Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (567)

Search Parameters:
Keywords = river–lake systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1101 KB  
Article
Environmental DNA (eDNA) Surveillance of Zebra Mussels (Dreissena polymorpha) in Lake Lanier, Georgia: A Model for Early Detection and Public Engagement
by Larry L. Bowman, Amy L. Rodriguez, Hannah Fontenot and Margi Flood
Hydrobiology 2025, 4(4), 26; https://doi.org/10.3390/hydrobiology4040026 - 7 Oct 2025
Abstract
Environmental DNA (eDNA) detection has emerged as a powerful, non-invasive tool for identifying aquatic organisms, particularly those that are rare, elusive, or invasive. Dreissena polymorpha (zebra mussel) is an invasive bivalve posing ecological and economic threats to North American freshwater systems. In April [...] Read more.
Environmental DNA (eDNA) detection has emerged as a powerful, non-invasive tool for identifying aquatic organisms, particularly those that are rare, elusive, or invasive. Dreissena polymorpha (zebra mussel) is an invasive bivalve posing ecological and economic threats to North American freshwater systems. In April 2021, zebra mussels were discovered attached to a boat destined for Lake Sidney Lanier in North Georgia—a high-use recreational reservoir with no prior reports of infestation. To determine whether D. polymorpha had been introduced, we implemented a biomonitoring protocol leveraging eDNA collection and PCR-based detection. Sampling was conducted during summer 2022 across high-risk marina sites and potential habitats. Positive controls from the Tennessee River yielded expected results, while Lake Lanier samples showed no evidence of zebra mussel DNA. Our results validate using eDNA methodology for proactive biomonitoring and highlight the importance of molecular surveillance and community outreach to prevent the establishment of invasive species in vulnerable aquatic systems. This study demonstrates the utility of a scalable, replicable early detection framework that can be adopted by educational institutions, natural resource agencies, and community groups to mitigate the risk of biological invasions. Full article
Show Figures

Figure 1

16 pages, 2962 KB  
Article
Integrated Hydroclimate Modeling of Non-Stationary Water Balance, Snow Dynamics, and Streamflow Regimes in the Devils Lake Basin Region
by Mahmoud Osman, Prakrut Kansara and Taufique H. Mahmood
Meteorology 2025, 4(4), 27; https://doi.org/10.3390/meteorology4040027 - 26 Sep 2025
Viewed by 236
Abstract
The hydrology of the transboundary region encompassing the western Red River Basin headwaters, such as Devils Lake Basin (DLB) in North America, is complex and highly sensitive to climate variability, impacting water resources, agriculture, and flood risk. Understanding hydrological shifts in this region [...] Read more.
The hydrology of the transboundary region encompassing the western Red River Basin headwaters, such as Devils Lake Basin (DLB) in North America, is complex and highly sensitive to climate variability, impacting water resources, agriculture, and flood risk. Understanding hydrological shifts in this region is critical, particularly given recent hydroclimatic changes. This study aimed to simulate and analyze key hydrological processes and their evolution from 1981 to 2020 using an integrated modeling approach. We employed the NASA Land Information System (LIS) framework configured with the Noah-MP land surface model and the HyMAP routing model, driven by a combination of reanalysis and observational datasets. Simulations revealed a significant increase in precipitation inputs and consequential positive net water storage trends post-1990, indicating increased water retention within the system. Snow dynamics showed high interannual variability and decadal shifts in average Snow Water Equivalent (SWE). Simulated streamflow exhibited corresponding multi-decadal trends, including increasing flows within a major DLB headwater basin (Mauvais Coulee Basin) during the period of Devils Lake expansion (mid-1990s to ~2011). Furthermore, analysis of decadal average seasonal hydrographs indicated significant shifts post-2000, characterized by earlier and often higher spring peaks and increased baseflows compared to previous decades. While the model captured these trends, validation against observed streamflow highlighted significant challenges in accurately simulating peak flow magnitudes (Nash–Sutcliffe Efficiency = 0.33 at Mauvais Coulee River near Cando). Overall, the results depict a non-stationary hydrological system responding dynamically to hydroclimatic forcing over the past four decades. While the integrated modeling approach provided valuable insights into these changes and their potential drivers, the findings also underscore the need for targeted model improvements, particularly concerning the representation of peak runoff generation processes, to enhance predictive capabilities for water resource management in this vital region. Full article
Show Figures

