Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (454)

Search Parameters:
Keywords = risk minimisation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 527 KB  
Review
Management of Bone Health Considerations in Patients with Cancer
by Michelle Brennan and Tania Kalsi
Cancers 2025, 17(17), 2878; https://doi.org/10.3390/cancers17172878 - 1 Sep 2025
Viewed by 204
Abstract
Background: Older adults with cancer are surviving longer due to earlier detection and more effective treatments for advanced stages. This population is at an elevated risk of osteoporosis due to age-related changes in bone density as well as the impact of cancer and [...] Read more.
Background: Older adults with cancer are surviving longer due to earlier detection and more effective treatments for advanced stages. This population is at an elevated risk of osteoporosis due to age-related changes in bone density as well as the impact of cancer and cancer treatments on the skeletal system. Main Body: Cancer treatments are associated with increased bone loss and fracture risk via a variety of mechanisms. International guidelines recommend screening for cancer treatment-induced bone loss and provide treatment algorithms for pharmacological agents for those on hormonal therapy. There is a paucity of guidelines on bone health protection for those receiving intermittent glucocorticoid and newer immunotherapy regimes. Results: All patients receiving cancer treatment should undergo an individualised fracture risk assessment to optimise their bone health with regular review and reassessment of their risk profile. Dedicated bone health guidelines in cancer populations should be expanded to consider the impact of newer treatment modalities. All patients should receive education around non-pharmacological management and undergo a shared decision-making approach where there are indications for bone-targeted agents. Conclusions: Bone health assessment is an integral part of comprehensive geriatric assessment for older people with cancer. Strategies to minimise bone density loss and reduce fracture risk are an important consideration for cancer survivorship programmes for the majority of people and require a standardised approach. Full article
(This article belongs to the Special Issue High-Quality Cancer Care in Older Adults)
Show Figures

Figure 1

23 pages, 1521 KB  
Article
Quantum-Enhanced Battery Anomaly Detection in Smart Transportation Systems
by Alexander Mutiso Mutua and Ruairí de Fréin
Appl. Sci. 2025, 15(17), 9452; https://doi.org/10.3390/app15179452 - 28 Aug 2025
Viewed by 308
Abstract
Ensuring the safety, reliability, and longevity of Lithium-ion (Li-ion) batteries is crucial for sustainable integration of Electric Vehicles (EVs) within Intelligent Transportation Systems (ITSs). However, thermal stress and degradation-induced anomalies can cause sudden performance failures, posing critical operational and safety risks. Capturing complex, [...] Read more.
Ensuring the safety, reliability, and longevity of Lithium-ion (Li-ion) batteries is crucial for sustainable integration of Electric Vehicles (EVs) within Intelligent Transportation Systems (ITSs). However, thermal stress and degradation-induced anomalies can cause sudden performance failures, posing critical operational and safety risks. Capturing complex, non-linear, and high-dimensional patterns remains challenging for traditional Machine Learning (ML) models. We propose a hybrid anomaly detection method that incorporates a Variational Quantum Neural Network (VQNN), which uses the principles of quantum mechanics, such as superposition, entanglement, and parallelism, to learn complex non-linear patterns. The VQNN is integrated with Isolation Forest (IF) and a Median Absolute Deviation (MAD)-based spike characterisation method to form a Quantum Anomaly Detector (QAD). This method distinguishes between normal and anomalous spikes in battery behaviour. Using an Arrhenius-based model, we simulate how the State of Health (SoH) and voltage of a Li-ion battery reduce as temperatures increase. We perform experiments on NASA battery datasets and detect abnormal spikes in 14 out of 168 cycles, corresponding to 8.3% of the cycles. The QAD achieves the highest Receiver Operating Characteristic Area Under the Curve (ROC-AUC) of 0.9820, outperforming the baseline IF model by 7.78%. We use ML to predict the SoH and voltage changes when the temperature varies. Gradient Boosting (GB) achieves a voltage Mean Squared Error (MSE) of 0.001425, while Support Vector Regression (SVR) achieves the highest R2 score of 0.9343. These results demonstrate that Quantum Machine Learning (QML) can be applied for anomaly detection in Battery Management Systems (BMSs) within intelligent transportation ecosystems and could enable EVs to autonomously adapt their routing and schedule preventative maintenance. With these capabilities, safety will be improved, downtime minimised, and public confidence in sustainable transport technologies increased. Full article
Show Figures

