Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (885)

Search Parameters:
Keywords = ripple current

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6708 KB  
Article
Enhanced Model Predictive Speed Control of PMSMs Based on Duty Ratio Optimization with Integrated Load Torque Disturbance Compensation
by Tarek Yahia, Abdelsalam A. Ahmed, M. M. Ahmed, Amr El Zawawi, Z. M. S. Elbarbary, M. S. Arafath and Mosaad M. Ali
Machines 2025, 13(10), 891; https://doi.org/10.3390/machines13100891 - 30 Sep 2025
Abstract
This paper proposes an enhanced Model Predictive Direct Speed Control (MPDSC) framework for Permanent Magnet Synchronous Motor (PMSM) drives, integrating duty ratio optimization and load torque disturbance compensation to significantly improve both transient and steady-state performance. Traditional finite-control-set MPC strategies, which apply a [...] Read more.
This paper proposes an enhanced Model Predictive Direct Speed Control (MPDSC) framework for Permanent Magnet Synchronous Motor (PMSM) drives, integrating duty ratio optimization and load torque disturbance compensation to significantly improve both transient and steady-state performance. Traditional finite-control-set MPC strategies, which apply a single voltage vector per sampling interval, often suffer from steady-state ripples, elevated total harmonic distortion (THD), and high computational complexity due to exhaustive switching evaluations. The proposed approach addresses these limitations through a novel dual-stage cost function structure: the first cost function optimizes dynamic response via predictive control of speed error, while the second adaptively minimizes torque ripple and harmonic distortion by adjusting the active–zero voltage vector duty ratio without the need for manual weight tuning. Robustness against time-varying disturbances is further enhanced by integrating a real-time load torque observer into the control loop. The scheme is validated through both MATLAB/Simulink R2020a simulations and real-time experimental testing on a dSPACE 1202 rapid control prototyping platform across small- and large-scale PMSM configurations. Experimental results confirm that the proposed controller achieves a transient speed deviation of just 0.004%, a steady-state ripple of 0.01 rpm, and torque ripple as low as 0.0124 Nm, with THD reduced to approximately 5.5%. The duty ratio-based predictive modulation ensures faster settling time, improved current quality, and greater immunity to load torque disturbances compared to recent duty-ratio MPC implementations. These findings highlight the proposed DR-MPDSC as a computationally efficient and experimentally validated solution for next-generation PMSM drive systems in automotive and industrial domains. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

18 pages, 1367 KB  
Article
Torque Smoothness for a Modified W-Type Inverter-Fed Three-Phase Induction Motor with Finite Set Model Predictive Control for Electric Vehicles
by Muhammad Ayyaz Tariq, Syed Abdul Rahman Kashif, Akhtar Rasool and Ahmed Ali
World Electr. Veh. J. 2025, 16(9), 539; https://doi.org/10.3390/wevj16090539 - 22 Sep 2025
Viewed by 288
Abstract
Ripples in the electromagnetic torque of electric vehicle (EV) motors due to poor stator voltage and control cause jerky movements, equipment failure, discomfort for passengers and drivers, and damage to the associated civil works. This paper presents the implementation of Finite Control Set [...] Read more.
Ripples in the electromagnetic torque of electric vehicle (EV) motors due to poor stator voltage and control cause jerky movements, equipment failure, discomfort for passengers and drivers, and damage to the associated civil works. This paper presents the implementation of Finite Control Set Model Predictive Control (FCSMPC) for a high-level modified W-type inverter (MWI) driving a three-phase induction motor (IM), along with validation of its performance. The proposed control strategy aims to minimize motor torque ripples and has been tested under various driving torque patterns. The results demonstrate a significant reduction in torque ripples—down to less than 1%—and acceptable levels of total harmonic distortion (THD), as verified through quality analysis of the stator currents. Moreover, a comparative assessment of voltage profiles for the electromagnetic torque and rotor speed curves has been presented for nine cases of simultaneous variations in multiple motor parameters; the results indicate that the MWI-fed motor has the best performance and the lowest sensitivity to the variations. Full article
Show Figures

