Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (306)

Search Parameters:
Keywords = rock discontinuity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10988 KB  
Article
Damage and Deterioration Characteristics of Sandstone Under Multi-Stage Equal-Amplitude Intermittent Cyclic Loading and Unloading
by Ning Jiang, Yangyang Zhang, Zhiyou Gao, Genwang Zhang, Quanlin Feng and Chao Gong
Buildings 2025, 15(19), 3459; https://doi.org/10.3390/buildings15193459 - 24 Sep 2025
Viewed by 199
Abstract
The surrounding rocks of roadways are typically subjected to cyclic loading–unloading stress states in underground engineering. In addition, cyclic loads are discontinuous under real working conditions, usually while loading rock mass in a cycle–intermission–cycle manner. Based on the XTDIC 3D (XTOP Three-dimensional Digital [...] Read more.
The surrounding rocks of roadways are typically subjected to cyclic loading–unloading stress states in underground engineering. In addition, cyclic loads are discontinuous under real working conditions, usually while loading rock mass in a cycle–intermission–cycle manner. Based on the XTDIC 3D (XTOP Three-dimensional Digital Image Correlation) full-field strain measurement system and AE (Acoustic Emission) system, the work performed uniaxial cyclic loading–unloading tests with constant-pressure durations of 0, 0.5, 2, and 6 h. The purpose was to investigate the damage degradation mechanism of sandstone under multi-stage equal-amplitude intermittent cyclic loading and unloading. The results are as follows. (1) As the constant-pressure duration increased, the uniaxial compressive strength of sandstone samples decreased, along with a decline in elastic modulus and a deterioration in stiffness and deformation recovery capacity. (2) The evolution of deformation localization zones became more intense in sandstone samples during cyclic loading and unloading with the increased constant-pressure duration. The maximum principal strain field became more active at failure. Sandstone samples exhibited shear failure accompanied by spalling failure and an increased failure degree. (3) As the constant-pressure duration increased, the damage variable of sandstone samples increased, indicating that the constant-pressure stage promoted the damage degradation of sandstone samples. The above results reveal the damage degradation mechanism of sandstone under multi-stage equal-amplitude intermittent cyclic loading and unloading, which is of significant importance for maintaining the safety of underground engineering. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 4535 KB  
Article
Effective Elastic Moduli at Reservoir Scale: A Case Study of the Soultz-sous-Forêts Fractured Reservoir
by Dariush Javani, Jean Schmittbuhl and François H. Cornet
Geosciences 2025, 15(10), 371; https://doi.org/10.3390/geosciences15100371 - 24 Sep 2025
Viewed by 314
Abstract
The presence of discontinuities in fractured reservoirs, their mechanical and physical characteristics, and fluid flow through them are important factors influencing their effective large-scale properties. In this paper, the variation of elastic moduli in a block measuring 100 × 100 × 100 m [...] Read more.
The presence of discontinuities in fractured reservoirs, their mechanical and physical characteristics, and fluid flow through them are important factors influencing their effective large-scale properties. In this paper, the variation of elastic moduli in a block measuring 100 × 100 × 100 m3 that hosts a discrete fracture network (DFN) is evaluated using the discrete element method (DEM). Fractures are characterised by (1) constant, (2) interlocked, and (3) mismatched stiffness properties. First, three uniaxial verification tests were performed on a block (1 × 1 × 2 m3) containing a circular finite fracture (diameter = 0.5 m) to validate the developed numerical algorithm that implements the three fracture stiffnesses mentioned above. The validated algorithms were generalised to fractures in a DFN embedded in a 100 × 100 × 100 m3 rock block that reproduces in situ conditions at various depths (4.7 km, 2.3 km, and 0.5 km) of the Soultz-sous-Forêts geothermal site. The effective elastic moduli of this large-scale rock mass were then numerically evaluated through a triaxial loading scenario by comparing to the numerically evaluated stress field using the DFN, with the stress field computed using an effective homogeneous elastic block. Based on the results obtained, we evaluate the influence of fracture interaction and stress perturbation around fractures on the effective elastic moduli and subsequently on the large-scale P-wave velocity. The numerical results differ from the elastic moduli of the rock matrix at higher fracture densities, unlike the other methods. Additionally, the effect of nonlinear fracture stiffness is reduced by increasing the depth or stress level in both the numerical and semi-analytical methods. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