Figure 1

25 pages, 5084 KB  
Article
Ensuring Southern Spain’s Energy Future: A LEAP-Based Scenario for Meeting 2030 and 2050 Goals
by Lucía Galán-Cano, Juan Cámara-Aceituno, Manuel Jesús Hermoso-Orzáez and Julio Terrados-Cepeda
Appl. Sci. 2025, 15(17), 9406; https://doi.org/10.3390/app15179406 - 27 Aug 2025
Viewed by 307
Abstract
The transition towards a low-carbon energy system remains a critical challenge for regions heavily dependent on fossil fuels, such as Andalusia. This study proposes an energy planning framework based on the Low Emissions Analysis Platform (LEAP) to model alternative scenarios and assess the [...] Read more.
The transition towards a low-carbon energy system remains a critical challenge for regions heavily dependent on fossil fuels, such as Andalusia. This study proposes an energy planning framework based on the Low Emissions Analysis Platform (LEAP) to model alternative scenarios and assess the feasibility of meeting the 2030 and 2050 decarbonisation targets. Three scenarios are evaluated, the Tendential Scenario (TS01), the Efficient Scenario (ES01), and the Efficient UJA (EEUJA) Scenario, with this last being specifically designed to ensure full compliance with regional energy goals. The results indicate that, while the Tendential Scenario falls short in reducing primary energy consumption and greenhouse gas (GHG) emissions, the Efficient Scenario achieves significant progress, though it is still insufficient to meet renewable energy integration targets. The proposed EEUJA Scenario introduces more ambitious measures, including large-scale electrification, smart grids, energy storage, and green hydrogen deployment, resulting in a 39.5% reduction in primary energy demand by 2030 and 97% renewable energy penetration by 2050. Furthermore, by implementing sector-specific decarbonisation strategies for the industry, transport, residential, and services sectors, Andalusia could position itself as a frontrunner in the energy transition while minimising economic and environmental risks. These findings underscore the importance of policy enforcement, technological innovation, and financial incentives in securing a sustainable energy future. The methodology developed in this study is replicable for other regions aiming for carbon neutrality and energy resilience through strategic planning and scenario analysis. Full article
Show Figures

Figure 1

39 pages, 3868 KB  
Article
Analysis of Trihalomethanes in Drinking Water Distribution Lines and Assessment of Their Carcinogenic Risk Potentials
by Kadir Özdemir and Nizamettin Özdoğan
Sustainability 2025, 17(17), 7618; https://doi.org/10.3390/su17177618 - 23 Aug 2025
Viewed by 557
Abstract
This study examined the spatial and seasonal variations of trihalomethanes (THMs) and estimated the health risks associated with THM exposure in drinking water through various pathways. Water samples were collected from 14 distribution districts connected to the Ulutan Distribution System (UDS) and the [...] Read more.
This study examined the spatial and seasonal variations of trihalomethanes (THMs) and estimated the health risks associated with THM exposure in drinking water through various pathways. Water samples were collected from 14 distribution districts connected to the Ulutan Distribution System (UDS) and the Süleyman Bey Distribution System (SDS), which supply drinking water to Zonguldak Province, Türkiye. THMs were measured using the USEPA 551 method. The median total trihalomethanes (TTHMs) ranged from 41 μg/L to 71 μg/L, which is below the Turkish drinking water standard of 100 μg/L. Chloroform (TCM) was the most common trihalomethane in all distribution networks in UDS and SDS. On the other hand, pre-ozonation oxidation after chlorination in SDS disinfection caused the contribution of brominated THMs (62%) to THM formation to be higher than that of TCM (38%). The study on cancer risk reveals that ingestion (96%) poses the greatest risk of the investigated pathways, followed by dermal contact (3.95%), while inhalation has been found to have a negligible effect. The highest and lowest median TTHMs occurred during winter and summer. The findings of the study show that the distribution areas of Kozlu, Ömerli, Topçalı, and Uzunçayır, for both genders, exhibit an unacceptable cancer risk level according to the criteria established by the USEPA (>10−4). Bromodichloromethane (BDCM) and chlorodibromomethane (DBCM) are the main contributors to cancer risk for males and females in UDS and SDS. The hazard index (HI) data indicated that the HI value remained below one for both UDS and SDS. Sensitivity analysis of THMs demonstrated that exposure frequency (EF) was the primary parameter contributing to the maximum potential impact on the total cancer risk exposure frequency (EF), followed by body weight (BW) and exposure duration (ED). Further, the results provide valuable information for health departments and water management authorities, enabling the formulation of more specific and efficient policies to minimise THM levels in drinking water distribution networks. Full article
Show Figures