Figure 1

27 pages, 10722 KB  
Article
Improved Operation of the Modified Non-Inverting Step-Down/Up (MNI-SDU) DC-DC Converter
by Juan A. Villanueva-Loredo, Julio C. Rosas-Caro, Panfilo R. Martinez-Rodriguez, Christopher J. Rodriguez-Cortes, Diego Langarica-Cordoba and Gerardo Vazquez-Guzman
Micromachines 2025, 16(9), 1063; https://doi.org/10.3390/mi16091063 - 20 Sep 2025
Viewed by 154
Abstract
This paper presents an enhanced operation strategy for a recently proposed converter called Modified Non-Inverting Step-Down/Up (MNI-SDU) DC-DC converter intended for battery voltage regulation. Unlike the conventional approach, where both switching stages share a single duty cycle, the proposed method controls asynchronously the [...] Read more.
This paper presents an enhanced operation strategy for a recently proposed converter called Modified Non-Inverting Step-Down/Up (MNI-SDU) DC-DC converter intended for battery voltage regulation. Unlike the conventional approach, where both switching stages share a single duty cycle, the proposed method controls asynchronously the two duty cycles through a fixed time offset to optimize performance. A methodology is developed to define suitable duty cycle ranges that ensure proper converter operation according to input/output voltage specifications, while simultaneously reducing the current and voltage ripples and electrical stress in the capacitor and semiconductors. Furthermore, a model-based control strategy is proposed, taking into account the enhanced operational characteristics. Consequently, a PI-PI current-mode controller is designed using loop shaping techniques to maintain the output voltage regulated at the desired level. The proposed approach is analyzed mathematically and validated through experimental results. The findings demonstrate that optimizing through asynchronous duty-cycle control with a fixed time offset improves ripple, stress values, and overall efficiency, while maintaining robust output voltage regulation, making this method well-suited for applications requiring compact and reliable power conversion. Full article
(This article belongs to the Topic Power Electronics Converters, 2nd Edition)
Show Figures

Figure 1

20 pages, 1266 KB  
Review
Research Trends and Challenges of Integrated Constant On-Time (COT) Buck Converters
by Seok-Tae Koh and Sunghyun Bae
Electronics 2025, 14(18), 3721; https://doi.org/10.3390/electronics14183721 - 19 Sep 2025
Viewed by 320
Abstract
Constant on-time (COT) buck converters offer fast transient responses and a simple architecture but face challenges like switching frequency variation, instability with low-equivalent series resistance (ESR) capacitors, and DC output voltage offset. This paper reviews advanced COT control techniques developed to overcome these [...] Read more.
Constant on-time (COT) buck converters offer fast transient responses and a simple architecture but face challenges like switching frequency variation, instability with low-equivalent series resistance (ESR) capacitors, and DC output voltage offset. This paper reviews advanced COT control techniques developed to overcome these limitations. We examine methods for frequency stabilization (e.g., adaptive on-time, phase-locked loop), stability with low-ESR capacitors (e.g., passive and active ripple injection, virtual inductor current), and improved DC regulation (e.g., offset cancellation). This review also covers techniques for optimizing transient response and multiphase architectures for high-current applications. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

