive process elongation in primary cortical neurons. Similar results were obtained in the N1E-115 cell line, a neuronal cell model that undergoes neuronal morphological differentiation. Moreover, inhibition of ErbB2-Dock7 signaling specifically decreased the overactivation of the downstream molecules Rac1 and Cdc42. These findings indicate that the ErbB2–Dock7 signaling axis plays a role in mediating the aberrant neuronal morphology associated with the ASD- and ID-linked Sema5A p.Arg676Cys. Targeting this pathway may therefore offer a potential approach to addressing the molecular and cellular developmental challenges observed in ASD. Full article
Show Figures

Graphical abstract

14 pages, 995 KB  
Review
Emerging Innovations in the Treatment of Fuchs Endothelial Corneal Dystrophy: A Narrative Review
by Magdalena Niestrata, James Jackson, Shehnaz Bazeer, Mingya Alexa Gong and Zahra Ashena
Med. Sci. 2025, 13(4), 238; https://doi.org/10.3390/medsci13040238 - 22 Oct 2025
Viewed by 1326
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the leading cause of endothelial failure requiring keratoplasty in industrialised nations. Descemet membrane endothelial keratoplasty (DMEK) has become the gold-standard surgical therapy, yet it is constrained by limited donor tissue and a steep learning curve. This narrative [...] Read more.
Fuchs endothelial corneal dystrophy (FECD) is the leading cause of endothelial failure requiring keratoplasty in industrialised nations. Descemet membrane endothelial keratoplasty (DMEK) has become the gold-standard surgical therapy, yet it is constrained by limited donor tissue and a steep learning curve. This narrative review summarises current and emerging therapeutic strategies for FECD. We describe conventional endothelial keratoplasty and its outcomes, tissue-sparing procedures such as descemetorhexis without endothelial keratoplasty (DWEK) and quarter-DMEK, regenerative approaches including cultured endothelial cell injection and synthetic corneal substitutes, and adjunctive innovations ranging from Rho-associated kinase inhibitors to artificial intelligence-assisted diagnostics. Challenges surrounding donor shortages, variable clinical outcomes, regulatory hurdles and cost are critically appraised. We conclude by outlining future directions that are likely to combine advanced surgical techniques with cell-based and biomaterial solutions to deliver accessible, long-term restoration of vision for patients with FECD. Full article
Show Figures

Figure 1

15 pages, 1767 KB  
Article
The Imatinib–miR-335-5p–ARHGAP18 Axis Attenuates PDGF-Driven Pathological Responses in Pulmonary Artery Smooth Muscle Cells
by Yunyeong Lee and Hara Kang
Int. J. Mol. Sci. 2025, 26(19), 9368; https://doi.org/10.3390/ijms26199368 - 25 Sep 2025
Viewed by 545
Abstract
The proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) are key pathological features of vascular remodeling during pulmonary hypertension. Platelet-derived growth factor (PDGF) signaling is a major contributor to these processes. Given the importance of microRNA (miRNA) regulation in the PDGF [...] Read more.
The proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) are key pathological features of vascular remodeling during pulmonary hypertension. Platelet-derived growth factor (PDGF) signaling is a major contributor to these processes. Given the importance of microRNA (miRNA) regulation in the PDGF signaling pathway in PASMCs, we hypothesized that imatinib, a tyrosine kinase inhibitor, modulates the expression levels of miRNAs responsive to PDGF signaling to ameliorate the PDGF signaling-induced PASMC phenotype. In this study, we investigated the role of miR-335-5p in PDGF signaling-induced PASMC proliferation and migration, as well as the involvement of imatinib in the regulatory network of miR-335-5p. miR-335-5p was identified as a critical negative regulator of PDGF signaling. Functional assays revealed that miR-335-5p significantly inhibits PASMC proliferation and migration. Through target prediction and validation, Rho GTPase Activating Protein 18 (ARHGAP18) was identified as a novel direct target of miR-335-5p. In addition, ARHGAP18 was found to play an essential role in regulating PASMC proliferation and migration. Although miR-335-5p was downregulated upon PDGF-BB stimulation, its expression was restored by imatinib. These findings highlight the important role of the imatinib–miR-335-5p–ARHGAP18 axis as a potential therapeutic target for pathological vascular remodeling. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