22 pages, 6320 KB  
Article
Mechanisms of Overburden and Surface Damage Conduction in Shallow Multi-Seam Mining
by Guojun Zhang, Shigen Fu, Yunwang Li, Mingbo Chi and Xizhong Zhao
Eng 2025, 6(9), 235; https://doi.org/10.3390/eng6090235 - 8 Sep 2025
Viewed by 294
Abstract
Focusing on the issues of severe mining pressure and discontinuous surface deformation caused by the large-scale mining of multiple coal seams, and taking into account the research background of Shigetai Coal Mine in Shendong Mining Area, this study adopts physical similarity simulation, theoretical [...] Read more.
Focusing on the issues of severe mining pressure and discontinuous surface deformation caused by the large-scale mining of multiple coal seams, and taking into account the research background of Shigetai Coal Mine in Shendong Mining Area, this study adopts physical similarity simulation, theoretical analysis, and on-site verification methods to carry out research on rock migration, stress evolution, and overlying rock fracture mechanism at shallow burial depths and in multiple-coal-seam mining. The research results indicate that as the working face advances, the overlying rock layers break layer by layer, and the intact rock mass on the outer side of the main fracture forms an arched structure and expands outward, showing a pattern of layer-by-layer breaking of the overlying rock and slow settlement of the loose layer. The stress of the coal pillars on both sides in front of and behind the workplace shows an increasing trend followed by a decreasing trend before and after direct top fracture. The stress on the bottom plate of the goaf increases step by step with the collapse of the overlying rock layer, and its increment is similar to the gravity of the collapsed rock layer. When mining multiple coal seams, when the fissures in the overlying strata of the current coal seam penetrate to the upper coal seam, the stress in this coal seam suddenly increases, and the pressure relief effect of the upper coal seam is significant. Based on the above laws, three equilibrium structural models of overlying strata were established, and the maximum tensile stress and maximum shear stress yield strength criteria were used as stability criteria for overlying strata structures. The evolution mechanism of mining damage caused by layer-by-layer fracturing and the upward propagation of overlying strata was revealed. Finally, the analysis of the hydraulic support working resistance during the backfilling of the 31,305 working face in Shigetai Coal Mine confirmed the accuracy of the similarity simulation and theoretical model. The above research can provide support for key theoretical and technological research on underground mine safety production, aquifer protection, surface ecological restoration, and source loss reduction and control. Full article
Show Figures

Figure 1

21 pages, 6983 KB  
Article
Inversion Analysis of Stress Fields Based on the LSTM–Attention Neural Network
by Jianxin Wang, Liming Zhang and Junyu Sun
Appl. Sci. 2025, 15(17), 9567; https://doi.org/10.3390/app15179567 - 30 Aug 2025
Viewed by 415
Abstract
Conventional geostress methods of measurement cannot reveal an accurate geostress field distribution in an engineering area, limited by both cost and prevailing geological conditions. This study introduces an improved LSTM–Attention neural network for in situ stress field inversion. By integrating long short-term memory [...] Read more.
Conventional geostress methods of measurement cannot reveal an accurate geostress field distribution in an engineering area, limited by both cost and prevailing geological conditions. This study introduces an improved LSTM–Attention neural network for in situ stress field inversion. By integrating long short-term memory (LSTM) networks—which capture temporal dependencies in sequential data with attention mechanisms that emphasize critical features, the proposed method addresses inherent non-linearity and discontinuity challenges in deep subsurface stress field inversion. The integrated LSTM and multi-head attention architecture extracts temporal features and weights critical information within ground stress field data. Through iterative refinement via optimizers and loss functions, this framework successfully inverts stress boundary conditions while mitigating overfitting risks. The inversion of the stress field around a hydropower station indicates that the proposed method allows accurate inversion of distribution of the geostress field; the inversion values of the maximum principal stress, intermediate principal stress, and minimum principal stress conform to those measured. This study provides a new method for accurately and reliably inverting the stress field for deep engineering geological surveys and rock mass engineering design, which has significant scientific value and engineering application prospects. The rockburst risk of chambers is evaluated according to the stress field, which shows that locations with a burial depth of 274.3 m are at moderate to weak risk of rockburst. Full article
Show Figures