20 pages, 3846 KB  
Article
Research on Generalized Average Modeling and Characteristic Harmonic Frequency Configuration Strategy for PWM Inverter Using Modelica
by Zhaoxuan Sun, Liping Chen, Jianwan Ding and Xiaoyan Liu
Electronics 2025, 14(18), 3685; https://doi.org/10.3390/electronics14183685 - 17 Sep 2025
Viewed by 214
Abstract
During operation, the voltage and current waveforms output by pulse width modelation (PWM) inverters often contain high-frequency ripples. Compared to the average model, the generalized average model (GAM) can take into account the effects of high-frequency components and harmonics, further improving the accuracy [...] Read more.
During operation, the voltage and current waveforms output by pulse width modelation (PWM) inverters often contain high-frequency ripples. Compared to the average model, the generalized average model (GAM) can take into account the effects of high-frequency components and harmonics, further improving the accuracy of the model calculations. However, as the order of GAM increases, the construction of its mathematical model becomes increasingly complex and may lose the original harmonic characteristics of the system. To facilitate the analysis of the influence of the order of the generalized average model on the harmonic characteristics of its original system, a GAM of the PWM inverter was constructed using the Modelica language based on the mapping rules from the time-domain state-space model to the multi-frequency-domain GAM. Subsequently, based on the spectral distribution of the external control signal, a configuration strategy for the characteristic harmonic frequencies of the GAM was proposed. Simulation experiments were conducted separately for one-phase and three-phase inverters. The results indicate that the proposed configuration strategy for the characteristic harmonic frequencies of GAM not only preserves the harmonic characteristics of the original system but also improves the computational efficiency of the system model. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

32 pages, 5785 KB  
Article
High-Efficiency Partial-Power Converter with Dual-Loop PI-Sliding Mode Control for PV Systems
by Jesús Sergio Artal-Sevil, Alberto Coronado-Mendoza, Nicolás Haro-Falcón and José Antonio Domínguez-Navarro
Electronics 2025, 14(18), 3622; https://doi.org/10.3390/electronics14183622 - 12 Sep 2025
Viewed by 327
Abstract
This paper presents a novel partial-power DC-DC converter architecture specifically designed for Photovoltaic (PV) energy systems. Unlike traditional full-power converters, the proposed topology processes only a fraction of the total power, resulting in improved overall efficiency, reduced component stress, and lower system cost. [...] Read more.
This paper presents a novel partial-power DC-DC converter architecture specifically designed for Photovoltaic (PV) energy systems. Unlike traditional full-power converters, the proposed topology processes only a fraction of the total power, resulting in improved overall efficiency, reduced component stress, and lower system cost. The converter is integrated into a PV-based energy system and regulated by a dual-loop control strategy consisting of a Proportional-Integral (PI) voltage controller and an inner Sliding-Mode Controller (SMC) for current regulation. This control scheme ensures robust tracking performance under dynamic variations in irradiance, load, and reference voltage. The paper provides a comprehensive mathematical model and control formulation, emphasizing the robustness and fast transient response offered by SMC. Simulation results obtained in MATLAB-Simulink, along with real-time implementation on the OPAL-RT hardware-in-the-loop (HIL) platform, confirm the effectiveness of the proposed design. The system achieves stable voltage regulation with low ripple and accurate current tracking. Compared to conventional boost configurations, the proposed converter demonstrates superior performance, particularly under moderate voltage conversion conditions. The system achieves high efficiency levels, validated through both analytical estimation and real-time hardware-in-the-loop (HIL) implementation. Its high efficiency, scalability, and real-time control feasibility make it a promising solution for next-generation PV systems, battery interfacing, and DC-microgrid applications. Full article
(This article belongs to the Special Issue Advanced DC-DC Converter Topology Design, Control, Application)
Show Figures

Figure 1

14 pages, 4246 KB  
Article
PI-Based Current Constant Control with Ripple Component for Lifetime Extension of Lithium-Ion Battery
by Min-Ho Shin, Jin-Ho Lee and Jehyuk Won
Electronics 2025, 14(17), 3566; https://doi.org/10.3390/electronics14173566 - 8 Sep 2025
Viewed by 343
Abstract
This paper presents a proportional–integral (PI) control-based charging strategy that introduces a ripple component into the constant-current (CC) charging profile to regulate battery temperature and improve long-term performance. The proposed method is implemented within an on-board charger (OBC), where the ripple amplitude is [...] Read more.
This paper presents a proportional–integral (PI) control-based charging strategy that introduces a ripple component into the constant-current (CC) charging profile to regulate battery temperature and improve long-term performance. The proposed method is implemented within an on-board charger (OBC), where the ripple amplitude is adaptively adjusted based on battery temperature and internal resistance. While most prior studies focus on electrochemical characteristics, this work highlights the importance of analyzing current profiles from a power electronics and converter control perspective. The ripple magnitude is controlled in real time through gain tuning of the PI current controller, allowing temperature-aware charging. To validate the proposed method, experiments were conducted using a 11 kW OBC system and 70 Ah lithium-ion battery to examine the correlation between ripple amplitude and battery temperature rise, as well as its impact on internal resistance. The control strategy was evaluated under various thermal conditions and shown to be effective in mitigating temperature-related degradation through ripple-based modulation. Full article
Show Figures