Figure 1

23 pages, 1568 KB  
Article
Improving Quality and Sustainability Outcomes in Building Rehabilitation: Concepts, Tools, and a New Assessment Methodology
by Catarina P. Mouraz, José A.R. Mendes Silva and Tiago Miguel Ferreira
Buildings 2025, 15(17), 3001; https://doi.org/10.3390/buildings15173001 - 23 Aug 2025
Viewed by 263
Abstract
Pursuing quality and sustainability concerns in construction activities is not new. However, the construction sector continues to face criticism for the outcome of many interventions, and significant progress is still required to realise both objectives. This is particularly pressing in sectors essential for [...] Read more.
Pursuing quality and sustainability concerns in construction activities is not new. However, the construction sector continues to face criticism for the outcome of many interventions, and significant progress is still required to realise both objectives. This is particularly pressing in sectors essential for quality of life and wellbeing, such as housing, and in areas frequently neglected in research and practice, such as existing buildings. This paper provides insights into the assessment of quality and sustainability in existing buildings, clarifying these concerns, exploring their interrelationship, emphasising the critical role of the design phase, and synthesising relevant methodologies focused on each objective. Furthermore, a novel methodology is proposed to minimise the risk of poor quality in building rehabilitation processes. Methodologically, the paper includes a review of concepts associated with quality and sustainability in building rehabilitation, a synthesis of existing evaluation tools and methods, and the development of the proposed methodology. The main findings include a definition of construction quality, identification of strong correlations between quality and sustainability, and the recognition that using accessible, flexible, and collaborative tools during the design phase is crucial to achieving both objectives, especially in the context of existing buildings, where practical and operational outcomes remain limited. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