Figure 1

26 pages, 169896 KB  
Article
High Diversity and Spatiotemporal Dynamics of Silica-Scaled Chrysophytes (Class Chrysophyceae) in Reservoirs of the Angara Cascade of Hydroelectric Dams
by Anna Bessudova, Yuri Galachyants, Alena Firsova, Artyom Marchenkov, Andrey Tanichev, Darya Petrova and Yelena Likhoshway
Biology 2025, 14(10), 1325; https://doi.org/10.3390/biology14101325 - 25 Sep 2025
Viewed by 232
Abstract
The study of aquatic biodiversity in the context of ecosystem sustainability is of urgent research importance, with several existing knowledge gaps. Among the under-studied groups are silica-scaled chrysophytes. Their cells are covered with silica scales and bristles/spines, the species-specific structure of which can [...] Read more.
The study of aquatic biodiversity in the context of ecosystem sustainability is of urgent research importance, with several existing knowledge gaps. Among the under-studied groups are silica-scaled chrysophytes. Their cells are covered with silica scales and bristles/spines, the species-specific structure of which can be distinguished only by electron microscopy. In June and August 2024, samples were collected from a broad aquatic system comprising the southern part of Lake Baikal and a cascade of four reservoirs formed after the construction of hydroelectric dams on the Angara River flowing from Lake Baikal. Using electron microscopy, we identified 45 species of silica-scaled chrysophytes in phytoplankton in 2024, and the overall checklist was expanded to 57, accounting for interannual differences. Clear differences in species composition and richness were observed both between seasons and among reservoirs. Approximately a quarter of the recorded species were heterotrophs, which do not contribute to primary production, whereas 44% were phototrophs and 31% mixotrophs, both groups contributing to the Si cycle and to primary production. Continuous monitoring of reservoirs is essential for understanding the processes shaping silica-scaled chrysophytes diversity and may serve as an additional criterion for assessing the sustainability and transformation of freshwater ecosystems. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

21 pages, 9820 KB  
Article
Assessment of Deep Water-Saving Practice Effects on Crop Coefficients and Water Consumption Processes in Cultivated Land–Wasteland–Lake Systems of the Hetao Irrigation District
by Jiamin Li, Guoshuai Wang, Delong Tian, Hexiang Zheng, Haibin Shi, Zekun Li, Jie Ren and Ruiping Li
Plants 2025, 14(18), 2933; https://doi.org/10.3390/plants14182933 - 21 Sep 2025
Viewed by 321
Abstract
Water scarcity, soil salinization, and desertification threaten sustainable agricultural ecosystems of Hetao irrigation district, Yellow River Basin (YRB). Precise quantification of soil water dynamics and plant water consumption processes is essential for the agricultural sustainability of the irrigation district. Therefore, this study mainly [...] Read more.
Water scarcity, soil salinization, and desertification threaten sustainable agricultural ecosystems of Hetao irrigation district, Yellow River Basin (YRB). Precise quantification of soil water dynamics and plant water consumption processes is essential for the agricultural sustainability of the irrigation district. Therefore, this study mainly focused on the crop coefficients and water consumption processes of three representative plant types in the Hetao irrigation district, each corresponding to a specific land system: Helianthus annuus (cultivated land), Tamarix chinensis (wasteland), and Phragmites australis (lake). The SIMDualKc model was calibrated and validated based on situ observation data (soil water content and yield) during 2018 (conventional conditions), 2023 and 2024 (deep water-saving conditions). Results show strong agreement between simulated and observed soil moisture and crop yields. The results indicate that the process curves of Kcb (basal crop coefficient) and Kcbadj (adjusted crop coefficient) nearly overlapped for the three plant types in 2018 and 2023. However, under the deep water-saving project implemented in 2024, the Kcbadj process curves for all three plant types exhibited a significant reduction (approximately 15%). Soil evaporation fractions (E/ETcadj) were stable at 19–30% during the 2018, 2023, and 2024. The contribution of capillary rise to ET reached 38.61–43.18% in cultivated land (Helianthus annuus), 41.52–48.93% in wasteland (Tamarix chinensis), and 38.08–46.57% in lake boundary areas (Phragmites australis), which underscores the significant role of groundwater recharge in sustaining plant water consumption. Actual-to-potential transpiration ratios (Ta/Tp) during 2023–2024 decreased by 3–11% for Helianthus annuus, 5–12% for Tamarix chinensis, and 23% for Phragmites australis compared to Ta/Tp values in 2018. Capillary rise decreased approximately 10% during the whole system. Deep water-saving practices increased the groundwater depth and restricted groundwater recharge to plants via capillary rise, thereby impairing plant transpiration and growth. These findings provide scientific support for sustainable agriculture and ecological security in the Yellow River Basin. Full article
Show Figures

