Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = rollover analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4136 KB  
Article
The Effects of Interactions Between Key Environmental Factors on Non-Specific Indicators in Carassius auratus
by Bin Wang, Hang Yang, Hanping Mao and Qiang Shi
Fishes 2025, 10(8), 372; https://doi.org/10.3390/fishes10080372 - 2 Aug 2025
Viewed by 379
Abstract
Carassius auratus exhibits significant physiological and behavioral alterations under the combined stress of temperature and dissolved oxygen (DO) fluctuations, which are common challenges in aquaculture. In this investigation, we employed controlled thermal and DO gradients to characterize the multidimensional response profile of this [...] Read more.
Carassius auratus exhibits significant physiological and behavioral alterations under the combined stress of temperature and dissolved oxygen (DO) fluctuations, which are common challenges in aquaculture. In this investigation, we employed controlled thermal and DO gradients to characterize the multidimensional response profile of this species. The key findings revealed that thermal elevation profoundly influenced blood glucose and cortisol concentrations. Notably, exposure to hyperoxic conditions markedly attenuated stress responses relative to hypoxia at equivalent temperatures: cortisol levels were significantly suppressed (reductions of 60.11%, 118.06%, and 34.72%), while blood glucose levels exhibited concurrent increases (16.42%, 26.43%, and 26.34%). Distinctive behavioral patterns, including floating head behavior, surface swimming behavior, and rollover behavior, were identified as indicative behaviors of thermal–oxygen stress. Molecular analysis demonstrated the upregulated expression of stress-associated genes (HSP70, HSP90, HIF-1α, and Prdx3), which correlated temporally with elevated cortisol and glucose concentrations and the manifestation of stress behaviors. Furthermore, a muscle texture assessment indicated that increased DO availability mitigated the textural deterioration induced by heat stress. Collectively, this work establishes an authentic biomarker framework, providing crucial threshold parameters essential for the development of intelligent, real-time environmental monitoring and dynamic regulation systems to enhance climate-resilient aquaculture management. Full article
(This article belongs to the Special Issue Adaptation and Response of Fish to Environmental Changes)
Show Figures

Figure 1

35 pages, 4434 KB  
Article
MDO of Robotic Landing Gear Systems: A Hybrid Belt-Driven Compliant Mechanism for VTOL Drones Application
by Masoud Kabganian and Seyed M. Hashemi
Drones 2025, 9(6), 434; https://doi.org/10.3390/drones9060434 - 14 Jun 2025
Viewed by 680
Abstract
This paper addresses inherent limitations in unmanned aerial vehicle (UAV) undercarriages hindering vertical takeoff and landing (VTOL) capabilities on uneven slopes and obstacles. Robotic landing gear (RLG) designs have been proposed to address these limitations; however, existing designs are typically limited to ground [...] Read more.
This paper addresses inherent limitations in unmanned aerial vehicle (UAV) undercarriages hindering vertical takeoff and landing (VTOL) capabilities on uneven slopes and obstacles. Robotic landing gear (RLG) designs have been proposed to address these limitations; however, existing designs are typically limited to ground slopes of 6–15°, beyond which rollover would happen. Moreover, articulated RLG concepts come with added complexity and weight penalties due to multiple drivetrain components. Previous research has highlighted that even a minor 3-degree slope change can increase the dynamic rollover risks by 40%. Therefore, the design optimization of robotic landing gear for enhanced VTOL capabilities requires a multidisciplinary framework that integrates static analysis, dynamic simulation, and control strategies for operations on complex terrain. This paper presents a novel, hybrid, compliant, belt-driven, three-legged RLG system, supported by a multidisciplinary design optimization (MDO) methodology, aimed at achieving enhanced VTOL capabilities on uneven surfaces and moving platforms like ship decks. The proposed system design utilizes compliant mechanisms featuring a series of three-flexure hinges (3SFH), to reduce the number of articulated drivetrain components and actuators. This results in a lower system weight, improved energy efficiency, and enhanced durability, compared to earlier fully actuated, articulated, four-legged, two-jointed designs. Additionally, the compliant belt-driven actuation mitigates issues such as backlash, wear, and high maintenance, while enabling smoother torque transfer and improved vibration damping relative to earlier three-legged cable-driven four-bar link RLG systems. The use of lightweight yet strong materials—aluminum and titanium—enables the legs to bend 19 and 26.57°, respectively, without failure. An animated simulation of full-contact landing tests, performed using a proportional-derivative (PD) controller and ship deck motion input, validate the performance of the design. Simulations are performed for a VTOL UAV, with two flexible legs made of aluminum, incorporating circular flexure hinges, and a passive third one positioned at the tail. The simulation results confirm stable landings with a 2 s settling time and only 2.29° of overshoot, well within the FAA-recommended maximum roll angle of 2.9°. Compared to the single-revolute (1R) model, the implementation of the optimal 3R Pseudo-Rigid-Body Model (PRBM) further improves accuracy by achieving a maximum tip deflection error of only 1.2%. It is anticipated that the proposed hybrid design would also offer improved durability and ease of maintenance, thereby enhancing functionality and safety in comparison with existing robotic landing gear systems. Full article
Show Figures

