Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = rice top-dressing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3350 KiB  
Article
Optimizing Rice Yield and Heat Stress Resilience Through Nitrogen Top Dressing Before Panicle Emergence
by Shafiqullah Aryan, Gulbuddin Gulab, Safiullah Habibi, Tayebullah Zahid, Zabihullah Safi, Nasratullah Habibi, Abdul Basir Mahmoodzada, Mohammad Wasif Amin, Ijaz Ahmad Samsor and Kenji Erie
Nitrogen 2025, 6(2), 40; https://doi.org/10.3390/nitrogen6020040 - 29 May 2025
Viewed by 129
Abstract
The increased frequency of extreme heat stress events due to climate change is adversely impacting rice yield. Nitrogen (N) is an essential element in the synthesis of chlorophyll in rice, contributing substantially to the achievement of spikelet fertility and addressing the high yields. [...] Read more.
The increased frequency of extreme heat stress events due to climate change is adversely impacting rice yield. Nitrogen (N) is an essential element in the synthesis of chlorophyll in rice, contributing substantially to the achievement of spikelet fertility and addressing the high yields. Two experiments were conducted in Japan and Afghanistan in 2020 and 2022, respectively, utilizing IR64 and Nipponbare (NPB) varieties to elucidate the efficacy of N top-dressing on spikelet fertility and yield of rice under heat stress conditions. In experiment I, the treatments involved were based on N application before panicle emergence in pots, including (1) control (fertilized at the tillering stage), (2) control + N topdressing, (3) heat stress (fertilized at the tillering stage), and (4) heat stress + N topdressing. Experiment II consisted of (1) control (basal dressing at the tillering stage) and (2) control + N topdressing, which was conducted under field conditions. Results showed that N application significantly (p < 0.05) increased SPAD values and spikelet fertility rates in both experiments. A positive correlation (range; r = 0.83–0.98) was observed between enhanced SPAD values and spikelet fertility rates in IR64 and NPB rice varieties under both ambient and heat stress conditions. Moreover, there were notable increases in photosynthetic rate (7.4% to 52.6%) and leaf transpiration. N top dressing significantly (p < 0.05) increased the panicle length, panicle weight, number of secondary branches/panicle, filled grain/panicle, total spikelets/panicle, and yield/plant. However, there was no significant difference in the number of primary branches per panicle and 1000-grain weight. In addition, the number of unfilled grains/panicle decreased from 5.5 to 49.7% with N top dressing in both experiments. Applying N as a top dressing improved the spikelet fertility percentage and other yield components, resulting in a high yield/plant. Full article
Show Figures

Figure 1

19 pages, 2949 KiB  
Article
Precision Estimation of Rice Nitrogen Fertilizer Topdressing According to the Nitrogen Nutrition Index Using UAV Multi-Spectral Remote Sensing: A Case Study in Southwest China
by Lijuan Wang, Qihan Ling, Zhan Liu, Mingzhu Dai, Yu Zhou, Xiaojun Shi and Jie Wang
Plants 2025, 14(8), 1195; https://doi.org/10.3390/plants14081195 - 11 Apr 2025
Viewed by 455
Abstract
The precision estimation of N fertilizer application according to the nitrogen nutrition index (NNI) using unmanned aerial vehicle (UAV) multi-spectral measurements remains to be tested in different rice cultivars and planting areas. Therefore, two field experiments were conducted using varied N rates (0, [...] Read more.
The precision estimation of N fertilizer application according to the nitrogen nutrition index (NNI) using unmanned aerial vehicle (UAV) multi-spectral measurements remains to be tested in different rice cultivars and planting areas. Therefore, two field experiments were conducted using varied N rates (0, 60, 120, 160, and 200 kg N ha−1) on two rice cultivars, Yunjing37 (YJ-37, Oryza sativa subsp. Japonica Kato., the Institute of Food Crops at the Yunnan Academy of Agricultural Sciences, Kunming, China) and Jiyou6135 (JY-6135, Oryza sativa subsp. indica Kato., Hunan Longping Gaoke Nongping seed industry Co., Ltd., Changsha, China), in southwest China. The rice canopy spectral images were measured by the UAV’s multi-spectral remote sensing at three growing stages. The NNI was calculated based on the critical N (Nc) dilution curve. A random forest model integrating multi-vegetation indices established the NNI inversion, facilitating precise N topdressing through a linear platform of NNI-Relative Yield and the remote sensing NNI-based N balance approaches. The Nc dilution curve calibrated with aboveground dry matter demonstrated the highest accuracy (R2 = 0.93, 0.97 for shoot components in cultivars YJ-37 and JY-6135), outperforming stem (R2 = 0.70, 0.76) and leaf (R2 = 0.80, 0.89) based models. The RF combined with six vegetation index combinations was found to be the best predictor of NNI at each growing period (YJ-37: R2 is 0.70–0.97, RMSE is 0.02~0.04; JY-6135: R2 is 0.71–0.92, RMSE is 0.04~0.05). The RF surpassed BPNN/PLSR by 6.14–10.10% in R2 and 13.71–33.65% in error reduction across the critical rice growth stages. The topdressing amounts of YJ-37 and JY-6135 were 111–124 kg ha−1 and 80–133 kg ha−1, with low errors of 2.50~8.73 kg ha−1 for YJ-37 and 2.52~5.53 kg ha−1 for JY-6135 in the jointing (JT) and heading (HD) stages. These results are promising for the precise topdressing of rice using a remote sensing NNI-based N balance method. The combination of UAV multi-spectral imaging with the NNI-nitrogen balance method was tested for the first time in southwest China, demonstrating its feasibility and offering a regional approach for precise rice topdressing. Full article
(This article belongs to the Special Issue Precision Agriculture in Crop Production)
Show Figures