Figure 1

28 pages, 8325 KB  
Article
Tunnel Rapid AI Classification (TRaiC): An Open-Source Code for 360° Tunnel Face Mapping, Discontinuity Analysis, and RAG-LLM-Powered Geo-Engineering Reporting
by Seyedahmad Mehrishal, Junsu Leem, Jineon Kim, Yulong Shao, Il-Seok Kang and Jae-Joon Song
Remote Sens. 2025, 17(16), 2891; https://doi.org/10.3390/rs17162891 - 20 Aug 2025
Viewed by 1540
Abstract
Accurate and efficient rock mass characterization is essential in geotechnical engineering, yet traditional tunnel face mapping remains time consuming, subjective, and potentially hazardous. Recent advances in digital technologies and AI offer automation opportunities, but many existing solutions are hindered by slow 3D scanning, [...] Read more.
Accurate and efficient rock mass characterization is essential in geotechnical engineering, yet traditional tunnel face mapping remains time consuming, subjective, and potentially hazardous. Recent advances in digital technologies and AI offer automation opportunities, but many existing solutions are hindered by slow 3D scanning, computationally intensive processing, and limited integration flexibility. This paper presents Tunnel Rapid AI Classification (TRaiC), an open-source MATLAB-based platform for rapid and automated tunnel face mapping. TRaiC integrates single-shot 360° panoramic photography, AI-powered discontinuity detection, 3D textured digital twin generation, rock mass discontinuity characterization, and Retrieval-Augmented Generation with Large Language Models (RAG-LLM) for automated geological interpretation and standardized reporting. The modular eight-stage workflow includes simplified 3D modeling, trace segmentation, 3D joint network analysis, and rock mass classification using RMR, with outputs optimized for Geo-BIM integration. Initial evaluations indicate substantial reductions in processing time and expert assessment workload. Producing a lightweight yet high-fidelity digital twin, TRaiC enables computational efficiency, transparency, and reproducibility, serving as a foundation for future AI-assisted geotechnical engineering research. Its graphical user interface and well-structured open-source code make it accessible to users ranging from beginners to advanced researchers. Full article
Show Figures

Figure 1

34 pages, 15138 KB  
Article
Equivalent Porous Medium (EPM) Modeling of Karst Features for Slope Stability Analysis in Karst-Prone Weak Rock Masses
by Joan Atieno Onyango, Takashi Sasaoka, Hideki Shimada, Akihiro Hamanaka and Dyson Moses
Modelling 2025, 6(3), 81; https://doi.org/10.3390/modelling6030081 - 14 Aug 2025
Viewed by 547
Abstract
In weak carbonate rock masses, small-sized karst features ranging from greater than 2 cm to over 1 m in diameter can significantly compromise slope stability, yet they are often overlooked in traditional geotechnical models. This study employs the equivalent porous medium (EPM) approach [...] Read more.
In weak carbonate rock masses, small-sized karst features ranging from greater than 2 cm to over 1 m in diameter can significantly compromise slope stability, yet they are often overlooked in traditional geotechnical models. This study employs the equivalent porous medium (EPM) approach to incorporate these small-sized voids into two-dimensional finite element slope stability analysis using RS2 software (Version 11.022). By treating the matrix of karst hollows as a porous continuum, we simulate the mechanical and hydraulic influence of their presence on pit slope performance. Results show that even small voids substantially reduce the factor of safety, with destabilization intensifying as void density and pore fluid infiltration increase. Distinct failure mechanisms—including circular sliding, localized subsidence due to cavity collapse, and rockfalls from intersecting shear planes—emerge from the simulations. The stress trajectories and yield elements highlight how minor voids influence the distribution and initiation of shear and tensile failures. These findings reveal that karst features previously considered negligible can be critical structural discontinuities that trigger failure. The EPM framework thus provides a computationally efficient and mechanistically sound means of modelling the cumulative impact of small-sized karst features, bridging a significant gap in geotechnical design for karst-prone weak rock slopes. Full article
Show Figures