Figure 1

33 pages, 39638 KB  
Article
Effects of a Semi-Active Two-Keel Variable-Stiffness Prosthetic Foot (VSF-2K) on Prosthesis Characteristics and Gait Metrics: A Model-Based Design and Simulation Study
by Zhengcan Wang and Peter G. Adamczyk
Prosthesis 2025, 7(3), 61; https://doi.org/10.3390/prosthesis7030061 - 29 May 2025
Viewed by 729
Abstract
Background/Objectives: Semi-active prosthetic feet present a promising solution that enhances adaptability while maintaining modest size, weight, and cost. We propose a semi-active Two-Keel Variable-Stiffness Foot (VSF-2K), the first prosthetic foot where both the hindfoot and forefoot stiffness can be independently and actively [...] Read more.
Background/Objectives: Semi-active prosthetic feet present a promising solution that enhances adaptability while maintaining modest size, weight, and cost. We propose a semi-active Two-Keel Variable-Stiffness Foot (VSF-2K), the first prosthetic foot where both the hindfoot and forefoot stiffness can be independently and actively modulated. We present a model-based analysis of the effects of different VSF-2K settings on prosthesis characteristics and gait metrics. Methods: The study introduces a simulation model for the VSF-2K: (1) one sub-model to optimize the design of the keels of VSF-2K to maximize compliance, (2) another sub-model to simulate the stance phase of walking with different stiffness setting pairs and ankle alignment angles (dorsiflexion/plantarflexion), and (3) a third sub-model to simulate the keel stiffness of the hindfoot and forefoot keels comparably to typical mechanical testing. We quantitatively analyze how the VSF-2K’s hindfoot and forefoot stiffness settings and ankle alignments affect gait metrics: Roll-over Shape (ROS), Effective Foot Length Ratio (EFLR), and Dynamic Mean Ankle Moment Arm (DMAMA). We also introduce an Equally Spaced Resampling Algorithm (ESRA) to address the unequal-weight issue in the least-squares circle fit of the Roll-over Shape. Results: We show that the optimal-designed VSF-2K successfully achieves controlled stiffness that approximates the stiffness range observed in prior studies of commercial prostheses. Our findings suggest that stiffness modulation significantly affects gait metrics, and it can mimic or counteract ankle angle adjustments, enabling adaptation to sloped terrain. We show that DMAMA is the most promising metric for use as a control parameter in semi-active or variable-stiffness prosthetic feet. We identify the limitations in ROS and EFLR, including their nonmonotonic relationship with hindfoot/forefoot stiffness, insensitivity to hindfoot stiffness, and inconsistent trends across ankle alignments. We also validate that the angular stiffness of a two-independent-keel prosthetic foot can be predicted using either keel stiffness from our model or from a standardized test. Conclusions: These findings show that semi-active variation of hindfoot and forefoot stiffness based on single-stride metrics such as DMAMA is a promising control approach to enabling prostheses to adapt to a variety of terrain and alignment challenges. Full article
Show Figures

