Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,378)

Search Parameters:
Keywords = rocking structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 5957 KB  
Article
Multistage Fluid Evolution and P-T Path at Ity Gold Deposit and Dahapleu Prospect (Western Ivory Coast)
by Yacouba Coulibaly, Michel Cathelineau and Marie-Christine Boiron
Minerals 2025, 15(9), 918; https://doi.org/10.3390/min15090918 (registering DOI) - 28 Aug 2025
Abstract
Gold mineralisation at Ity (Ivory Coast) is spatially associated with skarns formed at contacts between carbonate-rich Birimian volcano-sedimentary rocks and felsic intrusions, whereas at Dahapleu, a nearby skarn-free prospect, gold occurs in structurally controlled shear zones. Gold occurs as native gold in pyrite [...] Read more.
Gold mineralisation at Ity (Ivory Coast) is spatially associated with skarns formed at contacts between carbonate-rich Birimian volcano-sedimentary rocks and felsic intrusions, whereas at Dahapleu, a nearby skarn-free prospect, gold occurs in structurally controlled shear zones. Gold occurs as native gold in pyrite or as a Bi–Te–Au–Ag telluride assemblage. Fluid inclusion data indicate that Ity formed through a hybrid model: a mesothermal orogenic gold system dominated by CO2–CH4 fluids at >350 °C, superimposed on earlier skarn mineralisation characterised by saline fluids. At Dahapleu, no skarn fluids were identified, but volatile-rich inclusions with more variable signatures (CO2, CO2–CH4, CO2–N2) indicate metamorphic fluids circulating in convective, fault-related systems and recording distinct fluid–rock interactions. The Ity–Dahapleu mineralising system thus displays fluid inclusion characteristics typical of mesothermal orogenic gold systems, likely at higher temperatures than most West African Birimian deposits. Overall, the Ity system reflects a long-lived thermal anomaly driving fluid circulation and metal deposition, with successive favourable events: rapid exhumation of hot lithospheric crust, granite intrusion, and skarn formation, followed by shear deformation and hydrothermal activity. Full article
Show Figures

Figure 1

24 pages, 6119 KB  
Article
Dynamic Response of Methane Explosion and Roadway Surrounding Rock in Restricted Space: A Simulation Analysis of Fluid-Solid Coupling
by Qiangyu Zheng, Peijiang Ding, Zhenguo Yan, Yaping Zhu and Jinlong Zhang
Appl. Sci. 2025, 15(17), 9454; https://doi.org/10.3390/app15179454 (registering DOI) - 28 Aug 2025
Abstract
A methane-air premixed gas explosion is one of the most destructive disasters in the process of coal mining, and the dynamic coupling between the shock wave triggered by the explosion and the surrounding rock of the roadway can lead to the destabilization of [...] Read more.
A methane-air premixed gas explosion is one of the most destructive disasters in the process of coal mining, and the dynamic coupling between the shock wave triggered by the explosion and the surrounding rock of the roadway can lead to the destabilization of the surrounding rock structure, the destruction of equipment, and casualties. The aim of this study is to systematically reveal the propagation characteristics of the blast wave, the spatial and temporal evolution of the wall load, and the damage mechanism of the surrounding rock by establishing a two-way fluid-solid coupling numerical model. Based on the Ansys Fluent fluid solver and Transient Structure module, a framework for the co-simulation of the fluid and solid domains has been constructed by adopting the standard kε turbulence model, finite-rate/eddy-dissipation (FR/ED) reaction model, and nonlinear finite-element theory, and by introducing a dynamic damage threshold criterion based on the Drucker–Prager and Mohr–Coulomb criteria. It is shown that methane concentration significantly affects the kinetic behavior of explosive shock wave propagation. Under chemical equivalence ratio conditions (9.5% methane), an ideal Chapman–Jouguet blast wave structure was formed, exhibiting the highest energy release efficiency. In contrast, lean ignition (7%) and rich ignition (12%) conditions resulted in lower efficiencies due to incomplete combustion or complex combustion patterns. In addition, the pressure time-history evolution of the tunnel enclosure wall after ignition triggering exhibits significant nonlinear dynamics, which can be divided into three phases: the initiation and turbulence development phase, the quasi-steady propagation phase, and the expansion and dissipation phase. Further analysis reveals that the closed end produces significant stress aggregation due to the interference of multiple reflected waves, while the open end increases the stress fluctuation due to turbulence effects. The spatial and temporal evolution of the strain field also follows a three-stage dynamic pattern: an initial strain-induced stage, a strain accumulation propagation stage, and a residual strain stabilization stage and the displacement is characterized by an initial phase of concentration followed by gradual expansion. This study not only deepens the understanding of methane-air premixed gas explosion and its interaction with the roadway’s surrounding rock, but also provides an important scientific basis and technical support for coal mine safety production. Full article
(This article belongs to the Special Issue Advanced Blasting Technology for Mining)
Show Figures