12 pages, 262 KB  
Review
Adjunctive Use of Biologics in Alveolar Ridge Preservation: A Narrative Review
by Celine Soon, Pradeep Koppolu and Leticia Algarves Miranda
Oral 2025, 5(3), 60; https://doi.org/10.3390/oral5030060 - 15 Aug 2025
Viewed by 417
Abstract
Background: The purpose of alveolar ridge preservation (ARP) is to minimise the physiological alveolar ridge reduction occurring after dental extraction, which can prevent the need for future alveolar ridge augmentation. Biologic materials (biologics) promote tissue regeneration based on their effect on wound healing [...] Read more.
Background: The purpose of alveolar ridge preservation (ARP) is to minimise the physiological alveolar ridge reduction occurring after dental extraction, which can prevent the need for future alveolar ridge augmentation. Biologic materials (biologics) promote tissue regeneration based on their effect on wound healing at a cellular level. By integrating biologics into ARP biomaterials, there is a potential to enhance the regeneration of both hard and soft tissues with greater efficacy. Aim: This narrative review aims to evaluate the clinical efficacy of the addition of biologics to existing ARP materials on the physiological changes following ARP of an extraction site. Methods: A search of the PubMed electronic database was conducted, and relevant articles were examined. Sixty-three articles met the inclusion and exclusion criteria and were included in this review. Results and Conclusions: A review of the existing literature found that the combination of biologics with ARP materials resulted in similar dimensional changes when compared to using ARP materials alone. Existing research has identified an enhancement in bone density, increased wound healing capacity of soft and hard tissue, and a reduction in post-operative pain. Whilst the addition of biologics to ARP materials has shown an increase in bone density, its effectiveness in improving implant outcomes and reducing the need for future alveolar ridge augmentation is unclear. Recognising the limitations within the existing literature, along with the risk of bias and heterogeneity, renders it unwise to make definite conclusions about the benefits of integrating biologics with ARP materials. This narrative review found possible benefits in the use of biologics in ARP to optimise patient-related and treatment outcomes, indicating the need for additional research. Full article
25 pages, 5321 KB  
Article
Corrosion and Ion Release in 304L Stainless Steel Biomedical Stylets
by Lucien Reclaru, Alexandru Florian Grecu, Daniela Florentina Grecu, Cristian Virgil Lungulescu and Dan Cristian Grecu
Materials 2025, 18(16), 3769; https://doi.org/10.3390/ma18163769 - 11 Aug 2025
Viewed by 315
Abstract
Styles are invasive medical devices that are visible on images and are used in several medical specialties, including cardiology, neurology, orthopaedics, anaesthesia, oto-rhino-laryngology (ENT), and dentistry. With their thin and flexible design, they allow for the optimal positioning and precise guidance of medical [...] Read more.
Styles are invasive medical devices that are visible on images and are used in several medical specialties, including cardiology, neurology, orthopaedics, anaesthesia, oto-rhino-laryngology (ENT), and dentistry. With their thin and flexible design, they allow for the optimal positioning and precise guidance of medical devices such as nerve stimulation, defibrillation, electrode positioning, and catheter insertion. Generally, they are made of stainless steel, offering a combination of rigidity and flexibility. The aim of this study is to evaluate the sensitivity of austenitic stainless steel 304L used for the manufacture of J-stylets in uniform, pitting, crevice, and intergranular corrosion. We follow the manufacturing process step by step in order to analyse the risks of corrosion sensitisation and the cumulative effects of various forms of degradation, which could lead to a significant release of metal cations. Another objective of this study is to determine the optimal heat treatment temperature to minimise sensitivity to the intergranular corrosion of 304L steel. Uniform corrosion: Two samples were taken at each stage of the manufacturing process (eight steps in total), in the form of rods. After one hour of immersion, potentiodynamic polarisation curves were plotted up to ±400 mV vs. SCE. A coulometric analysis was also performed by integrating the anode zone between E (i = 0) and +400 mV vs. SCE. The values obtained by integration are expressed as mC/cm2. The test medium used was a simulated artificial plasma solution (9 g/L NaCl solution). Intergranular corrosion: (a) Chemical test: Thirty rod-shaped samples were tested, representing the eight manufacturing steps, as well as heat treatments at 500 °C, 620 °C, and 750 °C, in accordance with ASTM A262 (F method). (b) Electrochemical Potentiokinetic Reactivation (EPR) according to ASTM G108–94 (2015). Two samples were tested for each condition: without heat treatment and after treatments at 500 °C, 620 °C, and 750 °C. Release of cations: The release of metal ions was evaluated in the following two media: artificial sweat, according to EN 1811:2011+A1:2015, and bone plasma, according to the Fitton-Jackson and Burks-Peck method. Six samples that had been heat-treated at 500 °C for one hour were analysed. Results, discussions: (a) Analysis of the polarisation curves revealed significant disturbances in the heat treatment steps, as well as the μC/cm2 quantities, which were between 150,000 and 400,000 compared to only 40–180 for the other manufacturing steps; (b) Electrochemical Potentiokinetic reactivation (EPR) tests indicated that the temperature of 500 °C was a good choice to limit 304L steel sensitisation in intergranular corrosion; and (c) the quantities of cations released in EN 1811 sweat were of the order of a few μg/cm2 week, as for Fe: 2.31, Cr: 0.05, and Ni: 0.12. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