Figure 1

43 pages, 29796 KB  
Article
Co- and Post-Seismic Hydrogeological Anomalies in Greece from Ancient Times to the Present: Spatiotemporal and Statistical Analysis Revealing Categories, Patterns, and Insights
by Spyridon Mavroulis, Andromachi Sarantopoulou and Efthymios Lekkas
Geosciences 2025, 15(9), 367; https://doi.org/10.3390/geosciences15090367 - 17 Sep 2025
Viewed by 954
Abstract
Co- and post-seismic earthquake-induced hydrogeological anomalies (EQHAs) in Greece are mainly associated with moderate to strong earthquakes (Mw = 6.0–7.0), particularly when seismic intensities reach IX or above. The highest frequencies are observed in the Peloponnese and Ionian Islands, followed by Central [...] Read more.
Co- and post-seismic earthquake-induced hydrogeological anomalies (EQHAs) in Greece are mainly associated with moderate to strong earthquakes (Mw = 6.0–7.0), particularly when seismic intensities reach IX or above. The highest frequencies are observed in the Peloponnese and Ionian Islands, followed by Central Greece and the North Aegean, characterized by dense faulting and frequent strong earthquakes. EQHAs are classified into six main types, with hydraulic variations being the most common. About 77% of earthquakes produced only one or two types of EQHA, suggesting localized hydrogeological effects, while only a few induced multiple types. Strong events (Mw = 6.0–7.0), often historic, generated the broadest variety, highlighting the influence of local geological, hydrological, and tectonic conditions on magnitude alone. Springs and wells, representing 81% of the cases, dominate the affected systems, while lakes and rivers respond less often but significantly. Most EQHAs occur in Greece’s second seismic hazard zone (74%) due to its larger geographic area. EQHAs primarily develop in karstic and porous formations but also appear in impermeable rocks due to fracturing or karst. Larger earthquakes trigger anomalies at greater distances (>100 km). Though rarely fatal, EQHAs can damage water infrastructure, contaminate supplies, and cause shortages, underscoring the need for systematic monitoring and post-earthquake water resource management. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