Figure 1

31 pages, 25940 KB  
Review
A Review of Recent Advances in Roll Stability Control in On-Road and Off-Road Vehicles
by Jie Chen, Ruochen Wang, Wei Liu, Dong Sun, Yu Jiang and Renkai Ding
Appl. Sci. 2025, 15(10), 5491; https://doi.org/10.3390/app15105491 - 14 May 2025
Viewed by 1707
Abstract
Despite significant advancements in roll stability control for individual vehicle types, comparative research across on-road and off-road vehicles remains limited, hindering cross-disciplinary innovation. This study bridges this gap by systematically analyzing roll stability control in both vehicle categories, focusing on theoretical foundations, key [...] Read more.
Despite significant advancements in roll stability control for individual vehicle types, comparative research across on-road and off-road vehicles remains limited, hindering cross-disciplinary innovation. This study bridges this gap by systematically analyzing roll stability control in both vehicle categories, focusing on theoretical foundations, key technologies, and experimental validation methods. On-road vehicles rely on mature technologies like active suspension, braking, and steering, which enhance safety through sensor monitoring, rollover prediction, and integrated stability control. Validation is primarily performed through hardware-in-the-loop simulations and on-road testing. Off-road vehicles, operating in more complex environments with dynamic load changes and rugged terrain, emphasize adaptive leveling, direct torque control, and active steering. Their stability control strategies must also account for terrain irregularities, real-time load shifts, and extreme slopes, validated through scaled-model tests and field trials. Comparative analysis reveals that while both vehicle types face similar challenges, their control strategies differ significantly: on-road vehicles focus on handling and high-speed stability, while off-road vehicles require more robust, adaptive mechanisms to manage environmental uncertainties. Future research should explore multi-system collaborative control, such as integrating active suspension with intelligent terrain perception, to improve adaptability and robustness across both vehicle categories. Furthermore, the integration of machine learning and advanced predictive algorithms promises to enhance the intelligence and versatility of roll stability control systems. Full article
Show Figures

Figure 1

20 pages, 4711 KB  
Article
Machine-Learning-Based Rollover Risk Prediction for Autonomous Trucks: A Dynamic Stability Analysis
by Heung-Shik Lee
Appl. Sci. 2025, 15(9), 4886; https://doi.org/10.3390/app15094886 - 28 Apr 2025
Viewed by 872
Abstract
In response to the 2023 mandate requiring electronic stability control (ESC) for trucks in South Korea, domestic manufacturers have called for a relaxation of the maximum safe slope angle to reduce production costs. However, limited research exists on the quantitative relationship between ESC [...] Read more.
In response to the 2023 mandate requiring electronic stability control (ESC) for trucks in South Korea, domestic manufacturers have called for a relaxation of the maximum safe slope angle to reduce production costs. However, limited research exists on the quantitative relationship between ESC implementation and vehicle rollover stability under relaxed safety standards. This study addresses this gap by conducting dynamic simulations of standardized rollover tests to evaluate the static stability factor (SSF) and by developing a machine-learning-based model for predicting rollover risk. The model incorporates planned path curvature and driving speed to compute lateral acceleration, which serves as a key input for predicting the lateral load transfer ratio (LTR), a critical indicator of vehicle stability. Among several models tested, the recurrent neural network (RNN) achieved the highest accuracy in LTR prediction. The results highlight the effectiveness of integrating data-driven models into dynamic stability assessment frameworks, offering practical insights for optimizing route planning and speed control—particularly in autonomous freight vehicle applications. Full article
Show Figures