14 pages, 990 KB  
Review
Practical Strategies to Predict, Avoid and Manage the Complications of Robotic-Assisted Partial Nephrectomy
by Andrew R. H. Shepherd and Benjamin J. Challacombe
Complications 2025, 2(3), 21; https://doi.org/10.3390/complications2030021 - 8 Aug 2025
Viewed by 497
Abstract
Background/objectives: Robotic-assisted partial nephrectomy (RAPN) is increasingly utilised for the management of renal masses, with the growing use of different robotic platforms and increasing complexity of renal masses managed robotically. Appropriate patient selection, the development of operative skills and experience and sensible surgical [...] Read more.
Background/objectives: Robotic-assisted partial nephrectomy (RAPN) is increasingly utilised for the management of renal masses, with the growing use of different robotic platforms and increasing complexity of renal masses managed robotically. Appropriate patient selection, the development of operative skills and experience and sensible surgical decision making are required to optimise the outcomes of RAPN and minimise the risk of complications. We provide a comprehensive review of strategies to predict, avoid and manage the complications of RAPN. Methods: We conducted a comprehensive literature review to outline many of the reported complications arising from RAPN, with a focus on preoperative considerations (patient selection, imaging, 3D modelling and predictive models), intraoperative considerations (positioning and kidney exposure complications) and practical management strategies to identify and manage the complications of this procedure. Results: Many complications of RAPN can be predicted, and we outline strategies to mitigate these risks through careful preparation prior to surgery, including descriptions of preventative strategies and important preoperative considerations. We also present a detailed outline of management for the most common complications of RAPN, including bleeding/haemorrhage, urine leak and intraoperative complications such as adjacent organ injuries. Conclusions: RAPN can be a challenging procedure with a significant risk of complications. Assiduous preoperative planning, thoughtful intraoperative decision making and the early recognition and management of complications are essential to optimise patient outcomes following RAPN. Full article
Show Figures

Figure 1

25 pages, 7748 KB  
Article
A Deep Learning Approach to Identify Rock Bolts in Complex 3D Point Clouds of Underground Mines Captured Using Mobile Laser Scanners
by Dibyayan Patra, Pasindu Ranasinghe, Bikram Banerjee and Simit Raval
Remote Sens. 2025, 17(15), 2701; https://doi.org/10.3390/rs17152701 - 4 Aug 2025
Viewed by 550
Abstract
Rock bolts are crucial components in the subterranean support systems in underground mines that provide adequate structural reinforcement to the rock mass to prevent unforeseen hazards like rockfalls. This makes frequent assessments of such bolts critical for maintaining rock mass stability and minimising [...] Read more.
Rock bolts are crucial components in the subterranean support systems in underground mines that provide adequate structural reinforcement to the rock mass to prevent unforeseen hazards like rockfalls. This makes frequent assessments of such bolts critical for maintaining rock mass stability and minimising risks in underground mining operations. Where manual surveying of rock bolts is challenging due to the low-light conditions in the underground mines and the time-intensive nature of the process, automated detection of rock bolts serves as a plausible solution. To that end, this study focuses on the automatic identification of rock bolts within medium- to large-scale 3D point clouds obtained from underground mines using mobile laser scanners. Existing techniques for automated rock bolt identification primarily rely on feature engineering and traditional machine learning approaches. However, such techniques lack robustness as these point clouds present several challenges due to data noise, varying environments, and complex surrounding structures. Moreover, the target rock bolts are extremely small objects within large-scale point clouds and are often partially obscured due to the application of reinforcement shotcrete. Addressing these challenges, this paper proposes an approach termed DeepBolt, which employs a novel two-stage deep learning architecture specifically designed for handling severe class imbalance for the automatic and efficient identification of rock bolts in complex 3D point clouds. The proposed method surpasses state-of-the-art semantic segmentation models by up to 42.5% in Intersection over Union (IoU) for rock bolt points. Additionally, it outperforms existing rock bolt identification techniques, achieving a 96.41% precision and 96.96% recall in classifying rock bolts, demonstrating its robustness and effectiveness in complex underground environments. Full article
(This article belongs to the Special Issue New Perspectives on 3D Point Cloud (Third Edition))
Show Figures