27 pages, 12379 KB  
Article
Mechanotransduction-Mediated Expansion of Rabbit Vocal Fold Epithelial Cells via ROCK Inhibition and Stromal Cell-Derived Paracrine Signals
by Samjhana Thapa, Joo Hyun Kim, Jun Yeong Jeong, Sung Sik Hur, Seung Won Lee and Yongsung Hwang
Cells 2025, 14(18), 1412; https://doi.org/10.3390/cells14181412 - 9 Sep 2025
Viewed by 1106
Abstract
Therapeutic advances for vocal fold (VF) disorders are limited by the scarcity of VF-derived epithelial cells (VFEs). Despite their substantial self-renewal capability in vivo, VFEs expand for only a few passages in vitro before succumbing to growth arrest. This has led to the [...] Read more.
Therapeutic advances for vocal fold (VF) disorders are limited by the scarcity of VF-derived epithelial cells (VFEs). Despite their substantial self-renewal capability in vivo, VFEs expand for only a few passages in vitro before succumbing to growth arrest. This has led to the extensive use of alternative cellular sources that are not exposed to physiological stresses of phonation. To address this, we developed an ideal culture strategy that enables long-term expansion of rabbit VFEs (rbVFEs), by utilizing Rho kinase inhibitor (ROCKi), epidermal growth factor (EGF), and mitomycin-treated STO cells or its conditioned media (STO-CM). ROCKi only could support short-term proliferation, and rbVFEs eventually underwent senescence. Further enhancement to ROCKi-containing media with EGF or STO-CM promoted sustained proliferation of rbVFEs. Mechanistically, non-self-renewing rbVFEs exhibited cytoskeletal remodeling associated with increased nuclear YAP localization, elevated focal adhesion, and higher traction forces, whereas self-renewing rbVFEs had cytoplasmic YAP retention, decreased adhesion, and reduced cellular tension. Our optimized culture strategy provides a robust supply of rbVFEs for advancing regenerative approaches in VF research. Full article
(This article belongs to the Special Issue Recent Advances in Regenerative Dentistry—Second Edition)
Show Figures

Figure 1

15 pages, 1970 KB  
Article
Role of RhoGEFs or RhoGAPs in Pyk2-Mediated RhoA Activation in Depolarization-Induced Contraction of Rat Caudal Arterial Smooth Muscle
by Kazuki Aida, Mitsuo Mita and Reiko Ishii-Nozawa
Int. J. Mol. Sci. 2025, 26(17), 8676; https://doi.org/10.3390/ijms26178676 - 5 Sep 2025
Cited by 1 | Viewed by 1175
Abstract
It has previously been reported that the RhoA/Rho-associated kinase (ROCK) pathway is involved in depolarization-induced contraction triggered by high [K+] stimulation in rat caudal arterial smooth muscle. Furthermore, we reported that activation of the upstream Ca2+-dependent proline-rich tyrosine kinase [...] Read more.
It has previously been reported that the RhoA/Rho-associated kinase (ROCK) pathway is involved in depolarization-induced contraction triggered by high [K+] stimulation in rat caudal arterial smooth muscle. Furthermore, we reported that activation of the upstream Ca2+-dependent proline-rich tyrosine kinase 2 (Pyk2) leads to phosphorylation of myosin targeting subunit of myosin light chain phosphatase (MYPT1) and 20 kDa myosin light chain (LC20). These findings suggest that Rho guanine nucleotide exchange factors (RhoGEFs) or Rho GTPase-activating proteins (RhoGAPs) may mediate RhoA activation downstream of Pyk2, thereby contributing to depolarization-induced contraction. However, it remains unclear whether Pyk2 directly interacts with RhoGEFs or RhoGAPs. In this study, we investigated the interaction between Pyk2 and RhoGEFs or RhoGAPs during depolarization stimulation of rat caudal arterial smooth muscle. We examined the interaction between Pyk2 and RhoGEFs or RhoGAPs, which previously were identified in smooth muscle, specifically in rat caudal arterial smooth muscle, in response to 60 mM K+ stimulation by immunoprecipitation analysis. ArhGEF11, ArhGEF12, phosphorylated ArhGAP42 at Tyr792 (pTyr792-ArhGAP42) and phosphorylated ArhGAP42 at Tyr376 (pTyr376-ArhGAP42) co-immunoprecipitated with Pyk2. The co-immunoprecipitation of pTyr792-ArhGAP42, but not pTyr376-ArhGAP42, with Pyk2 was inhibited by a Pyk2 inhibitor, sodium salicylate. Furthermore, 60 mM K+ stimulation increased ArhGAP42 phosphorylation at Tyr792, which was also suppressed by sodium salicylate. These findings indicate that Pyk2-mediated phosphorylation of ArhGAP42 at Tyr792 may play a role in depolarization-induced contraction of rat caudal arterial smooth muscle. Full article
(This article belongs to the Special Issue Smooth Muscle Cells in Vascular Disease)
Show Figures