Figure 1

14 pages, 10151 KB  
Article
Evaluation of Aerodynamic Performance of a Multi-Rotor eVTOL During Landing Using the Lattice Boltzmann Method
by Menglong Ding, Huadong Li, Lintao Shao, Jinting Xuan, Chuanyan Feng, Xufei Yan and Dawei Bie
Drones 2025, 9(5), 332; https://doi.org/10.3390/drones9050332 - 25 Apr 2025
Viewed by 1060
Abstract
Electric vertical take-off and landing (eVTOL) aircraft are transforming urban air mobility (UAM) by providing efficient, low-emission, and rapid transit in congested cities. However, ensuring safe and stable landings remains a critical challenge, particularly in constrained urban environments with variable wind conditions. This [...] Read more.
Electric vertical take-off and landing (eVTOL) aircraft are transforming urban air mobility (UAM) by providing efficient, low-emission, and rapid transit in congested cities. However, ensuring safe and stable landings remains a critical challenge, particularly in constrained urban environments with variable wind conditions. This study investigates the landing aerodynamics of a multi-rotor eVTOL using the lattice Boltzmann method (LBM), a computational approach well-suited to complex boundary conditions and parallel processing. This analysis examines the ground effect, descent speed, and crosswind influence on lift distribution and stability. A rooftop landing scenario is also explored, where half of the rotors operate over a rooftop while the rest remain suspended in open air. Results indicate that rooftop landings introduce asymmetric lift distribution due to crosswind and roof-induced flow circulation, significantly increasing rolling moment compared to ground landings. These findings underscore the role of descent speed, crosswinds, and landing surface geometry in eVTOL aerodynamics, particularly the heightened risk of rollover in rooftop scenarios. Full article
Show Figures

Figure 1

28 pages, 11564 KB  
Article
Collaborative Optimization on Both Weight and Fatigue Life of Fifth Wheel Based on Hybrid Random Forest with Improved BP Algorithm
by Huan Xue, Chang Guo, Xiaojian Peng, Saiqing Xu, Kaixian Li and Jianwen Li
Appl. Sci. 2025, 15(7), 4006; https://doi.org/10.3390/app15074006 - 5 Apr 2025
Viewed by 622
Abstract
The fifth wheel of the semi-trailer tractor is a key component connecting the tractor and the semi-trailer. During operation, the fifth wheel experiences frequent irregular and repetitive loading conditions. This leads to a decline in its durability and fatigue life, which can significantly [...] Read more.
The fifth wheel of the semi-trailer tractor is a key component connecting the tractor and the semi-trailer. During operation, the fifth wheel experiences frequent irregular and repetitive loading conditions. This leads to a decline in its durability and fatigue life, which can significantly impact the efficiency of cargo transport. The lightweight design enhances both the transport efficiency and fuel economy of the semi-trailer tractor. In this research, to achieve weight reduction while maintaining the wear-resistant failure protection performance in semi-trailer tractors, we selected a new material—special steel for saddles (SD600). Its stress-strain and fatigue life were analyzed under static compression, uphill lifting, and steering rollover conditions. These findings confirm the necessity of implementing lightweighting measures. Using a multi-objective genetic algorithm, we established an optimization model aimed at balancing weight reduction and fatigue life enhancement. As a result, the optimized fifth wheel achieved a 24.11% reduction in mass, while its fatigue life increased by 15 times, thus realizing the synergistic optimization of weight and fatigue life. We proposed a prediction model combining a random forest algorithm with an optimized back propagation (BP) neural network. Compared to the traditional BP approach, this model improved the mean absolute percentage error (MAPE) by 47.62%. Quadratic optimization was conducted based on the optimal design option set, using data analysis to determine the range of values of each variable under specific constraints and to verify the stress-strain and fatigue life for very small values in the range. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