15 pages, 1501 KB  
Article
Resilient Strategies for Disaster Prevention and Ecological Restoration of River and Lake Benggang and Bank Erosion
by Huihuang Qin and Yong Ye
Water 2025, 17(18), 2744; https://doi.org/10.3390/w17182744 - 17 Sep 2025
Viewed by 392
Abstract
The research on river and lake resilience management, ecological restoration, and disaster reduction technologies aims to comprehensively improve the health, stability, and sustainability of aquatic ecosystems. It seeks to reduce the natural disaster risk, promote the sustainable use of water resources, protect biodiversity, [...] Read more.
The research on river and lake resilience management, ecological restoration, and disaster reduction technologies aims to comprehensively improve the health, stability, and sustainability of aquatic ecosystems. It seeks to reduce the natural disaster risk, promote the sustainable use of water resources, protect biodiversity, strengthen water ecological environment supervision, and advance the widespread practice of the green development concept. This study integrates remote sensing, geographic information system (GIS), and biological slope protection technologies, supported by investigation and geomorphological surveys, to achieve real-time monitoring and data analysis of river and lake ecosystems. Additionally, the application of innovative ecological restoration materials and technologies significantly improves restoration outcomes and operational efficiency. The construction of multi-level wetlands, combined with active community participation, further enhances ecological resilience and stability. Experimental results show that the river and lake resilience management structure increases the strength of slope protection by more than 1.5 times and improves the overall stability by more than 25%. These findings underscore the critical role of integrated ecological and engineering approaches in achieving sustainable development of river and lake ecosystems while effectively reducing the risks of natural disasters. Full article
(This article belongs to the Special Issue Protection and Restoration of Lake and Water Reservoir)
Show Figures

Figure 1

40 pages, 7229 KB  
Article
Influence of Habitat on the Impact of Non-Native Fishes on Native Ichthyofauna in a Group of Lakes of the Lower Doce River, Espírito Santo, Southeastern Brazil
by Eduardo Hoffmam de Barros, Nuno Caiola, Renan Luxinger Betzel, Ronaldo Fernando Martins-Pinheiro and Luisa Maria Sarmento-Soares
Diversity 2025, 17(9), 650; https://doi.org/10.3390/d17090650 - 16 Sep 2025
Viewed by 566
Abstract
The Doce River basin is the largest river system in southeastern Brazil. Over the last century, the Doce River has been undergoing a serious process of degradation, culminating in a huge environmental disaster due to Fundão tailing dam bursting in Mariana (Minas Gerais) [...] Read more.
The Doce River basin is the largest river system in southeastern Brazil. Over the last century, the Doce River has been undergoing a serious process of degradation, culminating in a huge environmental disaster due to Fundão tailing dam bursting in Mariana (Minas Gerais) and causing severe damage to biodiversity and local human communities. Near its mouth, the Doce River harbors an extensive lake area, with over ninety lakes on coastal lowlands. These lakes are of fluvial origin and connected to each other and to the main Doce River by small tributary streams. In this area, one of the main sources of impact on the fish fauna is the presence of non-native fish species. We compared richness, taxonomic diversity, beta diversity, species composition and proportion of non-native species in lakes and streams, and related these variables to each other and to environmental variables. We used the indicator species index (IndVal) to identify species associated with each type of environment. We used multivariate analyses to test the influence of stream habitat on the fish fauna in streams and Generalized Linear Models (GLMs) to test the influence of distance to lakes on the proportion of non-native species in streams, and the influence of this proportion on total and native fish richness and diversity. The results showed that some non-native species originating from lentic environments have adapted to the lakes and are spread throughout the internal lake system. In streams, there are proportionally fewer non-native fish and their distribution is more fragmented, as some stretches do not provide the conditions for the establishment of some of these species, making them potential refuges for native ichthyofauna. As the streams move away from the lakes, the proportion of non-native species tends to decrease. In streams, the richness and diversity of native species are affected by the proportion of non-native species, but not in lakes. The native vegetation in the landscape showed no potential for reducing the invasion of non-native species. The depth and width of the streams are directly related to the proportion of non-native species within the streams and are structural characteristics that should be considered in strategies for the conservation of the fish fauna. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