Graphical abstract

27 pages, 1569 KB  
Review
Bisphenols: Endocrine Disruptors and Their Impact on Fish: A Review
by Nikola Peskova and Jana Blahova
Fishes 2025, 10(8), 365; https://doi.org/10.3390/fishes10080365 - 29 Jul 2025
Viewed by 893
Abstract
Bisphenols (BPs), particularly bisphenol A (BPA) and its structural analogues, are synthetic compounds widely used in plastics and industrial materials. These substances are also recognised as endocrine-disrupting chemicals (EDCs) due to their ability to interfere with hormonal systems, which has significant implications for [...] Read more.
Bisphenols (BPs), particularly bisphenol A (BPA) and its structural analogues, are synthetic compounds widely used in plastics and industrial materials. These substances are also recognised as endocrine-disrupting chemicals (EDCs) due to their ability to interfere with hormonal systems, which has significant implications for aquatic organisms. This review summarises the occurrence, environmental distribution, and toxicity of BPs in fish, with a focus on estrogenic, androgenic, thyroid, and glucocorticoid disruptions. Studies consistently show that exposure to BPs leads to altered gene expression, developmental abnormalities, impaired reproduction, and disrupted hormonal signalling in various fish species. Although BPA alternatives like bisphenol S, bisphenol F, or bisphenol AF were introduced as safer options, emerging evidence suggests they may pose equal or greater risks. Regulatory measures are evolving, particularly within the European Union, but legislation remains limited for many bisphenol analogues. This review emphasises the need for comprehensive environmental monitoring, stricter regulatory frameworks, and the development of genuinely safer alternatives to minimise the ecological and health impacts of BPs in aquatic systems. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Graphical abstract

39 pages, 1246 KB  
Review
Gaultherin, a Natural Alternative to Aspirin: A Comprehensive Review of Molecular Mechanisms, Pharmacokinetics, Biocompatibility, Isolation Techniques, and Plant Sources
by Piotr Michel
Int. J. Mol. Sci. 2025, 26(15), 7280; https://doi.org/10.3390/ijms26157280 - 28 Jul 2025
Viewed by 693
Abstract
Gaultherin [methyl salicylate 2-O-β-D-xylopyranosyl-(1→6)-β-D-glucopyranoside] is a natural salicylate found in some plant species belonging primarily to the Ericaceae and Rosaceae families. Biological studies conducted since the beginning of the 21st century have suggested the potential use of gaultherin in treating various [...] Read more.
Gaultherin [methyl salicylate 2-O-β-D-xylopyranosyl-(1→6)-β-D-glucopyranoside] is a natural salicylate found in some plant species belonging primarily to the Ericaceae and Rosaceae families. Biological studies conducted since the beginning of the 21st century have suggested the potential use of gaultherin in treating various diseases related to inflammation and oxidative stress, including rheumatoid arthritis, sciatica, neuralgia, and muscular pain. The accumulated results indicated a targeted range of biological effects, particularly anti-inflammatory, antipyretic, and anti-rheumatic properties associated with reduced adverse outcomes. The molecular mechanisms involve the influence on several signalling pathways, including NF-κB, MAPK, and potentially AMPK, as well as the inhibition of critical pro-inflammatory enzymes, such as COX-2. This inhibition is achieved without affecting the COX-1 isoform, thereby preventing side effects such as bleeding ulcers or intracranial haemorrhage. This overview summarises the current knowledge about pharmacokinetics, molecular mechanisms, pharmacology, and biocompatibility of gaultherin. Additionally, four methods for isolating gaultherin from plant material and its distribution within the plant kingdom were the focal points of review and discussion. The paper also describes significant differences between synthetic aspirin and natural gaultherin in their biological potential and side effects, resulting from their different mechanisms of action. As a prodrug of salicylic acid, gaultherin releases salicylic acid gradually through enzymatic hydrolysis in the gastrointestinal tract. This controlled release minimises direct gastric irritation and accounts for its superior gastrointestinal safety profile compared to aspirin. Unlike aspirin, which irreversibly inhibits COX-1 and can lead to serious side effects with chronic use, gaultherin selectively inhibits COX-2 while sparing COX-1. These properties position gaultherin as a compelling natural alternative for patients requiring long-term anti-inflammatory therapy with reduced risk of gastrointestinal or bleeding complications. Full article
(This article belongs to the Special Issue The Role of Natural Products in Inflammation)
Show Figures