19 pages, 4251 KB  
Article
Data-Driven Approach to Safety Control in Jacket-Launching Installation Operations
by Sheng Chen, Mingxin Li, Yankun Liu and Xu Bai
J. Mar. Sci. Eng. 2025, 13(3), 554; https://doi.org/10.3390/jmse13030554 - 13 Mar 2025
Viewed by 593
Abstract
Installing offshore wind jackets faces increasing risks from dynamic marine conditions and is challenged by trajectory deviations due to coupled hydrodynamic and environmental factors. To address the limitations of software, such as long simulation times and tedious parameter adjustments, this study develops a [...] Read more.
Installing offshore wind jackets faces increasing risks from dynamic marine conditions and is challenged by trajectory deviations due to coupled hydrodynamic and environmental factors. To address the limitations of software, such as long simulation times and tedious parameter adjustments, this study develops a rapid prediction model combining Radial Basis Function (RBF) and Backpropagation (BP) neural networks. The model is enhanced by incorporating both numerical simulation data and real-world measurement data from the launching operation. The real-world data, including the barge attitude before launching, jacket weight distribution, and actual environmental conditions, are used to refine the model and guide the development of a fully parameterized adaptive controller. This controller adjusts in real time, with its performance validated against simulation results. A case study from the Pearl River Mouth Basin was conducted, where datasets—capturing termination time, six-degrees-of-freedom motion data for the barge and jacket, and actual environmental conditions—were collected and integrated into the RBF and BP models. Numerical models also revealed that wind and wave conditions significantly affected lateral displacement and rollover risks, with certain directions leading to heightened operational challenges. On the other hand, operations under more stable environmental conditions were found to be safer, although precautions were still necessary under strong environmental loads to prevent collisions between the jacket and the barge. This approach successfully reduces weather-dependent operational delays and structural load peaks. Hydrodynamic analysis highlights the importance of directional strategies in minimizing environmental impacts. The model’s efficiency, requiring a fraction of the time compared to traditional methods, makes it suitable for real-time applications. Overall, this method provides a scalable solution to enhance the resilience of marine operations in renewable energy projects, offering both computational efficiency and high predictive accuracy. Full article
(This article belongs to the Special Issue Advances in Marine Engineering Hydrodynamics)
Show Figures

Figure 1

23 pages, 859 KB  
Review
Caught-In/Between Accidents in the Construction Industry: A Systematic Review
by Aminu Darda’u Rafindadi, Bishir Kado, Abdurra’uf M. Gora, Ibrahim B. Dalha, Sadi I. Haruna, Yasser E. Ibrahim and Omar Ahmed Shabbir
Safety 2025, 11(1), 12; https://doi.org/10.3390/safety11010012 - 4 Feb 2025
Viewed by 3683
Abstract
This systematic review examines caught-in/between accidents in construction, revealing complex safety challenges involving machinery errors, vehicle incidents, loading mistakes, and structural collapses. The analysis highlights significant risks, including heavy equipment rollovers, trench cave-ins, and material shifts, with injuries ranging from minor to fatal. [...] Read more.
This systematic review examines caught-in/between accidents in construction, revealing complex safety challenges involving machinery errors, vehicle incidents, loading mistakes, and structural collapses. The analysis highlights significant risks, including heavy equipment rollovers, trench cave-ins, and material shifts, with injuries ranging from minor to fatal. Despite the critical nature of these accidents, existing research demonstrates notable gaps, particularly in understanding long-term worker health impacts, economic consequences, and nuanced risk factors. Most studies insufficiently explore correlations between worker experience, age, and accident susceptibility, while gender-specific risks remain poorly documented. Training inadequacies and safety protocol non-adherence emerge as primary contributors to these incidents. This review identifies a pressing need for standardized, comprehensive safety interventions that address technological, human, and organizational factors. Recommendations include stricter safety regulations, enhanced training programs, advanced safety technologies, and robust support systems for workers. By fostering a holistic safety culture and addressing research gaps, the construction industry can potentially mitigate caught-in/between accidents, ultimately protecting worker well-being and improving overall productivity. Full article
Show Figures