Figure 1

30 pages, 9870 KB  
Article
Advancing Darcy Flow Modeling: Comparing Numerical and Deep Learning Techniques
by Gintaras Stankevičius, Kamilis Jonkus and Mayur Pal
Processes 2025, 13(9), 2754; https://doi.org/10.3390/pr13092754 - 28 Aug 2025
Abstract
In many scientific and engineering fields, such as hydrogeology, petroleum engineering, geotechnical research, and developing renewable energy solutions, fluid flow modeling in porous media is essential. In these areas, optimizing extraction techniques, forecasting environmental effects, and guaranteeing structural safety all depend on an [...] Read more.
In many scientific and engineering fields, such as hydrogeology, petroleum engineering, geotechnical research, and developing renewable energy solutions, fluid flow modeling in porous media is essential. In these areas, optimizing extraction techniques, forecasting environmental effects, and guaranteeing structural safety all depend on an understanding of the behavior of single-phase flows—fluids passing through connected pore spaces in rocks or soils. Darcy’s law, which results in an elliptic partial differential equation controlling the pressure field, is usually the mathematical basis for such modeling. Analytical solutions to these partial differential equations are seldom accessible due to the complexity and variability in natural porous formations, which makes the employment of numerical techniques necessary. To approximate subsurface flow solutions, traditional methods like the finite difference method, two-point flux approximation, and multi-point flux approximation have been employed extensively. Accuracy, stability, and computing economy are trade-offs for each, though. Deep learning techniques, in particular convolutional neural networks, physics-informed neural networks, and neural operators such as the Fourier neural operator, have become strong substitutes or enhancers of conventional solvers in recent years. These models have the potential to generalize across various permeability configurations and greatly speed up simulations. The purpose of this study is to examine and contrast the mentioned deep learning and numerical approaches to the problem of pressure distribution in single-phase Darcy flow, considering a 2D domain with mixed boundary conditions, localized sources, and sinks, and both homogeneous and heterogeneous permeability fields. The result of this study shows that the two-point flux approximation method is one of the best regarding computational speed and accuracy and the Fourier neural operator has potential to speed up more accurate methods like multi-point flux approximation. Different permeability field types only impacted each methods’ accuracy while computational time remained unchanged. This work aims to illustrate the advantages and disadvantages of each method and support the continuous development of effective solutions for porous medium flow problems by assessing solution accuracy and computing performance over a range of permeability situations. Full article
Show Figures

Figure 1

20 pages, 3873 KB  
Article
Stability Evaluation of Rock Slope–Anchoring Systems Based on Catastrophe Theory
by Peng Xia, Bowen Zeng, Jie Liu, Yiheng Pan and Xiaofeng Ye
Appl. Sci. 2025, 15(17), 9438; https://doi.org/10.3390/app15179438 - 28 Aug 2025
Abstract
With the rapid development of China’s economy, the number and scale of infrastructure projects in energy, water conservancy, and transportation have expanded significantly. Anchoring technology has been widely applied, resulting in the formation of numerous rock slope–anchoring systems. This study proposes a novel [...] Read more.
With the rapid development of China’s economy, the number and scale of infrastructure projects in energy, water conservancy, and transportation have expanded significantly. Anchoring technology has been widely applied, resulting in the formation of numerous rock slope–anchoring systems. This study proposes a novel method for evaluating the stability of rock slope–anchoring systems by introducing catastrophe theory into the stability assessment framework. Based on the characteristics of the rock slope–anchoring system and its stability-influencing factors, a hierarchical analytic structure for catastrophe-level evaluation is constructed, and relevant indicator data are collected. Catastrophe models are selected according to the identified state and control variables, and catastrophe levels are computed to establish a sample dataset. The relationship between catastrophe levels and the stability coefficients of rock slope–anchoring systems is verified to define stability grade intervals. Stability evaluation is then performed by calculating the catastrophe level of each system. The results indicate that: (1) the proposed method effectively considers the influence of multiple factors on the stability of rock slope–anchoring systems, ensuring high accuracy in the evaluation. (2) The method allows for the automatic quantification of the relative importance of indicators within the same hierarchy, reducing subjectivity caused by manual weighting. (3) By standardizing state variables and computing catastrophe levels, the method couples qualitative descriptions with mechanical parameters, enhancing the objectivity of the assessment. (4) The stability evaluation method for rock slope–anchorage systems based on mathematical catastrophe theory determines system stability through catastrophe-order analysis, featuring a concise process and clear results. It enables rapid evaluation of the stability of similar rock slope–anchorage systems and offers high efficiency for cluster assessments. Full article
Show Figures