Figure 1

12 pages, 6471 KB  
Article
The Effects of Co-Culturing ND7/23 Sensory Neuron-like Cells and IFRS1 Schwann Cells on Myelination: A Single-Arm Nonrandomized Study
by Shizuka Takaku and Kazunori Sango
Neurol. Int. 2025, 17(9), 138; https://doi.org/10.3390/neurolint17090138 - 1 Sep 2025
Viewed by 4173
Abstract
Background/Objectives: Co-culture models of neurons and Schwann cells have been used to explore the mechanisms of myelination during development, axonal regeneration after injury, and the pathogenesis of various demyelinating neuropathies. A spontaneously immortalized Fischer rat Schwann cell line 1 (IFRS1), established from [...] Read more.
Background/Objectives: Co-culture models of neurons and Schwann cells have been used to explore the mechanisms of myelination during development, axonal regeneration after injury, and the pathogenesis of various demyelinating neuropathies. A spontaneously immortalized Fischer rat Schwann cell line 1 (IFRS1), established from the primary culture of adult Fischer344 rat peripheral nerves, can myelinate neurites in co-cultures with primary cultured dorsal root ganglion neurons and neuronal cell lines, such as nerve growth factor (NGF)-primed PC12 cells and NSC-34 motor neuron-like cells. In this study, we aimed to establish a stable co-culture system using IFRS1 cells and ND7/23 sensory neuron-like cells. Methods: ND7/23 cells were seeded at a low density (2 × 103/cm2) and maintained for 7 days in serum-containing medium supplemented with NGF (10 ng/mL) and the Rho kinase inhibitor Y27632 (5 μM) to promote neurite elongation. The cells were then treated with the anti-mitotic agent mitomycin C (1 μg/mL) for 12–16 h to suppress proliferative activity. Following this, the cells were co-cultured with IFRS1 cells (2 × 104/cm2) and maintained at 37 °C in serum-containing medium supplemented with ascorbic acid (50 μg/mL), NGF (10 ng/mL), and ciliary neurotrophic factor (10 ng/mL). Results: Double-immunofluorescence staining performed on day 21 of the co-culture revealed myelin protein 22- or myelin basic protein-immunoreactive IFRS1 cells surrounding βIII tubulin-immunoreactive neurites emerging from ND7/23 cells. Myelin formation was further confirmed via Sudan Black B staining and electron microscopy. Conclusions: This co-culture system may provide a valuable tool for studying the processes of myelination in the peripheral nervous system, as well as the pathogenesis of various sensory neuropathies and potential novel therapeutic approaches for these conditions. Full article
Show Figures