19 pages, 1414 KB  
Systematic Review
A Systematic Review of Estrogens as Emerging Contaminants in Water: A Global Overview Study from the One Health Perspective
by Rhitor Lorca da Silva, Marco Antonio Lima e Silva, Tiago Porfírio Teixeira, Thaís Soares Farnesi de Assunção, Paula Pinheiro Teixeira, Wagner Antonio Tamagno, Thiago Lopes Rocha, Julio Cesar de Souza Inácio Gonçalves and Matheus Marcon
J. Xenobiot. 2025, 15(5), 148; https://doi.org/10.3390/jox15050148 - 13 Sep 2025
Viewed by 1250
Abstract
The widespread presence of estrogens in aquatic environments represents a One Health concern, as it simultaneously threatens environmental integrity, wildlife health, and human well-being. These compounds, widely used in human and veterinary medicine, are excreted in partially or unmetabolized forms and persist in [...] Read more.
The widespread presence of estrogens in aquatic environments represents a One Health concern, as it simultaneously threatens environmental integrity, wildlife health, and human well-being. These compounds, widely used in human and veterinary medicine, are excreted in partially or unmetabolized forms and persist in the environment due to the inefficiency of conventional water treatment systems in removing them. This systematic review provides a global overview of the occurrence of estrogens in water resources. We synthesized data on study characteristics, estrogen compounds detected, their concentrations, types of water bodies, and geographic locations. In total, 39 estrogens, including natural, synthetic, and metabolite forms, were reported at concentrations ranging from 0.002 to 10,380,000.0 ng/L across 40 water body types in 59 countries on all continents. The most frequently detected compounds were estrone, estradiol, and ethinylestradiol. Estrogens were predominantly identified in wastewater treatment plant effluents, rivers, lakes, surface waters, and even drinking water sources. These findings underscore the estrogen contamination and its potential to disrupt endocrine functions across species, posing serious implications for ecosystems. Within the One Health framework, this review highlights the urgent need for integrated strategies to improve water quality monitoring, develop advanced treatment technologies, and update regulatory standards to address the multifaceted risks posed by estrogenic contaminants. Full article
(This article belongs to the Section Emerging Chemicals)
Show Figures

Graphical abstract

29 pages, 61178 KB  
Article
Post-Hurricane Debris and Community Flood Damage Assessment Using Aerial Imagery
by Diksha Aggarwal, Suyog Gautam, Daniel Whitehurst and Kevin Kochersberger
Remote Sens. 2025, 17(18), 3171; https://doi.org/10.3390/rs17183171 - 12 Sep 2025
Viewed by 644
Abstract
Natural disasters often result in significant damage to infrastructure, generating vast amounts of debris in towns and water bodies. Timely post-disaster damage assessment is critical for enabling swift cleanup and recovery efforts. This study presents a combination of methods to efficiently estimate and [...] Read more.
Natural disasters often result in significant damage to infrastructure, generating vast amounts of debris in towns and water bodies. Timely post-disaster damage assessment is critical for enabling swift cleanup and recovery efforts. This study presents a combination of methods to efficiently estimate and analyze debris on land and on water. Specifically, analyses were conducted at Claytor Lake and Damascus, Virginia where flooding occurred as a result of Hurricane Helene on 27 September 2024. We use the Phoenix U15 motor glider equipped with the GoPro Hero 9 camera to collect aerial imagery. Orthomosaic images and 3D maps are generated using OpenDroneMap (ODM) software, version 3.5.6, providing a detailed view of the affected areas. For lake debris estimation, we employ a hybrid approach integrating machine learning-based tools and traditional techniques. Lake regions are isolated using segmentation methods, and the debris area is estimated through a combination of color thresholding and edge detection. The debris is classified based on the thickness and a volume range of debris is presented based on the data provided by the Virginia Department of Environmental Quality (VDEQ). In Damascus, debris estimation is achieved by comparing pre-disaster LiDAR data (2016) with post-disaster 3D ODM data. Furthermore, we conduct flood modeling using the Hydrologic Engineering Center’s River Analysis System (HEC-RAS) to simulate disaster impacts, estimate the flood water depth, and support urban planning efforts. The proposed methodology demonstrates the ability to deliver accurate debris estimates in a time-sensitive manner, providing valuable insights for disaster management and environmental recovery initiatives. Full article
Show Figures