Figure 1

21 pages, 454 KB  
Article
Modelling Cascading Failure in Complex CPSS to Inform Resilient Mission Assurance: An Intelligent Transport System Case Study
by Theresa Sobb and Benjamin Turnbull
Entropy 2025, 27(8), 793; https://doi.org/10.3390/e27080793 - 25 Jul 2025
Viewed by 511
Abstract
Intelligent transport systems are revolutionising all aspects of modern life, increasing the efficiency of commerce, modern living, and international travel. Intelligent transport systems are systems of systems comprised of cyber, physical, and social nodes. They represent unique opportunities but also have potential threats [...] Read more.
Intelligent transport systems are revolutionising all aspects of modern life, increasing the efficiency of commerce, modern living, and international travel. Intelligent transport systems are systems of systems comprised of cyber, physical, and social nodes. They represent unique opportunities but also have potential threats to system operation and correctness. The emergent behaviour in Complex Cyber–Physical–Social Systems (C-CPSSs), caused by events such as cyber-attacks and network outages, have the potential to have devastating effects to critical services across society. It is therefore imperative that the risk of cascading failure is minimised through the fortifying of these systems of systems to achieve resilient mission assurance. This work designs and implements a programmatic model to validate the value of cascading failure simulation and analysis, which is then tested against a C-CPSS intelligent transport system scenario. Results from the model and its implementations highlight the value in identifying both critical nodes and percolation of consequences during a cyber failure, in addition to the importance of including social nodes in models for accurate simulation results. Understanding the relationships between cyber, physical, and social nodes is key to understanding systems’ failures that occur because of or that involve cyber systems, in order to achieve cyber and system resilience. Full article
Show Figures

Figure 1

22 pages, 15577 KB  
Article
Evaluating Polylactic Acid and Basalt Fibre Composites as a Potential Bioabsorbable Stent Material
by Seán Mulkerins, Guangming Yan, Declan Mary Colbert, Declan M. Devine, Patrick Doran, Shane Connolly and Noel Gately
Polymers 2025, 17(14), 1948; https://doi.org/10.3390/polym17141948 - 16 Jul 2025
Viewed by 315
Abstract
Bioabsorbable polymer stents (BPSs) were developed to address the long-term clinical drawbacks associated with permanent metallic stents by gradually dissolving over time before these drawbacks have time to develop. However, the polymers used in BPSs, such as polylactic acid (PLA), have lower mechanical [...] Read more.
Bioabsorbable polymer stents (BPSs) were developed to address the long-term clinical drawbacks associated with permanent metallic stents by gradually dissolving over time before these drawbacks have time to develop. However, the polymers used in BPSs, such as polylactic acid (PLA), have lower mechanical properties than metals, often requiring larger struts to provide the necessary structural support. These larger struts have been linked to delayed endothelialisation and an increased risk of stent thrombosis. To address this limitation, this study investigated the incorporation of high-strength basalt fibres into PLA to enhance its mechanical performance, with an emphasis on optimising the processing conditions to achieve notable improvements at minimal fibre loadings. In this regard, PLA/basalt fibre composites were prepared via twin-screw extrusion at screw speeds of 50, 200, and 350 RPM. The effects were assessed through ash content testing, tensile testing, SEM, and rheometry. The results showed that lower screw speeds achieved adequate fibre dispersion while minimising the molecular weight reduction, leading to the most substantial improvement in the mechanical properties. To examine whether a second extrusion run could enhance the fibre dispersion, improving the composite’s uniformity and, therefore, mechanical enhancement, all the batches underwent a second extrusion run. This run improved the dispersion, leading to increased strength and an increased modulus; however, it also reduced the fibre–matrix adhesion and resulted in a notable reduction in the molecular weight. The highest mechanical performance was observed at 10% fibre loading and 50 RPM following a second extrusion run, with the tensile strength increasing by 20.23% and the modulus by 27.52%. This study demonstrates that the processing conditions can influence the fibres’ effectiveness, impacting dispersion, adhesion, and molecular weight retention, all of which affect this composite’s mechanical performance. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