Figure 1

18 pages, 825 KB  
Article
Modeling Rollover Crash Risks: The Influence of Road Infrastructure and Traffic Stream Characteristics
by Abolfazl Khishdari, Hamid Mirzahossein, Xia Jin and Shahriar Afandizadeh
Infrastructures 2025, 10(2), 31; https://doi.org/10.3390/infrastructures10020031 - 27 Jan 2025
Cited by 1 | Viewed by 1381
Abstract
Rollover crashes are among the most prevalent types of accidents in developing countries. Various factors may contribute to the occurrence of rollover crashes. However, limited studies have simultaneously investigated both traffic stream and road-related variables. For instance, the effects of T-intersection density, U-turns, [...] Read more.
Rollover crashes are among the most prevalent types of accidents in developing countries. Various factors may contribute to the occurrence of rollover crashes. However, limited studies have simultaneously investigated both traffic stream and road-related variables. For instance, the effects of T-intersection density, U-turns, roadside parking lots, the entry and exit ramps of side roads, as well as traffic stream characteristics (e.g., standard deviation of vehicle speeds, speed violations, presence or absence of speed cameras, and road surface deterioration) have not been thoroughly explored in previous research. Additionally, the simultaneous modeling of crash frequency and intensity remains underexplored. This study examines single-vehicle rollover crashes in Yazd Province, located in central Iran, as a case study and simultaneously evaluates all the variables. A dataset comprising three years of crash data (2015–2017) was collected and analyzed. A crash index was developed based on the weight of crash intensity, road type, road length (as dependent variables), and road infrastructure and traffic stream properties (as independent variables). Initially, the dataset was refined to determine the significance of explanatory variables on the crash index. Correlation analysis was conducted to assess the linear independence between variable pairs using the variance inflation factor (VIF). Subsequently, various models were compared based on goodness of fit (GOF) indicators and odds ratio (OR) calculations. The results indicated that among ten crash modeling techniques, namely, Poisson, negative binomial (NB), zero-truncated Poisson (ZTP), zero-truncated negative binomial (ZTNB), zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), fixed-effect Poisson (FEP), fixed-effect negative binomial (FENB), random-effect Poisson (REP), and random-effect negative binomial (RENB), the FENB model outperformed the others. The Akaike information criterion (AIC) and Bayesian information criterion (BIC) values for the FENB model were 1305.7 and 1393.6, respectively, demonstrating its superior performance. The findings revealed a declining trend in the frequency and severity of rollover crashes. Full article
Show Figures

Figure 1

24 pages, 8059 KB  
Article
Design and Realization of an Orchard Operation-Aid Platform: Based on Planting Patterns and Topography
by Zhao Li, Can Li, Ye Zeng, Chaodong Mai, Runpeng Jiang and Jun Li
Agriculture 2025, 15(1), 48; https://doi.org/10.3390/agriculture15010048 - 28 Dec 2024
Cited by 1 | Viewed by 923
Abstract
To address the lack of mechanical orchard operation-aid platforms that assist in the horticultural management tasks such as pruning, spraying, thinning flowers and fruits, and harvesting in litchi and longan orchards, this paper proposes an orchard operation-aid platform specifically tailored for hilly and [...] Read more.
To address the lack of mechanical orchard operation-aid platforms that assist in the horticultural management tasks such as pruning, spraying, thinning flowers and fruits, and harvesting in litchi and longan orchards, this paper proposes an orchard operation-aid platform specifically tailored for hilly and mountainous orchards. The platform is optimized for orchards with tree and row spacing not exceeding 6 m and slopes not exceeding 15°. By considering the planting patterns and operational topography parameters of litchi and longan, the key components were meticulously designed, including the chassis, lifting device, extension device, and slope operation support device. The driving stability, slope operation stability, and the reachable workspace of the orchard operation-aid platform were analyzed, followed by a prototype experiment. The results demonstrate that the platform achieves an in situ turning radius of 1.2 m with no deviation in the turning path. It satisfies the passability and operational slope requirements of hilly terrains with both driving and operational slopes exceeding 15°. Additionally, the platform features a working height of 4.0 m and an operating radius of 3.7 m, meeting the operational requirements for multiple tasks. This research provides a practical and effective solution for enhancing operational efficiency in multiple stages of fruit cultivation, demonstrating significant practical value and potential for widespread application. Full article
Show Figures