Figure 1

17 pages, 3386 KB  
Article
Anti-Windup Method Using Ancillary Flux-Weakening for Enhanced Induction Motor Performance Under Voltage Saturation
by Xu Zhang, Shuhan Xi and Jing Zhang
Electronics 2025, 14(17), 3496; https://doi.org/10.3390/electronics14173496 - 31 Aug 2025
Viewed by 529
Abstract
When the speed of an induction motor (IM) exceeds its rated value, voltage saturation occurs, which degrades its performance. Traditional flux-weakening (FW) control suffers from delays due to cascaded PI regulators and sensitivity to rotor field orientation lag. Addressing these two issues, the [...] Read more.
When the speed of an induction motor (IM) exceeds its rated value, voltage saturation occurs, which degrades its performance. Traditional flux-weakening (FW) control suffers from delays due to cascaded PI regulators and sensitivity to rotor field orientation lag. Addressing these two issues, the proposed ancillary flux-weakening (AFW) method introduces two d-axis current compensation paths. One compensation path is from the reference value of the q-axis current, which simplifies the traditional three-PI cascade FW path into a single PI path in the transient process. The other compensation path is derived from the q-axis current tracking error to mitigate voltage saturation caused by orientation error. Comparative experiments show that during precise direction acceleration, the AFW method increases the current response time by 35% and reduces the peak voltage fluctuation by 38.98%. It also reduces low voltage ripple by 76.4% in inaccurate direction and burst load conditions. The results confirm a significant enhancement of dynamic performance and voltage anti-saturation capability in the FW region. Full article
(This article belongs to the Special Issue Power Electronics Controllers for Power System)
Show Figures

Figure 1

19 pages, 5147 KB  
Article
Parameter-Free Model Predictive Control of Five-Phase PMSM Under Healthy and Inter-Turn Short-Circuit Fault Conditions
by Yijia Huang, Wentao Huang, Keyang Ru and Dezhi Xu
Energies 2025, 18(17), 4549; https://doi.org/10.3390/en18174549 - 27 Aug 2025
Viewed by 427
Abstract
Model predictive control offers high-performance regulation for multiphase drives but is critically dependent on the accuracy of mathematical models for prediction, making it vulnerable to parameter mismatches and uncertainties. To achieve parameter-independent control across both healthy and faulty operations, this paper proposes a [...] Read more.
Model predictive control offers high-performance regulation for multiphase drives but is critically dependent on the accuracy of mathematical models for prediction, making it vulnerable to parameter mismatches and uncertainties. To achieve parameter-independent control across both healthy and faulty operations, this paper proposes a novel dynamic mode decomposition with control (DMDc)-based model predictive current control (MPCC) scheme for five-phase permanent magnet synchronous motors. The core innovation lies in constructing discrete-time state-space models directly from operational data via the open-loop DMDc identification, completely eliminating reliance on explicit motor parameters. Furthermore, an improved fault-tolerant strategy is developed to mitigate the torque ripple induced by inter-turn short-circuit (ITSC) faults. This strategy estimates the key fault characteristic, the product of the short-circuit ratio and current, through a spectral decomposition of the AC component in the q-axis current variations, bypassing the need for complex parameter-dependent observers. The derived compensation currents are seamlessly integrated into the predictive control loop. Experimental results comprehensively validate the effectiveness of the proposed framework, demonstrating a performance comparable to a conventional MPCC under healthy conditions and a significant reduction in torque ripple under ITSC fault conditions, all achieved without any prior knowledge of motor parameters or the retuning of controller gains. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