Figure 1

19 pages, 7434 KB  
Article
The Study on the Relation Between Rock Indentation Crater Morphology and Rock Mechanical Index Based on Indentation Experiments
by Zhenkun Wu, Hui Gao, Ying Yang, Songcheng Tan, Xiaohong Fang, Yule Hu and Longchen Duan
Appl. Sci. 2025, 15(17), 9410; https://doi.org/10.3390/app15179410 - 27 Aug 2025
Abstract
Understanding rock behavior under cutting tools is critical for enhancing cutting processes and forecasting rock behavior in engineering contexts. This study examines the link between mechanical properties and indentation crater morphology of six rocks using a conical indenter until initial fracture. Through indentation [...] Read more.
Understanding rock behavior under cutting tools is critical for enhancing cutting processes and forecasting rock behavior in engineering contexts. This study examines the link between mechanical properties and indentation crater morphology of six rocks using a conical indenter until initial fracture. Through indentation testing, mechanical properties (indentation stiffness index k and hardness index HI) were assessed, and crater morphology was analyzed using a 3D laser profilometer. The rocks were categorized into three groups based on specific energy: Class I (slate, shale), Class II (sandstone, marble), and Class III (granite, gneiss). The morphological features of their indentation craters were analyzed both quantitatively and qualitatively. The linear model was used to establish the relationship between crater morphology indices and mechanical properties, with model parameters determined by linear regression. Key findings include: (1) Fracture depth, cross-sectional area, and contour roundness are independent morphological indicators, serving as characteristic parameters for crater morphology, with qualitative and quantitative analyses showing consistency; (2) Post-classification linear fitting revealed statistically significant morphological prediction models, though patterns varied across rock categories due to inherent properties like structure and grain homogeneity; (3) Classification by specific energy revealed distinct mechanical and morphological differences, with significant linear relationships established for all three indicators in Classes II and III, but only roundness showing significance in Class I (non-significant for cross-sectional area and depth). However, all significant models exhibited limited explanatory power (R2 = 0.220–0.635), likely due to constrained sample sizes. Future studies should expand sample sizes to refine these findings. Full article
Show Figures