Graphical abstract

16 pages, 6251 KB  
Article
Development and Validation of Tetranucleotide Repeat Microsatellite Markers at the Whole-Genome Level in the Yangtze Finless Porpoise
by Mengting Tang, Denghua Yin, Jianglong Que, Danqing Lin, Congping Ying, Jie Liu, Fangning Liu, Pan Wang, Wenwen Li, Jinxiang Yu and Kai Liu
Animals 2025, 15(17), 2603; https://doi.org/10.3390/ani15172603 - 4 Sep 2025
Viewed by 643
Abstract
The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis, YFP) is the only freshwater cetacean species currently found in China’s Yangtze River. To accurately evaluate its genetic diversity and provide reliable molecular markers for population genetic studies, this study developed a highly efficient [...] Read more.
The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis, YFP) is the only freshwater cetacean species currently found in China’s Yangtze River. To accurately evaluate its genetic diversity and provide reliable molecular markers for population genetic studies, this study developed a highly efficient and reproducible method for identifying polymorphic microsatellite loci using whole-genome sequencing data. Using this method, we identified and validated a set of highly polymorphic microsatellite markers, which were then used to analyze the genetic diversity of the YFP populations in Poyang Lake to evaluate their effectiveness. Our results demonstrated that the screening pipeline successfully identified 220 tetranucleotide repeat microsatellite loci. Based on the principle of uniform chromosomal distribution, 190 loci were randomly selected for experimental validation, of which 19 exhibited stable amplification, high polymorphism, and a low genotyping error rate. Genetic diversity analysis based on these markers revealed significant genetic variation among YFP populations in Poyang Lake, confirming the effectiveness of the developed markers. The polymorphic microsatellite molecular marker system developed in this study demonstrates high reliability and applicability for assessing YFP genetic diversity. This system provides a critical technical foundation for future research in conservation genetics, genetic resource preservation, and the development of genetic management strategies for the species. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

21 pages, 5922 KB  
Review
Bibliometric Analysis of the Impact of Soil Erosion on Lake Water Environments in China
by Xingshuai Mei, Guangyu Yang, Mengqing Su, Tongde Chen, Haizhen Yang and Sen Wang
Water 2025, 17(17), 2592; https://doi.org/10.3390/w17172592 - 1 Sep 2025
Viewed by 922
Abstract
With the increasing attention to China’s ecological environment protection and the prominence of lake water environment problems, the impact of soil erosion on lake ecosystems has become an important research topic for regional sustainable development. Based on the CiteSpace bibliometric method, this study [...] Read more.
With the increasing attention to China’s ecological environment protection and the prominence of lake water environment problems, the impact of soil erosion on lake ecosystems has become an important research topic for regional sustainable development. Based on the CiteSpace bibliometric method, this study systematically analyzed 225 research articles on the impact of soil erosion on the water environment of lakes in China in the core collection of Web of Science from 1998 to 2025, aiming to reveal the research hotspots, evolution trends and regional differences in this field. The results show that China occupies a dominant position in this field (209 papers), and the Chinese Academy of Sciences is the core research institution (93 papers). The research hotspots show obvious policy-driven characteristics, which are divided into slow start periods (1998–2007), accelerated growth periods (2008–2015), explosive growth periods (2016–2020) and stable development periods (2021–2025). A keyword cluster analysis identified nine main research directions, including sedimentation effect (#0 cluster), soil loss (#2 cluster) and nitrogen and phosphorus migration (#11 cluster) in the Three Gorges Reservoir area. The study found that the synergistic effects of climate change and human activities (such as land use change) are becoming a new research paradigm, and the Yangtze River Basin, the Loess Plateau and the Yunnan–Guizhou Plateau constitute the three core research areas (accounting for 72.3% of the total literature). Future research should focus on a multi-scale coupling mechanism, a climate resilience assessment and an ecological engineering effectiveness verification to support the precise implementation of lake protection policies in China. This study provides a scientific basis for the comprehensive management of the soil erosion–lake water environment system, and also contributes a Chinese perspective to the sustainable development goals (SDG6 and SDG15) of similar regions in the world. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation, 2nd Edition)
Show Figures