Graphical abstract

27 pages, 2209 KB  
Article
Variability and Trends in Selected Seismological Parameters During Longwall Mining of a Coal Seam Disrupted by a Rockburst
by Łukasz Wojtecki, Rafał Pakosz, Derek B. Apel and Maciej J. Mendecki
Appl. Sci. 2025, 15(16), 8897; https://doi.org/10.3390/app15168897 - 12 Aug 2025
Cited by 1 | Viewed by 462
Abstract
Seismic tremors provide valuable insights into stress redistribution and accumulation, often serving as indicators of these processes within the rock mass, which can precede or accompany rockburst occurrences. Consequently, seismic monitoring is implemented in mines endangered by rockbursts to systematically assess the hazard [...] Read more.
Seismic tremors provide valuable insights into stress redistribution and accumulation, often serving as indicators of these processes within the rock mass, which can precede or accompany rockburst occurrences. Consequently, seismic monitoring is implemented in mines endangered by rockbursts to systematically assess the hazard conditions of mining openings. This study examines the variability and trends of selected seismological parameters, primarily the seismic energy of tremors observed during the longwall mining of the top layer of thick coal seam under challenging geological and mining conditions in an underground mine located in the Upper Silesian Coal Basin, Poland. The longwall mining operation was interrupted by a rockburst and subsequently discontinued. The analysis highlights both the cyclic variability and trends of seismological parameters, considering their dependence on extraction progress and temporal dynamics. The results indicate that mining progress is a significant factor influencing the stationarity of the seismic energy release process. It has been proposed that cumulative Benioff strain release is evaluated solely as a function of longwall face advancement. This illustrates the correlation between excavation progress and seismic energy accumulation. The trend analysis of this parameter, both over time and in relation to longwall face advancement, has also been conducted. Full article
Show Figures

Figure 1

16 pages, 3189 KB  
Article
Improved Block Element Method for Simulating Rock Failure
by Yan Han, Qingwen Ren, Lei Shen and Yajuan Yin
Appl. Sci. 2025, 15(15), 8636; https://doi.org/10.3390/app15158636 - 4 Aug 2025
Viewed by 375
Abstract
As a discontinuous deformation method, the block element method (BEM) characterizes a material’s elastoplastic behavior through the constitutive relation of thin-layer elements between adjacent blocks. To realistically simulate rock damage paths, this work improves the traditional BEM by using random Voronoi polygonal grids [...] Read more.
As a discontinuous deformation method, the block element method (BEM) characterizes a material’s elastoplastic behavior through the constitutive relation of thin-layer elements between adjacent blocks. To realistically simulate rock damage paths, this work improves the traditional BEM by using random Voronoi polygonal grids for discrete modeling. This approach mitigates the distortion of damage paths caused by regular grids through the randomness of the Voronoi grids. As the innovation of this work, the iterative algorithm is combined with polygonal geometric features so that the area–perimeter fractal dimension can be introduced to optimize random Voronoi grids. The iterative control index can effectively improve the geometric characteristics of the grid while maintaining the necessary randomness. On this basis, a constitutive relation model that considers both normal and tangential damage is proposed. The entire process from damage initiation to macroscopic fracture failure in rocks is described using two independent damage surfaces and a damage relationship based on geometric mapping relationships. The analysis results are in good agreement with existing experimental data. Furthermore, the sensitivity method is used to analyze the influence of key mechanical parameters in the constitutive model. Full article
Show Figures