Figure 1

19 pages, 7866 KB  
Article
Effect of Burial Depth, Cavern Shape, and Sealing Layer on the Mechanical Behaviour of Abandoned Mines for Compressed Air Energy Storage
by Lihui Niu, Shiji Yan, Fuchao Zhao, Xinchun Bai, Yaosheng Zhang and Pengju Qin
Processes 2025, 13(9), 2737; https://doi.org/10.3390/pr13092737 - 27 Aug 2025
Abstract
As renewable energy adoption intensifies, the demand for efficient and large-scale storage technologies such as compressed air energy storage (CAES) has become critical. Abandoned mine caverns present a cost-effective and sustainable option for CAES, enabling the reuse of existing underground spaces while minimizing [...] Read more.
As renewable energy adoption intensifies, the demand for efficient and large-scale storage technologies such as compressed air energy storage (CAES) has become critical. Abandoned mine caverns present a cost-effective and sustainable option for CAES, enabling the reuse of existing underground spaces while minimizing new excavation. This study aims to quantitatively evaluate the stability of abandoned mine caverns for CAES under varying burial depths (150 m, 300 m, 450 m), cavern geometries (rectangular, trapezoidal, straight-wall arch, and circular) and sealing layer (steel, polymer) in Class II rock mass conditions. Finite element modelling employing ABAQUS was employed to simulate excavation, lining installation, and high-pressure gas storage, incorporating an analysis of surrounding rock strain, plastic zone development, and sealing layer performance. Results indicate that geometry and burial depth are dominant factors controlling deformation, with straight-wall arch caverns inducing relatively minimal disturbance to the ground surface after excavation and lining, and circular caverns showing the highest stability after pressurization. Steel sealing layers significantly improve structural performance, while polymer layers have a limited effect. The findings provide engineering guidance for the safe retrofit and design of CAES facilities in abandoned mines. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 7878 KB  
Article
Three-Dimensional Attribute Modeling and Deep Mineralization Prediction of Vein 171 in Linglong Gold Field, Jiaodong Peninsula, Eastern China
by Hongda Li, Zhichun Wu, Shouxu Wang, Yongfeng Wang, Chong Dong, Xiao Li, Zhiqiang Zhang, Hualiang Li, Weijiang Liu and Bin Li
Minerals 2025, 15(9), 909; https://doi.org/10.3390/min15090909 - 27 Aug 2025
Abstract
As shallow mineral resources become increasingly depleted, the search for deep-seated orebodies has emerged as a crucial focus in modern gold exploration. This study investigates Vein 171 in the Linglong gold field, Jiaodong Peninsula, using 3D attribute modeling for deep mineralization prediction and [...] Read more.
As shallow mineral resources become increasingly depleted, the search for deep-seated orebodies has emerged as a crucial focus in modern gold exploration. This study investigates Vein 171 in the Linglong gold field, Jiaodong Peninsula, using 3D attribute modeling for deep mineralization prediction and precise orebody delineation. The research integrates surface and block models through Vulcan 2021.5 3D mining software to reconstruct the spatial morphology and internal attribute distribution of the orebody. Geostatistical methods were applied to identify and process high-grade anomalies, with grade interpolation conducted using the inverse distance weighting (IDW) method. The results reveal that Vein 171 is predominantly controlled by NE-trending extensional structures, and grade enrichment occurs in zones where fault dips transition from steep to gentle. The grade distribution of the 1711 and 171sub-1 orebodies demonstrates heterogeneity, with high-grade clusters exhibiting periodic and discrete distributions along the dip and plunge directions. Key enrichment zones were identified at elevations of –1800 m to –800 m near the bifurcation of the Zhaoping Fault, where stress concentration and rock fracturing have created complex fracture networks conducive to hydrothermal fluid migration and gold precipitation. Nine verification drillholes in key target areas revealed 21 new mineralized bodies, resulting in an estimated additional 2.308 t of gold resources and validating the predictive accuracy of the 3D model. This study not only provides a reliable framework for deep prospecting and mineral resource expansion in the Linglong Goldfield but also serves as a reference for exploration in similar structurally controlled gold deposits globally. Full article
(This article belongs to the Special Issue 3D Mineral Prospectivity Modeling Applied to Mineral Deposits)
Show Figures

Figure 1

25 pages, 4120 KB  
Article
Hydrogeochemical Characterization of Mineral Springs in Peruvian Tropical Highlands
by Damaris Leiva-Tafur, Hardy Geoffrey Manco Perez, Jesús Rascón, Lorenzo Culqui, Oscar Andrés Gamarra-Torres and Manuel Oliva-Cruz
Water 2025, 17(17), 2539; https://doi.org/10.3390/w17172539 - 27 Aug 2025
Abstract
Water quality in natural mineral springs is essential for sustainable use and conservation in the Amazon region. This study presents a hydrogeochemical characterization of 21 springs in the Peruvian Tropical Highlands, expanding on previous records of only six sources. The springs, which are [...] Read more.
Water quality in natural mineral springs is essential for sustainable use and conservation in the Amazon region. This study presents a hydrogeochemical characterization of 21 springs in the Peruvian Tropical Highlands, expanding on previous records of only six sources. The springs, which are thermal, saline, and sulfurous, are located between 384 and 3147 m a.s.l., mainly in mountainous areas with structural slopes and permeable sedimentary formations, such as the Pulluicana Group (composed mainly of sandstones and shales) and the Sarayaquillo Formation (characterized by reddish sandstones and siltstones). Physicochemical analysis showed temperatures ranging from 15.1 to 38.2 °C, pH from 5.20 to 8.72, conductivity between 0.05 and 253 mS/cm, and total dissolved solids from 0.02 to 162.50 g/L. High levels of arsenic and aluminum, likely originating from the natural weathering of rocks rich in these elements, exceeded national limits. Microbiological analysis detected fecal coliforms and Escherichia coli, indicating potential health risks. The results highlight the importance of regular monitoring and proper management to ensure safe use and explore its therapeutic and biotechnological applications, such as microbial bioremediation or development of extremophile-based enzymes. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