Figure 1

19 pages, 7901 KiB  
Article
Impact of Standing Water Level and Observation Time on Remote-Sensed Canopy Indices for Rice Nitrogen Status Monitoring
by Gonzalo Carracelas, John Hornbuckle and Carlos Ballester
Remote Sens. 2025, 17(6), 1045; https://doi.org/10.3390/rs17061045 - 16 Mar 2025
Viewed by 795
Abstract
The observation time and water background can affect the remote sensing estimates of the nitrogen (N) content in rice crops. This makes the use of vegetation indices (VIs) for N status monitoring and topdressing recommendations challenging, as the timing of panicle initiation and [...] Read more.
The observation time and water background can affect the remote sensing estimates of the nitrogen (N) content in rice crops. This makes the use of vegetation indices (VIs) for N status monitoring and topdressing recommendations challenging, as the timing of panicle initiation and the water level in bays usually differ between farms even when managed using the same irrigation technique. This study aimed to investigate the influence of standing water levels (from 0 to 20 cm) and the time of image acquisition on a set of N-sensitive VIs to identify those less affected by these factors. The experiment was conducted using a split-plot experimental design with two side-by-side bays (main plots) where rice was grown ponded for most of the growing season and aerobically (not permanently ponded), each with four fertilization N rates. The SCCCI and SCCCI2 were the only indices that did not vary depending on the time of the day when the multispectral images were collected. These indices showed the lowest variation among water layer treatments (5%), while the Clg index showed the highest (20%). All VIs were significantly correlated with N uptake (average R2 = 0.73). However, the SCCCI2 was the index that showed the lowest variation in N-uptake estimates resulting in equal N-fertilizer recommendations across water level treatments. The consistent performance of SCCCI2 across different water levels makes this index of interest for different irrigation strategies, including aerobic management, which is gaining increasing attention to improve the sustainability of the rice industry. Full article
Show Figures

Graphical abstract

16 pages, 5386 KiB  
Article
Yield Difference between Different Cultivation Techniques under Ultrasonic Treatment Driven by Radiation Use Efficiency
by Sicheng Deng, Qichang Gu, Yizhu Wu, Wentao Yi, Jian Lu, Ligong Peng and Xiangru Tang
Plants 2024, 13(17), 2510; https://doi.org/10.3390/plants13172510 - 6 Sep 2024
Viewed by 980
Abstract
Ultrasonic treatment and optimal cultivation techniques are both conducive to the high yield of super rice in South China. Many previous studies have shown that the increase in intercepted photosynthetically active radiation (IPAR) and radiation use efficiency (RUE) is an important reason for [...] Read more.
Ultrasonic treatment and optimal cultivation techniques are both conducive to the high yield of super rice in South China. Many previous studies have shown that the increase in intercepted photosynthetically active radiation (IPAR) and radiation use efficiency (RUE) is an important reason for high rice yield. Field experiments were conducted over two years to evaluate the effects of IPAR and RUE on the yield under different treatments (CK: conventional cultivation technique without ultrasonic treatment; T1: conventional cultivation technique with ultrasonic treatment; T2: super rice-specific cultivation technique without ultrasonic treatment and T3: super rice-specific cultivation technique with ultrasonic treatment), with two representative rice varieties, Wufengyou-615 (WFY) and Jingnongsimiao (JNSM) during the late seasons of rice cultivation in South China. The super rice-specific cultivation technique and the ultrasonic treatment could significantly increase the yield, which was significantly (p < 0.01) and positively correlated with panicle number, grain-filling rate, and aboveground total dry weight. The higher grain yield depended more highly on higher RUE in the mid-tillering stage and maturity stage. The results of multiple-regression models also showed that the contributions of IPAR and RUE to yield were significant (p < 0.01). Conclusively, IPAR and RUE contributed a lot to yield progress of super rice in both super rice-specific cultivation techniques with fewer times of topdressing and ultrasonic treatment in South China. It is worth further studying how to reasonably improve the RUE of high-RUE varieties through other means. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