Figure 1

23 pages, 8003 KB  
Article
Study on Meso-Mechanical Evolution Characteristics and Numerical Simulation of Deep Soft Rock
by Anying Yuan, Hao Huang and Tang Li
Processes 2025, 13(8), 2358; https://doi.org/10.3390/pr13082358 - 24 Jul 2025
Viewed by 405
Abstract
To reveal the meso-mechanical essence of deep rock mass failure and capture precursor information, this study focuses on soft rock failure mechanisms. Based on the discontinuous medium discrete element method (DEM), we employed digital image correlation (DIC) technology, acoustic emission (AE) monitoring, and [...] Read more.
To reveal the meso-mechanical essence of deep rock mass failure and capture precursor information, this study focuses on soft rock failure mechanisms. Based on the discontinuous medium discrete element method (DEM), we employed digital image correlation (DIC) technology, acoustic emission (AE) monitoring, and particle flow code (PFC) numerical simulation to investigate the failure evolution characteristics and AE quantitative representation of soft rocks. Key findings include the following: Localized high-strain zones emerge on specimen surfaces before macroscopic crack visualization, with crack tip positions guiding both high-strain zones and crack propagation directions. Strong force chain evolution exhibits high consistency with the macroscopic stress response—as stress increases and damage progresses, force chains concentrate near macroscopic fracture surfaces, aligning with crack propagation directions, while numerous short force chains coalesce into longer chains. The spatial and temporal distribution characteristics of acoustic emissions were explored, and the damage types were quantitatively characterized, with ring-down counts demonstrating four distinct stages: sporadic, gradual increase, stepwise growth, and surge. Shear failures predominantly occurred along macroscopic fracture surfaces. At the same time, there is a phenomenon of acoustic emission silence in front of the stress peak in the surrounding rock of deep soft rock roadway, as a potential precursor indicator for engineering disaster early warning. These findings provide critical theoretical support for deep engineering disaster prediction. Full article
Show Figures

Figure 1

21 pages, 3497 KB  
Review
Review of Effective Porosity in Sandstone Aquifers: Insights for Representation of Contaminant Transport
by Prodeo Yao Agbotui, Farnam Firouzbehi and Giacomo Medici
Sustainability 2025, 17(14), 6469; https://doi.org/10.3390/su17146469 - 15 Jul 2025
Cited by 2 | Viewed by 775
Abstract
Assessment of contaminant dispersal in sandstones requires hydraulic characterization with a combination of datasets that span from the core plugs to wellbores and up to the field scale as the matrix and fractures are both hydraulically conductive. Characterizing the hydraulic properties of the [...] Read more.
Assessment of contaminant dispersal in sandstones requires hydraulic characterization with a combination of datasets that span from the core plugs to wellbores and up to the field scale as the matrix and fractures are both hydraulically conductive. Characterizing the hydraulic properties of the matrix is fundamental because contaminants diffuse into the fractured porous blocks. Fractures are highly conductive, and the determination of the number of hydraulically active rock discontinuities makes discrete fracture network models of solute transport reliable. Recent advances (e.g., active line source temperature logs) in hydro-geophysics have allowed the detection of 40% of hydraulically active fractures in a lithified sandstone. Tracer testing has revealed high (~10−4–10−2 ms−1) flow velocities and low (~10−2–10−4) effective porosities. Contaminants can therefore move rapidly in the subsurface. The petrophysical characterization of the plugs extracted from the cores, in combination with borehole hydro-geophysics, allows the characterization of either matrix or fracture porosity, but the volume of sandstone characterized is low. Tracer tests cannot quantify matrix or fracture porosity, but the observation scale is larger and covers the minimum representative volume. Hence, the combination of petrophysics, borehole hydro-geophysics, and tracer testing is encouraged for the sustainable management of solute transport in dual porosity sandstones. Full article
Show Figures

Figure 1

22 pages, 13424 KB  
Article
Measurement of Fracture Networks in Rock Sample by X-Ray Tomography, Convolutional Filtering and Deep Learning
by Alessia Caputo, Maria Teresa Calcagni, Giovanni Salerno, Elisa Mammoliti and Paolo Castellini
Sensors 2025, 25(14), 4409; https://doi.org/10.3390/s25144409 - 15 Jul 2025
Viewed by 796
Abstract
This study presents a comprehensive methodology for the detection and characterization of fractures in geological samples using X-ray computed tomography (CT). By combining convolution-based image processing techniques with advanced neural network-based segmentation, the proposed approach achieves high precision in identifying complex fracture networks. [...] Read more.
This study presents a comprehensive methodology for the detection and characterization of fractures in geological samples using X-ray computed tomography (CT). By combining convolution-based image processing techniques with advanced neural network-based segmentation, the proposed approach achieves high precision in identifying complex fracture networks. The method was applied to a marly limestone sample from the Maiolica Formation, part of the Umbria–Marche stratigraphic succession (Northern Apennines, Italy), a geological context where fractures often vary in size and contrast and are frequently filled with minerals such as calcite or clays, making their detection challenging. A critical part of the work involved addressing multiple sources of uncertainty that can impact fracture identification and measurement. These included the inherent spatial resolution limit of the CT system (voxel size of 70.69 μm), low contrast between fractures and the surrounding matrix, artifacts introduced by the tomographic reconstruction process (specifically the Radon transform), and noise from both the imaging system and environmental factors. To mitigate these challenges, we employed a series of preprocessing steps such as Gaussian and median filtering to enhance image quality and reduce noise, scanning from multiple angles to improve data redundancy, and intensity normalization to compensate for shading artifacts. The neural network segmentation demonstrated superior capability in distinguishing fractures filled with various materials from the host rock, overcoming the limitations observed in traditional convolution-based methods. Overall, this integrated workflow significantly improves the reliability and accuracy of fracture quantification in CT data, providing a robust and reproducible framework for the analysis of discontinuities in heterogeneous and complex geological materials. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