27 pages, 13635 KB  
Article
Direct Dating of Natural Fracturing System in the Jurassic Source Rocks, Ne-Iraq: Age Constraint on Multi Fracture-Filling Cements and Fractures Associated with Hydrocarbon Phases/Migration Utilizing LA ICP MS
by Rayan Fattah, Namam Salih and Alain Préat
Minerals 2025, 15(9), 907; https://doi.org/10.3390/min15090907 - 27 Aug 2025
Abstract
This study provides a detailed geochronological paragenesis of fracture systems from the Upper Jurassic petroleum source formation in NE Iraq, utilizing U-Pb dating, integrated with microprobe analyses and petrographic studies. Five fracturing stages are recognized (FI–FV), indicating significant tectonic and temperature changes from [...] Read more.
This study provides a detailed geochronological paragenesis of fracture systems from the Upper Jurassic petroleum source formation in NE Iraq, utilizing U-Pb dating, integrated with microprobe analyses and petrographic studies. Five fracturing stages are recognized (FI–FV), indicating significant tectonic and temperature changes from the Late Jurassic to Pliocene times (approximately 5.2–5.5 Ma). The burial history curve shows continuous subsidence events, starting with initial burial of the Barsarin Formation reaching depths of 1000–1200 m by 130 Ma, this depth interval coincides with the first fracturing stage (FI). The buffered system of FI by pristine facies and geometrical cross-cutting of FI with early stylolite formation show a prior formation of stylolite. Subsequent fracturing stages FII (28.6 ± 2 Ma, Oligocene) and FIII (19.83 ± 0.43 Ma, Early Miocene) were contemporaneous with tectonic deformation phases and hydrocarbon generation times. Microprobe and optical analyses demonstrate variations in mineralogical composition, particularly in FIV/FV-filled calcite and dolomite cements (12.2 ± 1.5 Ma and 5.5 Ma), highlighting the periods of conduit formation for the hydrocarbon migration. Backscattered electron (BSE) imaging reveals a textural alteration of these cements, especially those associated with fluorite precipitation, which further support the hydrothermal entrapment associated with the hydrocarbon migration. The hydrocarbon entrapment appeared in at least two episodes under subsurface setting under temperatures exceeding 100 °C. In summary, the significant meaningful ages and compositional analyses obtained from this study reveal crucial insights into the dynamics of fracture-filling cements and hydrocarbon entrapment mechanisms within the petroleum source rock formation. The novelty of these data would enhance our understanding of the complex relationship between structural geology and migration conduits, highlighting the influence of fracture-filling cements on hydrocarbon accumulation and reservoir quality as a main target for hydrocarbon field development. Full article
(This article belongs to the Special Issue Distribution and Development of Faults and Fractures in Shales)
Show Figures