17 pages, 2249 KiB  
Article
Partial Substitution of Nitrogen Fertilizer with Biogas Slurry Increases Rice Yield and Fertilizer Utilization Efficiency, Enhancing Soil Fertility in the Chaohu Lake Basin
by Yangting Lu, Qian Xiao, Sheng Wu, Haoqiang Yuan, Tingfeng Gao, Tianpei Cai, Xiaowen Wu, Youhua Ma and Xia Liao
Plants 2024, 13(15), 2024; https://doi.org/10.3390/plants13152024 - 23 Jul 2024
Cited by 4 | Viewed by 1141
Abstract
To investigate the effects of biogas slurry substitution for fertilizer on rice yield, fertilizer utilization efficiency, and soil fertility, a field experiment was conducted on rice–wheat rotation soil in the Chaohu Lake Basin for two consecutive years, with the following six treatments: no [...] Read more.
To investigate the effects of biogas slurry substitution for fertilizer on rice yield, fertilizer utilization efficiency, and soil fertility, a field experiment was conducted on rice–wheat rotation soil in the Chaohu Lake Basin for two consecutive years, with the following six treatments: no fertilization (CK), conventional fertilization (CF), optimized fertilization (OF), biogas slurry replacing 15% of fertilizer (15% OFB), biogas slurry replacing 30% of fertilizer (30% OFB), and biogas slurry replacing 50% of fertilizer (50% OFB). The field experiment results showed that, compared with CF treatment, OF treatment in 2022 and 2023 significantly increased (p < 0.05) rice yield, promoted the uptake of nitrogen (N), phosphorus (P), and potassium (K) by grains and straws, improved fertilizer utilization efficiency, and increased the contents of soil organic C (SOC), NH4+-N, NO3-N, hydrolysable N, and available P. The 15% OFB and 30% OFB treatments significantly increased (p < 0.05) rice grain and straw yields compared with CF treatment, and rice grain and straw yields were the highest in the 30% OFB treatment. Compared with CF and OF treatments, 30% OFB treatment significantly increased (p < 0.05) the N, P, and K uptake of grains and straws and increased the fertilizer utilization efficiency. Compared with CF treatment, the grain yield of 50% OFB treatment was significantly decreased (p < 0.05) in 2022, and there was no significant difference in 2023, which may be because the biogas slurry was applied before planting in 2023 to provide more nutrients for early rice growth. Compared with CF treatment, 30% OFB treatment significantly increased (p < 0.05) the contents of SOC, NH4+-N, available K, and hydrolysable N. In summary, optimizing N and K topdressing methods can increase rice yield and improve the fertilizer utilization efficiency and soil fertility. The 30% OFB treatment resulted in the highest rice yield, fertilizer utilization efficiency, and improved soil fertility, indicating that biogas slurry replacing 30% of fertilizer was the best application mode for rice in this region. Full article
(This article belongs to the Special Issue Strategies for Nutrient Use Efficiency Improvement in Plants)
Show Figures

Figure 1

15 pages, 1584 KiB  
Article
Significant Synergy Effects of Biochar Combined with Topdressing Silicon on Cd Reduction and Yield Increase of Rice in Cd-Contaminated Paddy Soil
by Xianglan Su, Yixia Cai, Bogui Pan, Yongqi Li, Bingquan Liu, Kunzheng Cai and Wei Wang
Agronomy 2024, 14(3), 568; https://doi.org/10.3390/agronomy14030568 - 12 Mar 2024
Cited by 1 | Viewed by 1565
Abstract
Pot and field trials were conducted to explore the combined effect of biochar (BC) with topdressing silicon (Si) on Cd uptake by rice and grain yield in Cd-contaminated paddy soil. The treatments, including BC applied before transplanting (TBC), topdressing Si applied in the [...] Read more.
Pot and field trials were conducted to explore the combined effect of biochar (BC) with topdressing silicon (Si) on Cd uptake by rice and grain yield in Cd-contaminated paddy soil. The treatments, including BC applied before transplanting (TBC), topdressing Si applied in the soil at the jointing stage (JSi) and BC combined with topdressing Si (TBC + JSi), were designed in a complete random block, and treatment without application of BC and Si was used as a control (CK). Results showed that Cd concentration in milled rice treated with TBC + JSi was decreased by 34.62%, 22.73% and 10.53%, respectively, when compared to CK, TBC and JSi, with the concentration being only 0.17 mg·kg−1. At rice maturity, available Cd in the soil was reduced by 7.98% (TBC), 4.76% (JSi) and 6.02% (TBC + JSi) when compared with CK, while the concentrations of total Cd were 32.07% (TBC), 27.85% (JSi) and 35.44% (TBC + JSi) higher than CK. Moreover, BC and Si increased the Cd sequestrated by leaves markedly, especially for TBC + JSi, which was much higher than TBC and JSi. Therefore, the transfer of Cd from leaf to milled rice was greatly decreased by TBC + JSi. In addition, a synergy effect of TBC + JSi on rice yield was also found. Compared with CK, the grain yields of TBC, JSi and TBC+ JSi were increased by 8.35%, 8.20% and 18.74%, respectively. Nutrient contents in soil and rice plants were also elevated by the application of BC and Si to a certain extent; for example, the contents of nitrogen (N), phosphorus (P), potassium (K) and Si in soil treated with TBC + JSi were raised by 8.96–60.03% when compared with CK. Overall, the combined application of BC with topdressing Si not only increases soil nutrients significantly, promotes their uptake by rice and boosts grain yield, but also effectively inhibits Cd transfer and reduces its accumulation in rice, which ultimately guarantees milled rice security. These results also imply that the combined application of biochar with topdressing silicon might be considered as an effective agronomic measure to decrease the milled-rice Cd in Cd-contaminated paddy soil, which would guarantee food security. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