Figure 1

21 pages, 9019 KB  
Article
Efficient Locomotion for Space Robots Inspired by the Flying Snake
by Zhiyuan Yang, Sikai Zhao, Nanlin Zhou, Jian Qi, Ning Zhao, Jizhuang Fan, Jie Zhao and Yanhe Zhu
Aerospace 2024, 11(12), 1025; https://doi.org/10.3390/aerospace11121025 - 15 Dec 2024
Cited by 1 | Viewed by 1262
Abstract
Robots are becoming an integral part of space facilities construction and maintenance, and may need to move to and from different work locations. Robotic arms that are widely employed, which are mounted on fixed bases, have difficulty coping with increasingly complex missions. The [...] Read more.
Robots are becoming an integral part of space facilities construction and maintenance, and may need to move to and from different work locations. Robotic arms that are widely employed, which are mounted on fixed bases, have difficulty coping with increasingly complex missions. The challenge discussed in this paper is the problem of the efficient locomotion of robotic systems. Inspired by the gliding motion of a flying snake launched from a tree and combined with the weightlessness of the space environment, we design similar motions for the robot, including the following three steps. First, the robot folds its body like a snake and initiates flight by accelerating the global center of mass (CM), focusing on the movement direction and generating suitable momentum. Then, during the flight (free-floating) phase, the joint motions are planned using a nonlinear optimization technique, considering the nonholonomic constraints introduced by the momentum conservation and the system states at the initial and final states of the floating. Meanwhile, the difficulties caused by long-distance flights are addressed to reduce the motion computational cost and energy consumption by introducing the phase plane analysis method. Finally, the landing motion is designed to avoid rigid collisions and rollover on the radial plane. The numerical simulations illustrate that the three phases of maneuvers are smooth and continuous, which can help the space robots efficiently traverse the environment. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

19 pages, 9086 KB  
Article
Dynamic Simulation Model of Miniature Tracked Forestry Tractor for Overturning and Rollover Safety Evaluation
by Yun-Jeong Yang, Moon-Kyeong Jang and Ju-Seok Nam
Agriculture 2024, 14(11), 1991; https://doi.org/10.3390/agriculture14111991 - 6 Nov 2024
Cited by 1 | Viewed by 1195
Abstract
This study proposes a method to construct a dynamic simulation model to implement the lateral overturning and backward rollover characteristics of an actual tractor. Based on theoretical analysis, factors affecting these characteristics are identified, which include tractor weight, track width, wheelbase, location of [...] Read more.
This study proposes a method to construct a dynamic simulation model to implement the lateral overturning and backward rollover characteristics of an actual tractor. Based on theoretical analysis, factors affecting these characteristics are identified, which include tractor weight, track width, wheelbase, location of mass center, weight distribution, heights of front and rear axles, and geometric shapes. The location of the mass center of the actual tractor is measured based on the standard test procedure set by the International Organization for Standardization, and the remaining influencing factors are derived through measurements. A three-dimensional (3D) model of the tractor is constructed to reflect all these factors. Additionally, a simulation model utilizing this 3D model is developed using a commercial dynamic simulation software program. The ability of the model to simulate the overturning and rollover characteristics of the actual tractor is verified by comparing the static sidelong falling angle and minimum turning radius with those of the actual tractor. The errors between the characteristics of the actual tractor and those of the 3D model and dynamic simulations are shown to be less than 5%, thus indicating that the proposed method can effectively simulate the overturning and rollover characteristics of the actual tractor. Full article
Show Figures