Graphical abstract

22 pages, 7924 KB  
Article
Confirmation of Significant Iron Formations During “Boring Billion” in Altyn Region, China: A Case Study of the Dimunalike Iron Deposit
by Wencheng Liu, Fanqi Kong, Haibo Ding, Jing Zhang and Mingtian Zhu
Minerals 2025, 15(9), 905; https://doi.org/10.3390/min15090905 - 26 Aug 2025
Abstract
It is generally believed that the ancient oceans during the “boring billion” (1.85–0.8 Ga) lacked the capacity to form large-scale iron formations (IFs), though localized small-scale IFs deposition persisted. The Altyn region of China hosts abundant IFs, with the Dimunalike IFs being the [...] Read more.
It is generally believed that the ancient oceans during the “boring billion” (1.85–0.8 Ga) lacked the capacity to form large-scale iron formations (IFs), though localized small-scale IFs deposition persisted. The Altyn region of China hosts abundant IFs, with the Dimunalike IFs being the largest and most representative, characterized by typical banded iron–silica layers. Detailed fieldwork identified a tuff layer conformably contacting the IFs at the roof rocks of IFs and a ferruginous mudstone layer at the floor rocks of IFs in drill core ZK4312. Geochemical and zircon U-Pb-Hf isotopic analyses were performed. The tuff has a typical tuff structure, mostly made of quartz, and contains a significant amount of natural sulfur. It also has high SiO2 content (77.90%–80.49%) and sulfur content (0.78%–3.06%). The ferruginous mudstone has a volcanic clastic structure and is mainly composed of quartz and chlorite, with abundant coeval pyrite. It shows lower SiO2 content (53.83%–60.32%) and higher TFe2O3 content (10.29%–16.24%). Both layers share similar rare earth element (REE) distribution patterns and trace element compositions, with light REE enrichment and negative Eu, Nb, and Ti anomalies, consistent with arc volcanic geochemistry. Zircon U-Pb ages indicate crystallization of the tuff at 1102 ± 13 Ma and maximum deposition of the mudstone at 1110 ± 41 Ma. These data suggest formation during different stages of the same volcanic–sedimentary process. The εHf(t) values (3.60–12.35 for tuff, 2.92–8.19 for mudstone) resemble those of Algoma-type IF host rocks, implying derivation from re-melted new crust. The Dimunalike IFs likely formed in a submarine volcanic–sedimentary environment. In conclusion, although the Mesoproterozoic ocean was generally in a low-oxygen state, which was not conducive to large-scale IF deposition, localized submarine volcanic–hydrothermal activity could still lead to IF formation. Full article
(This article belongs to the Special Issue Geochemical, Isotopic, and Biotic Records of Banded Iron Formations)
Show Figures

Graphical abstract

18 pages, 15632 KB  
Article
Influence of Cutter Ring Structure on Rock-Breaking Force and Efficiency of TBM Disc Cutter Based on Discrete Element Method
by Juan-Juan Li, Jin Yu, Wentao Xu, Xiao-Zhao Li, Tian-Chi Fu and Long-Chuan Deng
Buildings 2025, 15(17), 3050; https://doi.org/10.3390/buildings15173050 - 26 Aug 2025
Abstract
Understanding the combined effects of edge width and cutter ring shape on the rock-breaking performance is critical for optimising disc cutter design. The intrusion test serves as an effective approach for investigating the rock-breaking mechanism of disc cutters. In this study, a two-dimensional [...] Read more.
Understanding the combined effects of edge width and cutter ring shape on the rock-breaking performance is critical for optimising disc cutter design. The intrusion test serves as an effective approach for investigating the rock-breaking mechanism of disc cutters. In this study, a two-dimensional discrete element method (DEM) model was established to simulate the intrusion process of a single disc cutter. Three commonly used disc cutter types were analysed: disc cutter with flat edge (FEDC), disc cutter with rounded edge (REDC) and disc cutter with alloy tooth (ATDC). The edge widths ranging from 10 mm to 24 mm were examined to assess their influence on rock crack propagation, stress distribution, cutting force and specific cutting energy. The FEDC and REDC exhibited face-contact extrusion breaking, whereas the ATDC was line-contact embedding breaking. The crack extension range, crack number, force chain intensity, stress distribution, rock-breaking force and specific cutting energy ranks are as follows: FEDC > REDC > ATDC. The ATDC generated a higher proportion of tensile cracks compared to the FEDC and REDC, though with fewer long cracks. The rock-breaking efficiency of the FEDC was lower, whereas the REDC and ATDC exhibited higher efficiency. With the increase in edge width, the force chain distribution became more concentrated, leading to greater internal rock damage, and the number and length of cracks increased significantly. Cracks initially expanded laterally at smaller edge widths but extended downward as edge width increased. The peak force and specific cutting energy increased with increasing edge width; the peak force at an edge width of 24 mm is approximately 3.5 times that of an edge width of 10 mm. The REDC is preferable in hard rock formations, and the ATDC is more effective in soft rock formations. The edge width should be determined based on rock properties and thrust capacity. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 5379 KB  
Article
Geometric Coupling Effects of Multiple Cracks on Fracture Behavior: Insights from Discrete Element Simulations
by Shuangping Li, Bin Zhang, Hang Zheng, Zuqiang Liu, Xin Zhang, Linjie Guan and Han Tang
Intell. Infrastruct. Constr. 2025, 1(2), 6; https://doi.org/10.3390/iic1020006 - 25 Aug 2025
Viewed by 74
Abstract
Understanding the multi-crack coupling fracture behavior in brittle materials is particularly critical for aging dam infrastructure, where 78% of structural failures originate from crack network coalescence. In this study, we introduce the concepts of crack distance ratio (DR) and size ratio (SR) to [...] Read more.
Understanding the multi-crack coupling fracture behavior in brittle materials is particularly critical for aging dam infrastructure, where 78% of structural failures originate from crack network coalescence. In this study, we introduce the concepts of crack distance ratio (DR) and size ratio (SR) to describe the relationship between crack position and length and employ the discrete element method (DEM) for extensive numerical simulations. Specifically, a crack density function is introduced to assess microscale damage evolution, and the study systematically examines the macroscopic mechanical properties, failure modes, and microscale damage evolution of rock-like materials under varying DR and SR conditions. The results show that increasing the crack distance ratio and crack angle can inhibit the crack formation at the same tip of the prefabricated crack. The increase in the size ratio will promote the formation of prefabricated cracks on the same side. The increase in the distance ratio and size ratio significantly accelerate the rapid increase in crack density in the second stage. The crack angle provides the opposite effect. In the middle stage of loading, the growth rate of crack density decreases with the increase in crack angle. Overall, the size ratio has a greater influence on the evolution of microscopic damage. This research provides new insights into understanding and predicting the behavior of materials under complex stress conditions, thus contributing to the optimization of structural design and the improvement of engineering safety. Full article
Show Figures