22 pages, 15934 KiB  
Article
Development and Optimization of an Offset Spiral Tooth Fertilizer Discharge Device
by Longyu Fang, Wenwu Yang, Xiwen Luo, Han Guo, Shiyu Song, Qinghai Liu, Haoyang Xie, Weiman Chen, Jianxin Lu, Zhixiang Peng and Guanjiong Li
Agriculture 2024, 14(2), 329; https://doi.org/10.3390/agriculture14020329 - 19 Feb 2024
Cited by 4 | Viewed by 1949
Abstract
Due to factors such as a small amount of fertilizer application during rice topdressing and slow machine speed, the ordinary fertilizer discharge device fails to distribute the fertilizer uniformly and accurately as required, making it difficult to meet the needs of precise rice [...] Read more.
Due to factors such as a small amount of fertilizer application during rice topdressing and slow machine speed, the ordinary fertilizer discharge device fails to distribute the fertilizer uniformly and accurately as required, making it difficult to meet the needs of precise rice topdressing. This research focuses on the development of an offset spiral tooth fertilizer discharge device suitable for rice topdressing. The study analyzes the amount of fertilizer discharged in one cycle, the fertilizer force, and the motion of the fertilizer particles. In order to enhance the uniformity of the fertilizer discharge device at a low speed and small volume, the discrete element method is employed to conduct experimental research on the key structural parameters that affect the one-cycle amount of discharged fertilizer and the dynamics of the fertilizer discharge device. Through single-factor tests, it was found that the angle, height, number of spiral teeth, and diameter of the fertilizer discharge wheel are closely associated with the fertilizer discharge performance. To further investigate the impact of these four parameters on the fertilizer discharge performance, a regression combination test of the four factors is conducted based on the range optimized by the single-factor tests. A multi-objective mathematical model, considering the key parameters of fertilizer uniformity coefficient, one-cycle amount of fertilizer, and fertilizer discharge torque, is established at three speeds: 20, 55, and 90 rpm. The response surface method is utilized to analyze the influence of the interaction factors on the fertilizer discharge performance. The optimal combination of the key structural parameters was determined as follows: spiral tooth angle of 35.42°, tooth height of 9.02 mm, discharge wheel diameter of 57.43 mm, and tooth amount of 9.37. The bench test results of the device, using the optimal parameter combination and a fertilizer discharge speed of 0–90 rpm, were obtained for four commonly used rice fertilizers. The maximum variation coefficient of fertilizer discharge was found to be 10.42%. The one-cycle amount of fertilizer discharge was measured to be 19.82 ± 0.72 (A Kang), 17.20 ± 0.69 (Ba Tian), 20.34 ± 0.54 (Yaran), and 14.51 ± 0.44 (granular urea). The fertilizer discharge torque remained stable. These results indicate that the achieved optimization meets the precise fertilizer application requirements and can provide technical support for precise topdressing operations. Full article
(This article belongs to the Special Issue Agricultural Machinery Design and Agricultural Engineering)
Show Figures

Figure 1

14 pages, 803 KiB  
Article
Silicon and Zinc Fertilizer Application Improves Grain Quality and Aroma in the japonica Rice Variety Nanjing 46
by Xiaodong Wei, Yadong Zhang, Xuemei Song, Ling Zhao, Qingyong Zhao, Tao Chen, Kai Lu, Zhen Zhu, Shengdong Huang and Cailin Wang
Foods 2024, 13(1), 152; https://doi.org/10.3390/foods13010152 - 2 Jan 2024
Cited by 6 | Viewed by 1888
Abstract
This study examined how silicon and zinc fertilizers affect the quality and aroma of Nanjing 46. We applied nine different fertilizer treatments, one involving soil topdressing at the top fourth leaf-age stage and one involving foliar spraying during the booting stage of the [...] Read more.
This study examined how silicon and zinc fertilizers affect the quality and aroma of Nanjing 46. We applied nine different fertilizer treatments, one involving soil topdressing at the top fourth leaf-age stage and one involving foliar spraying during the booting stage of the silicon and zinc fertilizers. We tested the effects of the nine treatments on grain quality and aroma. Silicon and zinc fertilizers significantly affected the brown rice rate, milled rice rate, head rice rate, amylose content, gel consistency, RVA characteristic value, taste value, and aroma but did not affect the chalky grain rate, chalkiness, protein content, rice appearance, hardness, stickiness, balance, peak time, or pasting temperature. Silicon fertilizer decreased the rate of brown rice and milled rice, whereas zinc fertilizer increased the rate of brown rice and milled rice. Silicon and zinc fertilizers improved the head rice rate. Compared to silicon fertilizer, the impact of zinc fertilizer on increasing the head rice rate was more pronounced. Although the effects of silicon and zinc fertilizers on the amylose content and RVA characteristic value varied depending on the treatment, their application could lower the amylose content, increase gel consistency, improve breakdown viscosity, decrease setback viscosity, increase aroma, and improve the taste value of rice. Full article
Show Figures