Figure 1

11 pages, 2758 KB  
Proceeding Paper
Cyber-Physical System for Treatment of River and Lake Water
by Diana Syulekchieva, Blagovesta Midyurova, Aleksandar Mandadzhiev, Ivaylo Belovski, Todor Mihalev and Elena Koleva
Eng. Proc. 2025, 104(1), 65; https://doi.org/10.3390/engproc2025104065 - 29 Aug 2025
Viewed by 761
Abstract
Water plays a fundamental role in sustaining biological processes, ecological functions, and economic systems. However, the progressive pollution of water sources compromises these functions, posing significant threats to water purity, human well-being, and environmental sustainability. Human activities, such as industrial waste, agriculture, and [...] Read more.
Water plays a fundamental role in sustaining biological processes, ecological functions, and economic systems. However, the progressive pollution of water sources compromises these functions, posing significant threats to water purity, human well-being, and environmental sustainability. Human activities, such as industrial waste, agriculture, and urbanization, alongside natural processes, are major contributors to the deterioration of surface water quality, which in turn leads to environmental and economic risks. The decline in water quality results in issues such as waterborne diseases, loss of biodiversity, and a shortage of clean water for consumption and industrial use. This paper emphasizes the critical need for maintaining good water quality and the importance of implementing effective strategies for the removal of physical, chemical, and biological contaminants. In response, this work presents an intelligent embedded system (electronic control unit, ECU) developed as part of a modular filtration system designed to improve surface water quality, provide more precise water analyses, and perform tests within a controlled environment. Full article
Show Figures

Figure 1

20 pages, 629 KB  
Article
Can the Effectiveness of Urban Water Pollution Control Contribute to the Overall Development of the City? Evidence from 268 Cities in China
by Xuewen Lou and Yifei Zhou
Water 2025, 17(17), 2502; https://doi.org/10.3390/w17172502 - 22 Aug 2025
Viewed by 846
Abstract
The rapid growth of global urbanisation has resulted in significant environmental pollution, with urban water pollution emerging as a critical factor in comprehensive urban development. The present study employs panel data from 268 Chinese cities between 2013 and 2022, utilising entropy weighting and [...] Read more.
The rapid growth of global urbanisation has resulted in significant environmental pollution, with urban water pollution emerging as a critical factor in comprehensive urban development. The present study employs panel data from 268 Chinese cities between 2013 and 2022, utilising entropy weighting and a two-effect fixed-effects model to empirically analyse how urban water pollution control promotes comprehensive urban development. The research findings reveal that water pollution control significantly promotes comprehensive urban development, but there are differences across urban regions and scales, with greater effectiveness observed in central and western regions and medium-sized and small cities. This paper also highlights that water pollution control can promote urban development by optimising industrial structure and proposes that governments should formulate regionally differentiated water pollution control policies, establish a ‘Regional Water Environment Governance and Industrial Transformation Coordination Centre,’ and implement the ‘River and Lake Chief System+’ policy. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