21 pages, 1592 KB  
Article
Shear Strength of Rock Discontinuities with Emphasis on the Basic Friction Angle Based on a Compiled Database
by Mahdi Zoorabadi and José Muralha
Geotechnics 2025, 5(3), 48; https://doi.org/10.3390/geotechnics5030048 - 11 Jul 2025
Viewed by 1421
Abstract
The shear strength of rock discontinuities is a critical parameter in rock engineering projects for assessing the safety conditions of rock slopes or concrete dam foundations. It is primarily controlled by the frictional contribution of rock texture (basic friction angle), the roughness of [...] Read more.
The shear strength of rock discontinuities is a critical parameter in rock engineering projects for assessing the safety conditions of rock slopes or concrete dam foundations. It is primarily controlled by the frictional contribution of rock texture (basic friction angle), the roughness of discontinuities, and the applied normal stress. While proper testing is essential for accurately quantifying shear strength, engineering geologists and engineers often rely on published historical databases during early design stages or when test results show significant variability. This paper serves two main objectives. First, it intends to provide a comprehensive overview of the basic friction angle concept from early years until its emergence in the Barton criterion, along with insights into distinctions and misunderstandings between basic and residual friction angles. The other, given the influence of the basic friction angle for the entire rock joint shear strength, the manuscript offers an extended database of basic friction angle values. Full article
Show Figures

Figure 1

20 pages, 28340 KB  
Article
Rockfall Hazard Assessment for Natural and Cultural Heritage Site: Close Vicinity of Rumkale (Gaziantep, Türkiye) Using Digital Twins
by Ugur Mursal, Abdullah Onur Ustaoglu, Yasin Baskose, Ilyas Yalcin, Sultan Kocaman and Candan Gokceoglu
Heritage 2025, 8(7), 270; https://doi.org/10.3390/heritage8070270 - 8 Jul 2025
Cited by 1 | Viewed by 846
Abstract
This study presents a digital twin–based framework for assessing rockfall hazards at the immediate vicinity of the Rumkale Archaeological Site, a geologically sensitive and culturally significant location in southeastern Türkiye. Historically associated with early Christianity and strategically located along the Euphrates, Rumkale is [...] Read more.
This study presents a digital twin–based framework for assessing rockfall hazards at the immediate vicinity of the Rumkale Archaeological Site, a geologically sensitive and culturally significant location in southeastern Türkiye. Historically associated with early Christianity and strategically located along the Euphrates, Rumkale is a protected heritage site that attracts increasing numbers of visitors. Here, high-resolution photogrammetric models were generated using imagery acquired from a remotely piloted aircraft system and post-processed with ground control points to produce a spatially accurate 3D digital twin. Field-based geomechanical measurements including discontinuity orientations, joint classifications, and strength parameters were integrated with digital analyses to identify and evaluate hazardous rock blocks. Kinematic assessments conducted in the study revealed susceptibility to planar, wedge, and toppling failures. The results showed the role of lithological structure, active tectonics, and environmental factors in driving slope instability. The proposed methodology demonstrates effective use of digital twin technologies in conjunction with traditional geotechnical techniques, offering a replicable and non-invasive approach for site-scale hazard evaluation and conservation planning in heritage contexts. This work contributes to the advancement of interdisciplinary methods for geohazard-informed management of cultural landscapes. Full article
(This article belongs to the Special Issue Geological Hazards and Heritage Safeguard)
Show Figures