Figure 1

19 pages, 5470 KiB  
Article
Ground Cover Rice Production System Affects Soil Water, Nitrogen Dynamics and Crop Growth Differentially with or without Climate Stress
by Jian Ren, Puyu Feng, William D. Batchelor, Kelin Hu, Haitao Liu and Shihua Lv
Plants 2023, 12(22), 3866; https://doi.org/10.3390/plants12223866 - 15 Nov 2023
Cited by 2 | Viewed by 1886
Abstract
The ground cover rice production system (GCRPS) has been proposed as a potential solution to alleviate seasonal drought and early low-temperature stress in hilly mountainous areas; clarifying its impact on crop growth is crucial to enhance rice productivity in these areas. A two-year [...] Read more.
The ground cover rice production system (GCRPS) has been proposed as a potential solution to alleviate seasonal drought and early low-temperature stress in hilly mountainous areas; clarifying its impact on crop growth is crucial to enhance rice productivity in these areas. A two-year (2021–2022) field experiment was conducted in the hilly mountains of southwest China to compare the effects of the traditional flooding paddy (Paddy) and GCRPS under three different nitrogen (N) management practices (N1, zero-N fertilizer; N2, 135 kg N ha1 as a urea-based fertilizer; and N3, 135 kg N ha1 with a 3:2 base-topdressing ratio as urea fertilizer for the Paddy or a 1:1 basal application ratio as urea and manure for GCRPS) on soil water storage, soil mineral N content and crop growth parameters, including plant height, tiller numbers, the leaf area index (LAI), aboveground dry matter (DM) dynamics and crop yield. The results showed that there was a significant difference in rainfall between the two growth periods, with 906 mm and 291 mm in 2021 and 2022, respectively. While GCRPS did not significantly affect soil water storage, soil mineral N content, and plant height, it led to a reduction in partial tiller numbers (1.1% to 31.6%), LAI (0.6% to 20.4%), DM (4.4% to 18.8%), and crop yield (7.4% to 22.0%) in 2021 (wet year) compared to the Paddy. However, in 2022 (dry year), GCRPS led to an increase in tiller numbers (13.7% to 115.4%), LAI (17.3% to 81.0%), DM (9.0% to 62.6%), and crop yield (2.9% to 9.2%) compared to the Paddy. Structural equation modeling indicated that GCRPS significantly affected tiller numbers, plant height, LAI, DM, and productive tiller numbers, which indirectly influenced crop yield by significantly affecting tiller numbers and productive tiller numbers in 2022. Overall, the effects of GCRPS on soil water and N dynamics were not significant. In 2021, with high rainfall, no drought, and no early, low-temperature stress, the GCRPS suppressed crop growth and reduced yield, while in 2022, with drought and early low-temperature stress and low rainfall, the GCRPS promoted crop growth and increased yield, with tiller numbers and productive tiller numbers being the key factors affecting crop yield. Full article
(This article belongs to the Special Issue Water and Nitrogen Management in Soil-Crop System II)
Show Figures