18 pages, 5941 KB  
Article
Non-Calcined Metal Tartrate Pore Formers for Lowering Sintering Temperature of Solid Oxide Fuel Cells
by Mehdi Choolaei, Mohsen Fallah Vostakola and Bahman Amini Horri
Crystals 2025, 15(7), 636; https://doi.org/10.3390/cryst15070636 - 10 Jul 2025
Viewed by 423
Abstract
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing [...] Read more.
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing better control over porosity and pore size distribution, which allows for enhanced gas diffusion, reactant transport and gaseous product release within the fuel cells’ functional layers. In this work, nanocrystalline gadolinium-doped ceria (GDC) and Ni-Gd-Ce-tartrate anode powders were prepared using a single-step co-precipitation synthesis method, based on the carboxylate route, utilising ammonium tartrate as a low-cost, environmentally friendly precipitant. The non-calcined Ni-Gd-Ce-tartrate was used to fabricate dense GDC electrolyte pellets (5–20 μm thick) integrated with a thin film of Ni-GDC anode with controlled porosity at 1300 °C. The dilatometry analysis showed the shrinkage anisotropy factor for the anode substrates prepared using 20 wt. The percentages of Ni-Gd-Ce-tartrate were 30 wt.% and 40 wt.%, with values of 0.98 and 1.01, respectively, showing a significant improvement in microstructural properties and pore size compared to those fabricated using a carbonaceous pore former. The results showed that the non-calcined pore formers can also lower the sintering temperature for GDC to below 1300 °C, saving energy and reducing thermal stresses on the materials. They can also help maintain optimal material properties during sintering, minimising the risk of unwanted chemical reactions or contamination. This flexibility enables the versatile designing and manufacturing of ceramic fuel cells with tailored compositions at a lower cost for large-scale applications. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Graphical abstract

17 pages, 2080 KB  
Article
IoT Services for Monitoring Food Supply Chains
by Loucas Protopappas, Dimitrios Bechtsis and Nikolaos Tsotsolas
Appl. Sci. 2025, 15(13), 7602; https://doi.org/10.3390/app15137602 - 7 Jul 2025
Viewed by 2067
Abstract
Ensuring the safety and quality of perishable agrifood products throughout the supply chain is essential. Key parameters, such as temperature and humidity, must be consistently monitored to prevent spoilage, maintain nutritional value, and minimise health risks. Fluctuations in transportation conditions can compromise product [...] Read more.
Ensuring the safety and quality of perishable agrifood products throughout the supply chain is essential. Key parameters, such as temperature and humidity, must be consistently monitored to prevent spoilage, maintain nutritional value, and minimise health risks. Fluctuations in transportation conditions can compromise product integrity, leading to deterioration and an increased risk of foodborne illness. Monitoring agrifood supply chains is essential, from packaging to last-mile delivery. Distribution methods that rely on non-automated monitoring systems, such as manual temperature measurements, are error-prone due to the failure of manual treatments and increase the likelihood of product deterioration. Emerging sensor technologies and the rapid development of Information and Communication Technologies offer new possibilities for real-time tracking, enabling stakeholders to maintain optimal conditions and monitor aesthetic, physicochemical, and nutritional quality. This paper proposes a cost-effective temperature and humidity traceability system that utilises wireless sensor networks (WSN) and Internet of Things (IoΤ) services to monitor perishable products within the agrifood supply chain ecosystem. It also provides an overview of recent innovations in sensor technologies, along with food quality indicators relevant to real-time monitoring of food quality. The proposed research examines the available sensor technologies and methodologies that enable continuous monitoring of agrifood supply chains. Moreover, the paper presents a pilot full-scale project from both functional and technological perspectives. Full article
(This article belongs to the Special Issue Data-Driven Supply Chain Management and Logistics Engineering)
Show Figures

Figure 1

Back to TopTop