18 pages, 5470 KB  
Article
Research on the Detection Method of Excessive Spark in Ship DC Motors Based on Wavelet Analysis
by Chaoli Jiang, Lubin Chang, Guoli Feng, Yuanshuai Liu and Wenli Fei
Energies 2025, 18(17), 4533; https://doi.org/10.3390/en18174533 - 27 Aug 2025
Viewed by 492
Abstract
In order to analyze and solve the problem of excessive commutation spark of DC motor in ship electric propulsion system, which leads to a decrease in output power and low torque, this paper first establishes a mathematical model of the ship DC motor, [...] Read more.
In order to analyze and solve the problem of excessive commutation spark of DC motor in ship electric propulsion system, which leads to a decrease in output power and low torque, this paper first establishes a mathematical model of the ship DC motor, builds its simulation model based on the mathematical model, and conducts simulation verification. Secondly, the Cassie arc model is introduced to model the commutation spark, and the Cassie arc model is connected in series in the armature winding of the DC motor to achieve virtual injection of excessive spark fault of the DC motor. Finally, the Fourier transform and wavelet analysis are used to process the data of the armature winding current and excitation current of the DC motor. The simulation results show that when an arc fault occurs in the DC motor, the ripple coefficient of the armature current and excitation current will increase, and the high-frequency component will increase. DB8 is an adopted wavelet function that decomposes the armature current and excitation current six times, and calculates the energy changes before and after the fault of each decomposed signal layer. It is found that without considering the approximate components, the D4 layer wavelet energy of the armature current and excitation current has the largest proportion in the detail components. The D1, D2, and D3 layers’ wavelet decomposition signals of the armature current and excitation current have significant energy changes; that is, the energy increase in the middle and high frequency parts exceeds 20%, and the D3 layer wavelet decomposition signal has the largest energy change, exceeding 40%. This can be used as a fault characteristic quantity to determine whether the DC motor has a large spark fault. This study can provide reference and guidance for online detection technology of excessive sparks in ship DC motors. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

29 pages, 2173 KB  
Review
A Review and Prototype Proposal for a 3 m Hybrid Wind–PV Rotor with Flat Blades and a Peripheral Ring
by George Daniel Chiriță, Viviana Filip, Alexis Daniel Negrea and Dragoș Vladimir Tătaru
Appl. Sci. 2025, 15(16), 9119; https://doi.org/10.3390/app15169119 - 19 Aug 2025
Viewed by 584
Abstract
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, [...] Read more.
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, and current gaps in simultaneous wind + PV co-generation on a single moving structure are highlighted. Key performance indicators such as power coefficient (Cp), DC ripple, cell temperature difference (ΔT), and levelised cost of energy (LCOE) are defined, and an integrated assessment methodology is proposed based on blade element momentum (BEM) and computational fluid dynamics (CFD) modelling, dynamic current–voltage (I–V) testing, and failure modes and effects analysis (FMEA) to evaluate system performance and reliability. Preliminary results point to moderate aerodynamic penalties (ΔCp ≈ 5–8%), PV output during rotation equal to 15–25% of the nominal PV power (PPV), and an estimated 70–75% reduction in blade–root bending moment when the peripheral ring converts each blade from a cantilever to a simply supported member, resulting in increased blade stiffness. Major challenges include the collective pitch mechanism, dynamic shading, and wear of rotating components (slip rings); however, the suggested technical measures—maximum power point tracking (MPPT), string segmentation, and redundant braking—keep performance within acceptable limits. This study concludes that the concept shows promise for distributed microgeneration, provided extensive experimental validation and IEC 61400-2-compliant standardisation are pursued. This paper has a dual scope: (i) a concise literature review relevant to low-Re flat-blade aerodynamics and ring-stiffened rotor structures and (ii) a multi-fidelity aero-structural study that culminates in a 3 m prototype proposal. We present the first evaluation of a hybrid wind–PV rotor employing untwisted flat-plate blades stiffened by a peripheral ring. Using low-Re BEM for preliminary loading, steady-state RANS-CFD (k-ω SST) for validation, and elastic FEM for sizing, we assemble a coherent load/performance dataset. After upsizing the hub pins (Ø 30 mm), ring (50 × 50 mm), and spokes (Ø 40 mm), von Mises stresses remain < 25% of the 6061-T6 yield limit and tip deflection ≤ 0.5%·R acrosscut-in (3 m s−1), nominal (5 m s−1), and extreme (25 m s−1) cases. CFD confirms a broad efficiency plateau at λ = 2.4–2.8 for β ≈ 10° and near-zero shaft torque at β = 90°, supporting a three-step pitch schedule (20° start-up → 10° nominal → 90° storm). Cross-model deviations for Cp, torque, and pressure/force distributions remain within ± 10%. This study addresses only the rotor; off-the-shelf generator, brake, screw-pitch, and azimuth/tilt drives are intended for later integration. The results provide a low-cost manufacturable architecture and a validated baseline for full-scale testing and future transient CFD/FEM iterations. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting, 2nd Edition)
Show Figures