Figure 1

10 pages, 209 KB  
Review
RhoKinase (ROCK) Inhibition as a Therapeutic Strategy for Pseudophakic Bullous Keratopathy: A Comprehensive Review
by Anđela Jukić, Josip Pavan, Biljana Đapic Ivančić, Miro Kalauz, Rajka Kasalica Žužul and Tomislav Jukić
J. Clin. Med. 2025, 14(17), 6093; https://doi.org/10.3390/jcm14176093 - 28 Aug 2025
Viewed by 1030
Abstract
Pseudophakic bullous keratopathy (PBK) is a vision-threatening corneal complication following cataract surgery, characterised by progressive endothelial cell loss, persistent corneal oedema, and painful epithelial bullae, leading to impaired vision. Corneal transplantation, either penetrating or endothelial keratoplasty, remains the primary treatment but faces challenges [...] Read more.
Pseudophakic bullous keratopathy (PBK) is a vision-threatening corneal complication following cataract surgery, characterised by progressive endothelial cell loss, persistent corneal oedema, and painful epithelial bullae, leading to impaired vision. Corneal transplantation, either penetrating or endothelial keratoplasty, remains the primary treatment but faces challenges such as donor tissue shortages, graft rejection, and limited graft longevity. Recently, Rho-kinase (ROCK) inhibitors have emerged as promising pharmacological alternatives. These agents enhance corneal endothelial cell proliferation, migration, and adhesion, suppress apoptosis, and promote corneal deturgescence and wound healing. Several preclinical and clinical studies have demonstrated the efficacy of ROCK inhibitors in improving corneal clarity, endothelial function, and visual acuity in PBK. Their use has been associated with reductions in corneal oedema, improved endothelial cell density, and delayed or prevented the need for corneal transplantation. A systematic literature search of PubMed, Scopus, and Web of Science databases was conducted, restricted to peer-reviewed English-language articles, ensuring comprehensive coverage. ROCK inhibitors represent a novel pharmacological strategy for PBK prevention and management, potentially reducing dependency on donor grafts. Further research is needed to determine long-term safety, optimal dosing, and efficacy. Full article
(This article belongs to the Section Ophthalmology)
6 pages, 3814 KB  
Case Report
Effect of Netarsudil 0.02% on a Patient with Fuchs Corneal Dystrophy and Radial Keratotomy
by Praneetha Thulasi, Shae Chambers and Soroosh Behshad
J. Clin. Transl. Ophthalmol. 2025, 3(3), 17; https://doi.org/10.3390/jcto3030017 - 15 Aug 2025
Viewed by 1212
Abstract
This study reports an unusual case of dramatic change in visual acuity, pachymetry, and corneal topography in a patient with a history of Fuchs dystrophy and radial keratotomy following the use of Rho-kinase (ROCK) inhibitor. A patient with a history of 8-cut radial [...] Read more.
This study reports an unusual case of dramatic change in visual acuity, pachymetry, and corneal topography in a patient with a history of Fuchs dystrophy and radial keratotomy following the use of Rho-kinase (ROCK) inhibitor. A patient with a history of 8-cut radial keratotomy (RK), astigmatic keratotomy (AK), and Fuchs dystrophy showed dramatic changes in visual acuity, pachymetry, and corneal topography after using one drop of netarsudil 0.02%. The dramatic effect of netarsudil in our patient may be due to increased penetration of a rho-kinase inhibitor from the corneal incisions, facilitating the effect on corneal endothelium, resulting in a dramatic improvement in corneal pachymetry. This suggests a potential role for corneal incisions to improve the effectiveness of rho-kinase inhibitors in patients with Fuchs dystrophy. Full article
Show Figures