Figure 1

16 pages, 2668 KiB  
Article
Reflectance Measurements from Aerial and Proximal Sensors Provide Similar Precision in Predicting the Rice Yield Response to Mid-Season N Applications
by Telha H. Rehman, Mark E. Lundy, Andre Froes de Borja Reis, Nadeem Akbar and Bruce A. Linquist
Sensors 2023, 23(13), 6218; https://doi.org/10.3390/s23136218 - 7 Jul 2023
Cited by 2 | Viewed by 1633
Abstract
Accurately detecting nitrogen (N) deficiency and determining the need for additional N fertilizer is a key challenge to achieving precise N management in many crops, including rice (Oryza sativa L.). Many remotely sensed vegetation indices (VIs) have shown promise in this regard; [...] Read more.
Accurately detecting nitrogen (N) deficiency and determining the need for additional N fertilizer is a key challenge to achieving precise N management in many crops, including rice (Oryza sativa L.). Many remotely sensed vegetation indices (VIs) have shown promise in this regard; however, it is not well-known if VIs measured from different sensors can be used interchangeably. The objective of this study was to quantitatively test and compare the ability of VIs measured from an aerial and proximal sensor to predict the crop yield response to top-dress N fertilizer in rice. Nitrogen fertilizer response trials were established across two years (six site-years) throughout the Sacramento Valley rice-growing region of California. At panicle initiation (PI), unmanned aircraft system (UAS) Normalized Difference Red-Edge Index (NDREUAS) and GreenSeeker (GS) Normalized Difference Vegetation Index (NDVIGS) were measured and expressed as a sufficiency index (SI) (VI of N treatment divided by VI of adjacent N-enriched area). Following reflectance measurements, each plot was split into subplots with and without top-dress N fertilizer. All metrics evaluated in this study indicated that both NDREUAS and NDVIGS performed similarly with respect to predicting the rice yield response to top-dress N at PI. Utilizing SI measurements prior to top-dress N fertilizer application resulted in a 113% and 69% increase (for NDREUAS and NDVIGS, respectively) in the precision of the rice yield response differentiation compared to the effect of applying top-dress N without SI information considered. When the SI measured via NDREUAS and NDVIGS at PI was ≤0.97 and 0.96, top-dress N applications resulted in a significant (p < 0.05) increase in crop yield of 0.19 and 0.21 Mg ha−1, respectively. These results indicate that both aerial NDREUAS and proximal NDVIGS have the potential to accurately predict the rice yield response to PI top-dress N fertilizer in this system and could serve as the basis for developing a decision support tool for farmers that could potentially inform better N management and improve N use efficiency. Full article
(This article belongs to the Special Issue Sensors and Data-Driven Precision Agriculture)
Show Figures

Figure 1

13 pages, 878 KiB  
Article
Evaluation of Substrate Stratification, Fertilizer Placement, and Mulching on Growth of Common Nursery Weed Species and Container-Grown Ornamental Species
by Yuvraj Khamare, Stephen C. Marble, Brian J. Pearson, Jianjun Chen and Pratap Devkota
Horticulturae 2023, 9(7), 747; https://doi.org/10.3390/horticulturae9070747 - 27 Jun 2023
Cited by 1 | Viewed by 1933
Abstract
The objective of this study was to determine how topdressing or incorporating fertilizer with stratified or mulched substrates could affect the growth of Hibiscus rosa-sinensis ‘Snow Queen’, a popular ornamental plant, and the growth of liverwort (Marchantia polymorpha) and bittercress ( [...] Read more.
The objective of this study was to determine how topdressing or incorporating fertilizer with stratified or mulched substrates could affect the growth of Hibiscus rosa-sinensis ‘Snow Queen’, a popular ornamental plant, and the growth of liverwort (Marchantia polymorpha) and bittercress (Cardamine flexuosa), two common nursery weed species. Five different substrate treatments were evaluated, which included three stratified substrates composed of pine bark screened to a small (0.63–1.27 cm), medium (≤1.90 cm), and large (0.96–1.90 cm) particle size and two industry-standard substrates that were either mulched with rice hulls or remained unmulched. All treatments were then fertilized via either topdressing or incorporating a controlled-release fertilizer (CRF). Bittercress control was highest in mulched containers, followed by those stratified using the medium pine bark, and its growth increased overall in topdressed vs. incorporated containers regardless of substrate or mulch treatment. All the stratification treatments resulted in a decrease in liverwort coverage compared to the industry standard treatment, but topdressing generally increased liverwort coverage compared with incorporating fertilizer. In conclusion, both topdressing and incorporation appear to be compatible with fertilizer placement methods with substrate stratification from a crop production standpoint; however, weed growth may increase if fertilizer is topdressed. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