Figure 1

18 pages, 2565 KB  
Article
Rock Joint Segmentation in Drill Core Images via a Boundary-Aware Token-Mixing Network
by Seungjoo Lee, Yongjin Kim, Yongseong Kim, Jongseol Park and Bongjun Ji
Buildings 2025, 15(17), 3022; https://doi.org/10.3390/buildings15173022 - 25 Aug 2025
Viewed by 92
Abstract
The precise mapping of rock joint traces is fundamental to the design and safety assessment of foundations, retaining structures, and underground cavities in building and civil engineering. Existing deep learning approaches either impose prohibitive computational demands for on-site deployment or disrupt the topological [...] Read more.
The precise mapping of rock joint traces is fundamental to the design and safety assessment of foundations, retaining structures, and underground cavities in building and civil engineering. Existing deep learning approaches either impose prohibitive computational demands for on-site deployment or disrupt the topological continuity of subpixel lineaments that govern rock mass behavior. This study presents BATNet-Lite, a lightweight encoder–decoder architecture optimized for joint segmentation on resource-constrained devices. The encoder introduces a Boundary-Aware Token-Mixing (BATM) block that separates feature maps into patch tokens and directionally pooled stripe tokens, and a bidirectional attention mechanism subsequently transfers global context to local descriptors while refining stripe features, thereby capturing long-range connectivity with negligible overhead. A complementary Multi-Scale Line Enhancement (MLE) module combines depth-wise dilated and deformable convolutions to yield scale-invariant responses to joints of varying apertures. In the decoder, a Skeletal-Contrastive Decoder (SCD) employs dual heads to predict segmentation and skeleton maps simultaneously, while an InfoNCE-based contrastive loss enforces their topological consistency without requiring explicit skeleton labels. Training leverages a composite focal Tversky and edge IoU loss under a curriculum-thinning schedule, improving edge adherence and continuity. Ablation experiments confirm that BATM, MLE, and SCD each contribute substantial gains in boundary accuracy and connectivity preservation. By delivering topology-preserving joint maps with small parameters, BATNet-Lite facilitates rapid geological data acquisition for tunnel face mapping, slope inspection, and subsurface digital twin development, thereby supporting safer and more efficient building and underground engineering practice. Full article
Show Figures