Figure 1

23 pages, 14799 KB  
Article
Comparative Analysis of Weighting-Factor-Free Predictive Control Strategies for Direct Torque Control in Permanent Magnet Synchronous Machines
by Jakson Bonaldo, Jacopo Riccio, Emrah Zerdali, Marco Rivera, Raul Monteiro and Patrick Wheeler
Processes 2025, 13(8), 2614; https://doi.org/10.3390/pr13082614 - 18 Aug 2025
Viewed by 808
Abstract
Direct torque control (DTC) based on the finite control set model predictive control (FCS-MPC) provides a straightforward and intuitive solution for controlling permanent magnet synchronous motors (PMSMs). However, conventional FCS-MPC relies on appropriately tuned weighting factors in the cost function, which have a [...] Read more.
Direct torque control (DTC) based on the finite control set model predictive control (FCS-MPC) provides a straightforward and intuitive solution for controlling permanent magnet synchronous motors (PMSMs). However, conventional FCS-MPC relies on appropriately tuned weighting factors in the cost function, which have a significant impact on the control performance and increase design complexity. This paper presents a comprehensive experimental comparison of emerging FCS-MPC strategies for DTC of PMSMs that eliminate the need for weighting factors. Specifically, a sequential FCS-MPC approach is benchmarked against decision-making-based FCS-MPC methods that employ Euclidean distance normalisation. Extensive experimental results, obtained across a wide range of operating conditions, are used to assess current total harmonic distortion (THD), torque and flux ripple, and transient performance. Results indicate that while all methods yield comparable current THD, decision-making-based strategies achieve superior torque and flux regulation with reduced ripple compared to the sequential approach. These findings demonstrate that decision-making-based FCS-MPC methods provide additional flexibility in defining control objectives, eliminating the need to design weighting factors, such as those used in the sequential method while offering superior performance. Full article
Show Figures

Figure 1

26 pages, 4171 KB  
Article
Arithmetic Harris Hawks-Based Effective Battery Charging from Variable Sources and Energy Recovery Through Regenerative Braking in Electric Vehicles, Implying Fractional Order PID Controller
by Dola Sinha, Saibal Majumder, Chandan Bandyopadhyay and Haresh Kumar Sharma
Fractal Fract. 2025, 9(8), 525; https://doi.org/10.3390/fractalfract9080525 - 13 Aug 2025
Viewed by 472
Abstract
A significant application of the proportional–integral (PI) controller in the automotive sector is in electric motors, particularly brushless direct current (BLDC) motors utilized in electric vehicles (EVs). This paper presents a high-performance boost converter regulated by a fractional-order proportional–integral (FoPI) controller to ensure [...] Read more.
A significant application of the proportional–integral (PI) controller in the automotive sector is in electric motors, particularly brushless direct current (BLDC) motors utilized in electric vehicles (EVs). This paper presents a high-performance boost converter regulated by a fractional-order proportional–integral (FoPI) controller to ensure stable output voltage and power delivery to effectively charge the battery under fluctuating input conditions. The FoPI controller parameters, including gains and fractional order, are optimized using an Arithmetic Harris Hawks Optimization (AHHO) algorithm with an integral absolute error (IAE) as the objective function. The primary objective is to enhance the system’s robustness against input voltage fluctuation while charging from renewable sources. Conversely, regenerative braking is crucial for energy recovery during vehicle operation. This study implements a fractional-order PI controller (FOPI) for the smooth and exact regulation of speed and energy recuperation during regenerative braking. The proposed scheme underwent extensive simulations in the Simulink environment using the FOMCON toolbox version 2023b. The results were validated with the traditional Ziegler–Nichols method. The simulation findings demonstrate smooth and precise speed control and effective energy recovery during regenerative braking and a constant voltage output of 375 V, with fewer ripples and rapid transient responses during charging of batteries from variable input supply. Full article
Show Figures