Figure 1

28 pages, 1467 KB  
Article
Design of Spread Foundations on Rock Mass in the Second Generation of Eurocode 7
by Renato Pereira, Witold Bogusz and Luís Lamas
Geotechnics 2025, 5(3), 46; https://doi.org/10.3390/geotechnics5030046 - 2 Jul 2025
Viewed by 2267
Abstract
This paper outlines the key developments in the second generation of the Eurocodes, with a focus on the integration of rock engineering into the updated Eurocode 7—Geotechnical Design (EN 1997). It introduces the various methodologies used for safety verification of geotechnical structures and [...] Read more.
This paper outlines the key developments in the second generation of the Eurocodes, with a focus on the integration of rock engineering into the updated Eurocode 7—Geotechnical Design (EN 1997). It introduces the various methodologies used for safety verification of geotechnical structures and provides a brief overview of limit state design, including the semi-probabilistic approach and other reliability-based methods. The paper details the introduction of specific partial factors for intact rock, rock mass, and discontinuities and discusses specific aspects of the design of spread foundations on rock using calculations. This includes the shift from traditional global safety factor methods to the partial factor format prescribed by Eurocode 7, as well as the use of fully probabilistic analyses. To assess the practical implications of these updates, a case study on the design of a spread foundation is presented. The study compares three design approaches: the global safety factor method (based on mean values of actions and strength properties), the Eurocode 7 partial factor method (using characteristic values), and a probabilistic method (based on statistical distributions). Additionally, the paper examines the application of two failure criteria—Mohr–Coulomb and Hoek–Brown—in the calculation process. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (3rd Edition))
Show Figures

Figure 1

22 pages, 9006 KB  
Article
Stability Assessment of Rock Slopes in the Former Quarry of Wojciech Bednarski Park in Kraków—A Case Study
by Malwina Kolano, Marek Cała, Agnieszka Stopkowicz, Piotr Olchowy and Marek Wendorff
Appl. Sci. 2025, 15(13), 7197; https://doi.org/10.3390/app15137197 - 26 Jun 2025
Cited by 1 | Viewed by 485
Abstract
This study presents a stability assessment of rock slopes, considering the joint systems of the rock walls of Wojciech Bednarski Park. Special emphasis was placed on analysing the orientation and infill characteristics of the identified joint sets. Based on archival data and newly [...] Read more.
This study presents a stability assessment of rock slopes, considering the joint systems of the rock walls of Wojciech Bednarski Park. Special emphasis was placed on analysing the orientation and infill characteristics of the identified joint sets. Based on archival data and newly conducted geological surveys, stability calculations were performed for eight representative cross-sections corresponding to designated sectors. Numerical analyses were conducted using a finite element method (FEM) programme, based on the actual structure of the rock mass, specifically its discontinuities. This ensured a reliable reflection of the real conditions governing the slope instability mechanisms. Factors of safety were estimated with the Shear Strength Reduction Technique. The results indicate that slope failure is highly unlikely in Sectors 1 and 2 (FS > 1.50), unlikely but not fully meeting the safety criteria in Sector 3 (FS < 1.50), and highly probable in Sectors 4 and 6 (FS << 1.00), where unstable rock blocks and deeper structural slides are anticipated. In Sector 5, failure is considered probable (FS < 1.30) due to rockfalls, unstable blocks, and creeping weathered cover. For Sectors 7 and 8, assuming debris cover above the rock walls, failure is unlikely (FS > 1.50). In contrast, under the assumption of weathered material, it becomes probable in Sector 7 (FS < 1.30), and remains unlikely in Sector 8 (FS > 1.50). Due to the necessity of adopting several modelling assumptions, the results should be interpreted primarily in qualitative terms. The outcomes of this research provide a critical basis for assessing the stability of rock slopes within Wojciech Bednarski Park and support decision-making processes related to its planned revitalisation. Full article
Show Figures

Figure 1

Back to TopTop