Figure 1

25 pages, 10187 KB  
Article
Water Efficiency in the Construction of Water Channels and the Ancestral Constructive Sustainability of Cumbemayo, Peru
by Doris Esenarro, Dayana Palomino Gutierrez, Katherin Santa Cruz Peña, Jesica Vilchez Cairo, Vicenta Irene Tafur Anzualdo, Maria Veliz Garagatti, Geoffrey Wigberto Salas Delgado and Crayla Alfaro Aucca
Heritage 2025, 8(9), 345; https://doi.org/10.3390/heritage8090345 - 24 Aug 2025
Viewed by 146
Abstract
The ancestral water channels are affected by a lack of awareness regarding their preservation, the deterioration of their structure, and the pollution of nearby water bodies due to waste discharge. Additionally, the growth of vegetation, sediment accumulation, and the presence of crab burrows [...] Read more.
The ancestral water channels are affected by a lack of awareness regarding their preservation, the deterioration of their structure, and the pollution of nearby water bodies due to waste discharge. Additionally, the growth of vegetation, sediment accumulation, and the presence of crab burrows have caused blockages and erosion of the stone, compromising their stability. Therefore, this research aims to analyze the water efficiency in the construction of water channels and the ancestral constructive sustainability of Cumbemayo, Peru. The methodology is based on an on-site study, taking into account the terrain, climate, and water flow from a spatial, functional, and constructive perspective, supported by digital tools such as Google Earth Pro 2024, AutoCAD 2024, SketchUp 2024, 3D Sun Path 2024, and D5 Render 2024. Regarding the findings, it was evidenced that the channel contains carvings in the rock that reflect their reverence for nature. It also maintains a constant slope of 1.5 mm per linear meter along its 18.9 km length. Its design, which combines straight and zigzag sections, optimizes water flow and may be linked to astronomical and ceremonial knowledge. Its dimensions range between 0.35 and 0.50 m in width and between 0.10 and 0.30 m in depth, with a precise leveling system that allows for flow control. Its stone construction demonstrates the technical mastery of its creators, ensuring strength and long-term durability. In conclusion, this study highlights the importance of the canal and the challenges it faces in terms of conservation. Erosion, vegetation, and sediment accumulation threaten its stability, making it essential to implement protective measures that ensure its long-term preservation. Full article
(This article belongs to the Section Biological and Natural Heritage)
Show Figures

Figure 1

25 pages, 11847 KB  
Article
The Investigation of Shear Fracture Toughness and Structure of ITZ of Limestone Concrete with Different Aggregate Grain Size
by Grzegorz Ludwik Golewski
Materials 2025, 18(17), 3954; https://doi.org/10.3390/ma18173954 - 23 Aug 2025
Viewed by 287
Abstract
Due to the shortage of construction aggregates, carbonate rock aggregates—including mainly limestone aggregates—have long been used in structural concrete in many countries worldwide. On the other hand, earlier tests on the shear fracture toughness of concretes with limestone aggregates were very limited and [...] Read more.
Due to the shortage of construction aggregates, carbonate rock aggregates—including mainly limestone aggregates—have long been used in structural concrete in many countries worldwide. On the other hand, earlier tests on the shear fracture toughness of concretes with limestone aggregates were very limited and were even abandoned for many years. For the above reasons, in this paper, completely new fracture toughness tests were performed according to the mode II fracture for limestone concretes with different grain size distributions. Two types of aggregate grain were used, i.e., two with maximum grain sizes of 8 mm (M1 series concrete) and 16 mm (M2 series concrete). During the experiments, the critical stress-intensity factor (KIIc) and critical unit work of failure (JIIc) were determined. Based on the conducted studies, it was found that higher values of fracture mechanics parameters were noted as the grain sizes of the aggregate used increased. The increases in the analyzed fracture mechanics parameters were noticeably greater in the M2 series concrete compared to the results for the M1 series concrete, specifically by 27% for KIIc and 35% for JIIc. In addition to macroscopic tests, detailed microstructural analyses of the ITZ area between the coarse aggregate grains and the cement matrix were conducted. Based on the captured images, it was determined that, in the M1 series concrete, the contacts between the aggregate grains and the cement paste exhibit a loose structure with visible microcracks. In contrast, the M2 series concrete showed no visible damages within the ITZ area itself nor at their displacement at a distance of approximately a few μm away from this area. This microstructure of both materials resulted in the M1 series concrete being more prone to rapid and sudden fracture propagation, leading to its brittle behavior during the fracture process. In contrast, the large, well-developed limestone aggregate grains in the M2 series concrete facilitated improved stress transfer beyond the ITZ area into the cement matrix, preserving the continuity of the material structure and consequently leading to quasi-plastic behavior of the concrete during the fracture process. The novelty and utilitarianism of the research undertaken result from the fact that exploring the properties of concretes with limestone aggregates using mode II fracture is an important aspect of evaluating the durability and safety of concrete structures subjected mainly to shear forces. Full article
Show Figures

Figure 1

Back to TopTop