13 pages, 2905 KiB  
Article
Particle Deposition Distribution of Multi-Rotor UAV-Based Fertilizer Spreader under Different Height and Speed Parameters
by Cancan Song, Lilian Liu, Guobin Wang, Jingang Han, Tongsheng Zhang and Yubin Lan
Drones 2023, 7(7), 425; https://doi.org/10.3390/drones7070425 - 26 Jun 2023
Cited by 12 | Viewed by 2739
Abstract
As an effective supplement to ground machinery, UAVs play an important role in agriculture and have become indispensable intelligent equipment in the development of precision agriculture. Various types of agricultural UAV-based spreading devices, mainly disc-type and pneumatic-type, have appeared in domestic and foreign [...] Read more.
As an effective supplement to ground machinery, UAVs play an important role in agriculture and have become indispensable intelligent equipment in the development of precision agriculture. Various types of agricultural UAV-based spreading devices, mainly disc-type and pneumatic-type, have appeared in domestic and foreign markets. UAV-based rice topdressing has gradually become a widely recognized application with great market potential. In the process of UAV-based low-altitude fertilization, due to the existence of the rotor wind field, the environment for particle air diffusion is complex, and the movement trajectory and deposition distribution of fertilizer are affected by many factors, resulting in large differences in the spreading. The flight height and speed have a great influence on particle movement and deposition, and a reasonable combination of work parameters can be used for efficient and high-quality particle deposition. In order to obtain better particle deposition distribution, this paper uses the method of a single flight line to test and analyze the characteristics of particle deposition distribution for fertilization using multi-rotor UAVs at different flight heights and speeds. The effective swath width and deposition uniformity obtained via the simulation of overlapped route superposition were used to optimized the appropriate work parameters to ensure that a reasonable and effective deposition amount can be obtained during actual application. The results show that the flight height and speed and the interaction of both have an important influence on the deposition amount and the effective width, but it is not a simple linear relationship. On the whole, as the flight height increases, the coefficient of variation decreases and the effective width increases, but it is not obvious when the speed is low. For the R20, when the flight speed is 2 m/s, the effective width first increases and then decreases with the increase in flight height, and the difference in the deposition amount at a height of 5 m is larger than that at other heights. Under the three working heights, the effective swath width is the same when the flight speed is 4 m/s and 6 m/s, and the effective swath width is also the same when the speed is 7 m and 9 m. For the T16, when the flight speed is 4 m/s, the deposition uniformity is relatively good, and the effective width increases with the increase in flight height. Therefore, the combination of 7–6 m/s and 9–4 m/s parameters will be the best operating parameters for R20 and T16. However, considering the actual dynamic meteorological environment in the field, the operating height can be appropriately lowered according to the influence of the crosswind during actual operation. The research results of this paper can provide scientific reference and suggestions for further improving the effect of UAV-based fertilization. Full article
Show Figures

Figure 1

14 pages, 3673 KiB  
Article
Effect of Nitrogen Application Methods on Yield and Grain Quality of an Extremely Early Maturing Rice Variety
by Yeotae Yun, Gyucheol Kim, Giwon Cho, Youngju Lee, Tugsang Yun and Hakhun Kim
Agriculture 2023, 13(4), 832; https://doi.org/10.3390/agriculture13040832 - 5 Apr 2023
Cited by 6 | Viewed by 3022
Abstract
This study aimed to investigate the effect of nitrogen application methods on the yield and grain quality of an extremely early maturing rice variety. The experiment was conducted in the rice research field of Chungnam Agricultural Research and Extension Services, South Korea, in [...] Read more.
This study aimed to investigate the effect of nitrogen application methods on the yield and grain quality of an extremely early maturing rice variety. The experiment was conducted in the rice research field of Chungnam Agricultural Research and Extension Services, South Korea, in 2019 and 2020. Two nitrogen application methods, BD (100% as a basal dressing) and BTD (70% as a basal dressing + 30% as a top dressing), with three different nitrogen levels (70 kg/ha, 90 kg/ha, and 110 kg/ha), were employed. The results showed that BD treatment had comparable or higher head rice yields and improved grain quality compared to BTD treatment at all nitrogen levels. Additionally, the SPAD value at heading date was highly correlated with both the protein content (r2 = 0.838**) and glossiness of cooked rice (r2 = 0.630**). Therefore, this study suggests that BD treatment could be an effective approach to improve the productivity and quality of extremely early maturing rice varieties while saving on labor costs, and the SPAD value can be used as an index to infer the taste of rice. In conclusion, this study provides useful insights into nitrogen application methods that can be used to enhance the yield and quality of extremely early maturing rice varieties. Full article
Show Figures

Figure 1

14 pages, 2318 KiB  
Article
The Yield-Forming Role of Nitrogen in Rice in the Growing Seasons with Variable Thermal Conditions
by Jianwei Zhang, Yan Zhou, Longmei Wu, Lei Xu, Cong Xu, Dong Liang, Yanfeng Ding, Yongchun Zhang, Jidong Wang and Ganghua Li
Agronomy 2023, 13(2), 313; https://doi.org/10.3390/agronomy13020313 - 20 Jan 2023
Cited by 4 | Viewed by 2170
Abstract
A reduced basal and increased topdressing fertilizer rate (RBIT) can usually increase rice yield, but whether this practice alleviates the impact of poor weather on rice production is unknown. Thus, the effect of three integrated RBIT treatments (RBITs, including RBIT alone, RBIT in [...] Read more.
A reduced basal and increased topdressing fertilizer rate (RBIT) can usually increase rice yield, but whether this practice alleviates the impact of poor weather on rice production is unknown. Thus, the effect of three integrated RBIT treatments (RBITs, including RBIT alone, RBIT in combination with straw incorporation (RBITS) or a reduced fertilizer rate (RBITR)) on rice growth and nutritional status under different weathers was investigated in a 9-year experiment. Conventional fertilization (CF) was the control. We found that daytime temperature and light (DTL) after heading were the main meteorological factors limiting rice yield increases. RBITs did not affect rice yield under High-DTL, compared with CF, but RBITS significantly increased rice yield under Low-DTL. Compared with High-DTL, the positive effect of RBIT and RBITR on the N concentration and proportion in vegetative organs under Low-DTL was higher than the K concentration in vegetative organs, but RBITS showed the opposite trend. Regression analysis indicated that the harvest index had stronger correlations with the N concentration (negative), K concentration (positive), and N/K (negative) in vegetative organs under Low-DTL than under High-DTL. Our findings suggested that RBITS could improve rice adaptability to daytime temperature and light changes after heading by balancing crop nutritional status (N/K). Full article
(This article belongs to the Special Issue Crop Yield and Quality Response to Cultivation Practices - Series II)
Show Figures