27 pages, 6596 KB  
Article
A Practical Model Framework for Describing the Flow of Nitrogen and Phosphorus in a Cascade Reservoir Watershed
by Han Ding, Long Han, Zeli Li, Tong Han, Wei Jiang, Gelin Kang and Qiulian Wang
Water 2025, 17(16), 2479; https://doi.org/10.3390/w17162479 - 20 Aug 2025
Viewed by 624
Abstract
The construction of cascade reservoir systems (CRSs) is increasing globally, providing reliable energy and water resources for human social development, while also having significant impacts on the watershed water environment, particularly in terms of nitrogen and phosphorus distribution in the rivers and lakes [...] Read more.
The construction of cascade reservoir systems (CRSs) is increasing globally, providing reliable energy and water resources for human social development, while also having significant impacts on the watershed water environment, particularly in terms of nitrogen and phosphorus distribution in the rivers and lakes of these areas. Watershed management authorities urgently need model tools that can comprehensively analyze the sources of nitrogen and phosphorus in CRSs and the nitrogen and phosphorus cycling in lakes and reservoirs. Therefore, this study establishes a model framework that includes a watershed nutrient load model and a hierarchical reservoir nutrient cycling model, validating and analyzing this framework in the Water Diversion Basin from the Luanhe River to Tianjin (WDBLT) in North China, which yields nitrogen and phosphorus substance flows over different time scales. The conclusions show that banning cage culture and curbing point sources improved reservoir water quality, and the internal TP flux serves as a key environmental indicator. This model framework is scientifically sound, easy to operate, and does not require high data demands, demonstrating high practical value for similar water environmental management in CRS. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

21 pages, 8908 KB  
Article
Spatiotemporal Heterogeneity and Zonal Adaptation Strategies for Agricultural Risks of Compound Dry and Hot Events in China’s Middle Yangtze River Basin
by Yonggang Wang, Jiaxin Wang, Daohong Gong, Mingjun Ding, Wentao Zhong, Muping Deng, Qi Kang, Yibo Ding, Yanyi Liu and Jianhua Zhang
Remote Sens. 2025, 17(16), 2892; https://doi.org/10.3390/rs17162892 - 20 Aug 2025
Viewed by 782
Abstract
Compound dry and hot events or extremes (CDHEs) have emerged as major climatic threats to agricultural production and food security in the middle reaches of the Yangtze River Basin (MRYRB), a critical grain-producing region in China. However, agricultural risks associated with CDHEs, incorporating [...] Read more.
Compound dry and hot events or extremes (CDHEs) have emerged as major climatic threats to agricultural production and food security in the middle reaches of the Yangtze River Basin (MRYRB), a critical grain-producing region in China. However, agricultural risks associated with CDHEs, incorporating both natural and socio-economic factors, remain poorly understood in this area. Using a Hazard-Exposure-Vulnerability (HEV) framework integrated with a weighting quantification method and supported by remote sensing technology and integrated geographic data, we systematically assessed the spatiotemporal dynamics of agricultural CDHE risks and corresponding crop responses in the MRYRB from 2000 to 2019. Results indicated an increasing trend in agricultural risks across the region, particularly in the Poyang Lake Plain (by 21.9%) and Jianghan Plain (by 9.9%), whereas a decreasing trend was observed in the Dongting Lake Plain (by 15.2%). Spatial autocorrelation analysis further demonstrated a significant negative relationship between gross primary production (GPP) and high agricultural risks of CDHEs, with a spatial concordance rate of 52.6%. These findings underscore the importance of incorporating CDHE risk assessments into agricultural management. To mitigate future risks, we suggest targeted adaptation strategies, including strengthening water resource management and developing multi-source irrigation systems in the Poyang Lake Plain, Dongting Lake, and the Jianghan Plain, improving hydraulic infrastructure and water source conservation capacity in northern and southwestern Hunan Province, and prioritizing regional risk-based adaptive planning to reduce agricultural losses. Our findings rectify the longstanding assumption that hydrological abundance inherently confers robust resistance to compound drought and heatwave stresses in lacustrine plains. Full article
(This article belongs to the Special Issue GeoAI and EO Big Data Driven Advances in Earth Environmental Science)
Show Figures

Figure 1

Back to TopTop