Figure 1

19 pages, 8334 KB  
Review
Design Principles to Reduce Vehicle Pocketing at Guardrail-to-Concrete Barrier Transitions
by Desiree Kofler, Ernst Tomasch, Christian Mader, Marco Jiraut, Alexander Barnaš, Olivier Jantscher, Johann Horvatits and Karl Gragger
Infrastructures 2024, 9(11), 199; https://doi.org/10.3390/infrastructures9110199 - 5 Nov 2024
Viewed by 1325
Abstract
Road restraint systems (RRSs) on European roads are provided by several manufacturers and, hence, lead to differences in geometry, material, and mode of operation. Focusing on the combination of soft steel RRSs with relatively stiffer concrete RRSs, it is vital to consider the [...] Read more.
Road restraint systems (RRSs) on European roads are provided by several manufacturers and, hence, lead to differences in geometry, material, and mode of operation. Focusing on the combination of soft steel RRSs with relatively stiffer concrete RRSs, it is vital to consider the potentially critical deformation kinematics during vehicle impacts, such as vehicle pocketing. Since a statutory test procedure was not introduced until mid-2024, much of the transition construction (TC) on Austrian roads has remained untested. Knowledge of the design features to be implemented during the refurbishment of such TCs is of great interest. The main focus of this study was to derive constructive measures (CMs) that increase traffic safety and are applicable to various TCs already installed on roads. The first step involved deriving design principles whose implementations in TCs reduce the risk of critical vehicle or RRS behavior. Based on finite element simulations, the functionality of a TC featuring all derived design principles was examined. The effect of each individual CM was analyzed in a parameter study. The results from a TB61 impact simulation on the derived TC showed the effectiveness of CMs, achieving smooth vehicle redirection. Vehicle pocketing was limited to a minimum, and neither penetration of the TC nor rollover of the vehicle was observed. The analysis of the influence of each CM indicated positive, and in some cases, negative effects. The working width was mainly positively influenced by the compaction of the posts, an additional steel bar, and the chamfering of the first concrete element. A rather diverse picture is drawn regarding the influence on the tensile forces in the guardrails. Some CMs had both positive and negative effects on the distribution of forces in the upper and lower guardrails. Nevertheless, all CMs had positive effects on the tensile forces in the coupling. The chamfering of the first concrete element was the most effective measure to prevent vehicle pocketing. However, through the combination of all CMs, the positive effects predominated, ensuring the functionality of the TC as a whole. This study provides basic insights into the effectiveness of constructive measures, which can serve as a reference for the renovation of in-service TCs or in the development phase of new TCs to be certified. Full article
Show Figures

Figure 1

13 pages, 3120 KB  
Article
A Combined Cleaning and Disinfection Measure to Decontaminate Tire Treads from Tomato Brown Rugose Fruit Virus
by Martina Bandte, Jens Ehlers, Shaheen Nourinejhad Zarghani and Carmen Büttner
Hygiene 2024, 4(3), 269-281; https://doi.org/10.3390/hygiene4030022 - 23 Jul 2024
Viewed by 1712
Abstract
Mechanically transmissible and stable viruses such as tobamoviruses, which include Tobamovirus fructirugosum (syn. tomato brown rugose fruit virus (ToBRFV), will continue to pose major challenges for farmers. Consequently, holistic hygiene concepts are being implemented to prevent the introduction and spread of these viruses. [...] Read more.
Mechanically transmissible and stable viruses such as tobamoviruses, which include Tobamovirus fructirugosum (syn. tomato brown rugose fruit virus (ToBRFV), will continue to pose major challenges for farmers. Consequently, holistic hygiene concepts are being implemented to prevent the introduction and spread of these viruses. The decontamination of tires and castors was previously a weak point in many industrial hygiene concepts. For this reason, the ProfilGate clean-off zone was tested in combination with the disinfectant MENNO Florades for the decontamination of ToBRFV-contaminated tires. In total, 478 tire segments were sampled to evaluate the contamination of ToBRFV and the following decontamination of the tires. This treatment reliably removed high (4.5 µg/cm2), medium (0.45 µg/cm2), and low concentrations (0.045 µg/cm2) of ToBRFV from the tires, as shown by a bioassay. The reduction in necrotic local lesions on susceptible indicator plants N. tabacum cv. Xanthi NN was between 91.9 and 97.6%. The reduction in ToBRFV contamination largely depended on the length of the rollover distance, i.e., the number of tire rotations. For transport trolleys with polyamide and rubber tires, depletions of 97.4 and 97.6%, respectively, was determined after 16 rotations. For transport wagons with tires twice the size and polyurethane tread, the depletion was still at least 91% after eight wheel turns. Even in the case of gross soiling of the tires, the mean reduction from the different tread materials was 80.9 to 98.9%. Subsequent analysis of the clean-off zone revealed that ToBRFV did not accumulate, even when the contaminated tires were driven over several times, but was safely inactivated completely in the disinfectant solution. This provides growers with an effective tool for preventing the introduction and spread of ToBRFV. Full article
Show Figures

Figure 1

Back to TopTop