Figure 1

28 pages, 690 KB  
Review
A Comprehensive Review of the Role of Rho-Kinase Inhibitors in Corneal Diseases
by Elizabeth Y. X. Leong, Jianbin Ding, Duoduo Wu, Blanche X. H. Lim, Andrea Ang, Evan Wong, Nigel Morlet, Jodhbir S. Mehta and Chris H. L. Lim
Life 2025, 15(8), 1283; https://doi.org/10.3390/life15081283 - 13 Aug 2025
Cited by 2 | Viewed by 3015
Abstract
There is growing interest in the application of Rho-associated protein kinase (ROCK) inhibitors (ROCKI) to the treatment of corneal diseases. ROCK is a key regulator of several cellular processes in the cornea, including cytoskeletal organization, cell proliferation, migration, inflammation, and wound healing. ROCKI, [...] Read more.
There is growing interest in the application of Rho-associated protein kinase (ROCK) inhibitors (ROCKI) to the treatment of corneal diseases. ROCK is a key regulator of several cellular processes in the cornea, including cytoskeletal organization, cell proliferation, migration, inflammation, and wound healing. ROCKI, such as ripasudil and netarsudil, enhances endothelial cell migration, and promotes repair in conditions characterized by endothelial dysfunction. These agents also exert anti-inflammatory, anti-angiogenic, and anti-fibrotic effects for wound healing. As such, ROCKI demonstrate promise as therapeutic options for conditions such as Fuchs’ endothelial corneal dystrophy, pseudophakic bullous keratopathy, and iridocorneal endothelial syndrome. Emerging data further supports ROCKI’s potential in managing corneal neovascularization and supporting recovery following cataract surgery and keratoplasty, reducing the need for donor tissue. This narrative review provides a comprehensive evaluation of ROCKI’s mechanism of action, pharmacological properties, safety profile, applications in corneal disease management, emerging clinical trials, and novel approaches. We emphasize both preclinical and clinical findings, highlight existing evidence gaps, and outline future research priorities. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Graphical abstract

18 pages, 549 KB  
Article
Clinical Evaluation of Ripasudil for Corneal Edema: A Large-Scale Retrospective Cohort Study
by Nir Erdinest, Michael Tabi, Nadav Shemesh, Jamel Corredores, Claudia Yahalom, Yossi Eshel, Benjamin Stern, David Smadja, Zvi Gur and Itay Lavy
J. Clin. Med. 2025, 14(15), 5572; https://doi.org/10.3390/jcm14155572 - 7 Aug 2025
Cited by 1 | Viewed by 1901
Abstract
Objectives: This study evaluated the therapeutic potential of topical Ripasudil hydrochloride hydrate in managing various forms of corneal edema. Methods: This retrospective study included 96 patients of 72.20 ± 10.52 years, with 53 females (55.2%) who were treated with Ripasudil for corneal edema, [...] Read more.
Objectives: This study evaluated the therapeutic potential of topical Ripasudil hydrochloride hydrate in managing various forms of corneal edema. Methods: This retrospective study included 96 patients of 72.20 ± 10.52 years, with 53 females (55.2%) who were treated with Ripasudil for corneal edema, with a mean treatment duration of 5.2 ± 2.3 months, divided into four groups: post-cataract surgery (n = 32), Fuchs endothelial corneal dystrophy (FECD; n = 29), post-Descemet membrane endothelial keratoplasty (DMEK; n = 25), and post-penetrating keratoplasty (PKP; n = 10). All patients were treated with Ripasudil, typically administered three times daily in the first week and twice daily in the following months. Clinical efficacy outcomes were assessed using changes in best-corrected visual acuity (BCVA), central corneal thickness (CCT), and endothelial cell count (ECC) with specular microscopy, anterior segment optical coherence tomography (OCT), and slit-lamp examination, while intraocular pressure (IOP) was measured using the iCare tonometer. Results: Ripasudil treatment led to a reduction in CCT and improvement in visual acuity across most groups, with minimal changes in ECC. CCT decreased by 30.44 μm (p < 0.001), 25.56 μm (p < 0.001), 8.41 μm (p = 0.05), and 6.80 μm (p > 0.1); visual acuity improved by 0.27 (p = 0.001), 0.18 (p = 0.02), 0.17 (p = 0.025), and 0.07 logMAR units (p > 0.1); and ECC changed by +7.0 (p > 0.1), 15.4 (p > 0.1), −7.6 (p > 0.1), and 2.3 cells/mm2 (p > 0.1) in the post-cataract surgery, FECD, post-DMEK, and post-PKP groups, respectively. Conclusions: No adverse events or progression of edema were recorded during the follow-up period. These findings support the role of Ripasudil as a non-invasive pharmacological approach to managing corneal edema and delaying or possibly avoiding surgical interventions, such as corneal transplantation, in selected cases. Full article
Show Figures