Figure 1

18 pages, 1687 KiB  
Article
Impact of Arbuscular Mycorrhizal Fungi, Phosphate Solubilizing Bacteria and Selected Chemical Phosphorus Fertilizers on Growth and Productivity of Rice
by Nehal M. Elekhtyar, Mamdouh M. A. Awad-Allah, Khalid S. Alshallash, Aishah Alatawi, Rana M. Alshegaihi and Reem A. Alsalmi
Agriculture 2022, 12(10), 1596; https://doi.org/10.3390/agriculture12101596 - 2 Oct 2022
Cited by 8 | Viewed by 3396
Abstract
Phosphorus is the second most significant macro nutrient in rice productivity. Phosphorus fixation in Egyptian soil makes it unavailable for rice to absorb. The goal of this study was to examine the effects of microbial and chemical sources of phosphorus fertilizers on the [...] Read more.
Phosphorus is the second most significant macro nutrient in rice productivity. Phosphorus fixation in Egyptian soil makes it unavailable for rice to absorb. The goal of this study was to examine the effects of microbial and chemical sources of phosphorus fertilizers on the Egyptian Sakha 106 rice cultivar by applying different sources of phosphorus to increase the bioavailability of soil phosphorus for plants and to allow it to be fixed biologically to change it from an insoluble form to a soluble and available form for rice to absorb. So, in the 2019 and 2020 seasons, a field experiment was conducted at the experimental farm of Sakha Agricultural Research Station, Sakha, Kafr El-Sheikh, Egypt. The experiment was carried out using a Randomized Complete Block Design with four replications to determine the best phosphorus source for rice and soil among various treatments, which included 100% single super phosphate (SSP) basal application (P1), 75% single super phosphate (SSP) basal application (P2), P2 + phosphate-solubilizing bacteria (PSBs) top-dressing, P2 + arbuscular mycorrhizal fungi (AMFs) top-dressing P2 + phosphorus nanoparticles (PNPs) foliar spraying, P2 + phosphoric acid (PA) foliar spraying, P2 + (PSBs + AMFs) foliar spraying, P2 + (PSBs + PNPs) foliar spraying, P2 + (PSBs + PA) foliar spraying, P2 + (PNPs + PA) foliar spraying, P2 + (PSBs + PNPs + PA) foliar spraying and zero-phosphorus fertilizer. The results showed that the highest values were mostly obtained using the combination of 75% SSP basal application with the foliar spraying of PSBs, PNPs and PA, with substantial beneficial impacts on the leaf area index (3.706 and 3.527), dry matter accumulation (464.3 and 462.8 g m2), plant height (96.33 and 95.00 cm), phosphorus uptake in grain (24.3 and 24.49 Kg ha−1), phosphorus uptake in straw (17.7 and 17.0 Kg ha−1) and available phosphorus in the soil at harvest (21.75 and 21.70 ppm) in the 2019 and 2020 seasons, respectively; moreover, 75% SSP basal application with the foliar spraying of PSBs, PNPs and PA or 100% SSP basal application alone improved the number of panicles (506.3 or 521.1 and 521.9 or 547.1 m−2), filled grain weight (3.549 or 3.534 and 3.627 or 3.767 g panicle−1), the percentage of filled grain (96.19 or 96.47 and 95.43 or 96.24%), grain yield (9.353 or 9.221 and 9.311 or 9.148 t ha−1) and straw yield (11.51 or 11.46 and 11.82 or 11.69 t ha−1) in the 2019 and 2020 seasons, respectively. Chemical P fertilizers combined with the foliar spraying of PSBs, PNPs and PA obtained the highest crop productivity and improved most of the examined characteristics without any significant changes with respect to chemical P application alone in some other characteristics, followed by 75% SSP + top-dressing with PSBs + AMFs. The treatment that included the combination of 75% SSP basal application and the foliar spraying of PSBs +PNPs +PA is recommended, as it might be utilized to boost rice yield by solubilizing P in soil and increasing the absorption efficiency. In addition, it reduces chemical P fertilizers by 25%, which would guarantee a cleaner environment and soil conservation. Full article
(This article belongs to the Special Issue Arbuscular Mycorrhiza and Its Influence on Crop Production)
Show Figures

Figure 1

Back to TopTop