Figure 1

13 pages, 3944 KB  
Article
Design and Analysis of a Double-Three-Phase Permanent Magnet Fault-Tolerant Machine with Low Short-Circuit Current for Flywheel Energy Storage
by Xiaotong Li, Shaowei Liang, Buyang Qi, Zhenghui Zhao and Zhijian Ling
Machines 2025, 13(8), 720; https://doi.org/10.3390/machines13080720 - 13 Aug 2025
Viewed by 461
Abstract
This paper proposes a double-three-phase permanent magnet fault-tolerant machine (DTP-PMFTM) with low short-circuit current for flywheel energy storage systems (FESS) to balance torque performance and short-circuit current suppression. The key innovation lies in its modular winding configuration that ensures electrical isolation between the [...] Read more.
This paper proposes a double-three-phase permanent magnet fault-tolerant machine (DTP-PMFTM) with low short-circuit current for flywheel energy storage systems (FESS) to balance torque performance and short-circuit current suppression. The key innovation lies in its modular winding configuration that ensures electrical isolation between the two winding sets. First, the structural characteristics of the double three-phase windings are analyzed. Subsequently, the harmonic features of the resultant magnetomotive force (MMF) are systematically investigated. To verify the performance, the proposed machine is compared against a conventional winding structure as a baseline, focusing on key parameters such as output torque and short-circuit current. The experimental results demonstrate that the proposed machine achieves an average torque of approximately 14.7 N·m with a torque ripple of about 3.27%, a phase inductance of approximately 3.7 mH, and a short-circuit current of approximately 50.9 A. Crucially, compared to the conventional winding, the modular structure increases the phase inductance by about 32.1% and reduces the short-circuit current by 29.7%. Finally, an experimental platform is established to validate the performance of the machine. Full article
Show Figures

Figure 1

14 pages, 4756 KB  
Review
Revolutionizing Breast Reconstruction: The Rise of Hybrid Techniques
by Evan Rothchild, Isabelle T. Smith, Gabrielle Odoom, Mark L. Smith and Neil Tanna
Medicina 2025, 61(8), 1434; https://doi.org/10.3390/medicina61081434 - 9 Aug 2025
Viewed by 653
Abstract
Hybrid breast reconstruction (HBR) combines autologous tissue and bio-prosthetic breast reconstruction techniques. This method addresses many challenges associated with stand-alone techniques, including inadequate volume with autologous reconstruction and esthetic issues like rippling in implant-based reconstruction. However, despite its promising advantages, HBR remains underutilized. [...] Read more.
Hybrid breast reconstruction (HBR) combines autologous tissue and bio-prosthetic breast reconstruction techniques. This method addresses many challenges associated with stand-alone techniques, including inadequate volume with autologous reconstruction and esthetic issues like rippling in implant-based reconstruction. However, despite its promising advantages, HBR remains underutilized. This review explores the development of HBR, surgical techniques, clinical outcomes, current barriers to adoption, and the future potential of this innovative approach to breast reconstructive surgery. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

Back to TopTop