Figure 1

13 pages, 611 KB  
Review
Rho-Kinase Inhibitors: The Application and Limitation in Management of Glaucoma
by Yuan-Ping Chao, Ta-Hung Chiu and Da-Wen Lu
Biomedicines 2025, 13(8), 1871; https://doi.org/10.3390/biomedicines13081871 - 1 Aug 2025
Viewed by 2779
Abstract
Glaucoma is recognized as a progressive optic neuropathy and a leading cause of irreversible blindness worldwide. While intraocular pressure (IOP) is considered the only modifiable risk factor, current medical treatments are challenged by issues such as inadequate IOP control and ocular side effects. [...] Read more.
Glaucoma is recognized as a progressive optic neuropathy and a leading cause of irreversible blindness worldwide. While intraocular pressure (IOP) is considered the only modifiable risk factor, current medical treatments are challenged by issues such as inadequate IOP control and ocular side effects. Rho kinase (ROCK) inhibitors have been developed as a novel pharmacologic class targeting the trabecular meshwork to enhance conventional aqueous humor outflow. In this review, the pharmacokinetics and IOP-lowering efficacy of key ROCK inhibitors are summarized. Beyond IOP reduction, ROCK inhibitors exhibit neuroprotective, anti-inflammatory, antifibrotic, and ocular perfusion-enhancing effects. Finally, we analyzed the limitations and future prospects of ROCK inhibitors in the management of glaucoma. Full article
(This article belongs to the Special Issue Pathogenesis and Treatment of Ophthalmic Diseases)
Show Figures

Figure 1

18 pages, 6694 KB  
Article
Effects of a ROCK Inhibitor on Retinal Ganglion Cells In Vivo and In Vitro
by Wanjing Chen, Yoko Iizuka, Fumihiko Mabuchi and Kenji Kashiwagi
J. Clin. Med. 2025, 14(15), 5344; https://doi.org/10.3390/jcm14155344 - 29 Jul 2025
Viewed by 964
Abstract
Objective: To investigate the neuroprotective effects of a Rho-associated kinase (ROCK) inhibitor on retinal ganglion cells (RGCs) in vitro and in vivo. Methods: For in vivo studies, a unilateral optic nerve crush mouse model was established. Then, 100 mM Y-27632 (a [...] Read more.
Objective: To investigate the neuroprotective effects of a Rho-associated kinase (ROCK) inhibitor on retinal ganglion cells (RGCs) in vitro and in vivo. Methods: For in vivo studies, a unilateral optic nerve crush mouse model was established. Then, 100 mM Y-27632 (a ROCK inhibitor) or saline was applied to the experimental eyes once a day for 14 days. The effects of the ROCK inhibitor were evaluated by counting the surviving RGCs in the enucleated flat retina tissues and measuring the inner retinal thickness using optical coherence tomography (OCT), the amplitude of the electroretinogram (ERG), and the change in intraocular pressure (IOP). For the in vitro study, RGCs were isolated from five-day-old mice using a modified immunopanning method with magnetic beads. The isolated RGCs were incubated for 72 h with various concentrations of Y-27632, after which TUNEL assays were performed to determine the number of surviving RGCs. Results: Y-27632 has neuroprotective effects, as it significantly increased the number of surviving RGCs by approximately 6.3%. OCT and ERG data also revealed that Y-27632 induced neuroprotective effects in vivo; furthermore, Y-27632 reduced IOP by approximately 18.3%. The in vitro study revealed the dose-dependent neuroprotective effects of Y-27632, with the highest dose of Y-27632 (1000 nM) increasing the RGC survival rate after 72 h of incubation compared with that of the control. Conclusions: The ROCK inhibitor Y-27632 may exert some neuroprotective effects on RGCs when it is used as an eye drop through an IOP-independent mechanism. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

Back to TopTop