Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,591)

Search Parameters:
Keywords = salt accumulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1261 KB  
Article
Optimizing Target Metabolites Production in Coleus blumei Indoor Cultivation: Combined Effects of LED Light and Salinity Stress
by Bianca Sambuco, Alberto Barbaresi, Alessandro Quadri, Mattia Trenta, Patrizia Tassinari, Laura Mercolini, Michele Protti and Daniele Torreggiani
Horticulturae 2025, 11(10), 1205; https://doi.org/10.3390/horticulturae11101205 - 6 Oct 2025
Abstract
Light quality is a recognized driver of plant growth and secondary metabolism in Coleus blumei, a valuable source of rosmarinic acid (RA) and quercetin (QU), whereas its combination with salinity stress represents a potential strategy that still requires further investigation. We evaluated [...] Read more.
Light quality is a recognized driver of plant growth and secondary metabolism in Coleus blumei, a valuable source of rosmarinic acid (RA) and quercetin (QU), whereas its combination with salinity stress represents a potential strategy that still requires further investigation. We evaluated four LED spectra, red–blue (RB) (6:1, control), blue (B), red (R), and RB + Far-Red, under both control (0 mM NaCl) and moderate salt stress (120 mM NaCl), measuring biomass (dry weight) and RA/QU in leaves and roots after three (T1) and five weeks (T2). Blue light produced the greatest root biomass, while the leaf dry weight under B did not differ significantly from RB or RBfr. RA peaked at T2 under B in leaves and under R in roots; QU was maximal under B in leaves and under RB in roots. Extending exposure from T1 to T2 markedly increased both metabolites’ yield. Salinity had little effect on biomass, increased the total QU yield, and did not enhance the total RA yield. These results indicate that targeted LED regimes and longer exposure can raise the yields of bioactive compounds, and that combining specific spectra with moderate salinity is an effective strategy for selectively increasing quercetin accumulation in indoor-grown C. blumei. Full article
Show Figures

Figure 1

21 pages, 2509 KB  
Article
Metabolic Reprogramming and Amino Acid Adjustments in Pistachio (Pistacia vera L.) Under Salinity Stress
by Hooman Shirvani, Foad Fatehi, Sara Hejri and Ramesh Katam
Horticulturae 2025, 11(10), 1201; https://doi.org/10.3390/horticulturae11101201 - 4 Oct 2025
Abstract
Pistachio (Pistacia vera L.) holds significant importance due to its diverse applications and nutritional benefits. The nuts are rich in essential amino acids, antioxidants, fiber, healthy fats, and minerals, making them highly valuable for human nutrition. However, pistachios are significantly challenged by [...] Read more.
Pistachio (Pistacia vera L.) holds significant importance due to its diverse applications and nutritional benefits. The nuts are rich in essential amino acids, antioxidants, fiber, healthy fats, and minerals, making them highly valuable for human nutrition. However, pistachios are significantly challenged by salinity stress, which negatively affects their growth and metabolism. Understanding the impact of salinity stress on pistachios is crucial for developing effective strategies to enhance their tolerance, improve growth, and ensure sustainable production in saline environments. To investigate the effects of salinity on energy metabolism and amino acid composition, we monitored key metabolites and free amino acid levels in UCB-1 pistachio leaves at 7- and 21-day salt stress treatments using Liquid Chromatography–Mass Spectrometry (LC-MS) and Ultra Performance Liquid Chromatography (UPLC). Our findings revealed that salinity affected nearly all analyzed metabolites, with varied patterns observed at different time points. Notably, all free amino acids except threonine accumulated significantly in response to salt stress. Meanwhile, reductions in 3PGA, Fru1,6bP, and Glu6P+Fru6P (glycolysis and Calvin cycle intermediates) suggest a decrease in photosynthetic activity, which may ultimately impact respiration rates. These results demonstrate that salinity stress affects both amino acid metabolism and central carbon metabolism, with the magnitude and pattern of these changes depending on the duration of exposure. The observed metabolic adjustments likely represent an adaptive response, enabling the plant to partially mitigate the detrimental effects of salt stress. Full article
Show Figures

Figure 1

21 pages, 2154 KB  
Article
Root-Specific Overexpression of the CmDUF239-1 Gene Enhances Heat Tolerance in Melon Seedlings by Upregulating Antioxidant Enzymes Activities, Proline Content, and Expression of Heat Shock Protein-Related Genes
by Yang Li, Zhanming Tan, Yanjun Liu, Yuquan Peng and Chunyan Liu
Horticulturae 2025, 11(10), 1198; https://doi.org/10.3390/horticulturae11101198 - 3 Oct 2025
Abstract
High temperature stress is a critical factor affecting the growth and yield of melons (Cucumis melo L.), and improving heat tolerance is therefore crucial for stable production. While the overexpression of the CmDUF239-1 gene is known to improve salt tolerance in melons, [...] Read more.
High temperature stress is a critical factor affecting the growth and yield of melons (Cucumis melo L.), and improving heat tolerance is therefore crucial for stable production. While the overexpression of the CmDUF239-1 gene is known to improve salt tolerance in melons, its impact on heat tolerance remains unexplored. The role of the CmDUF239-1 gene in enhancing heat tolerance and its underlying mechanisms was investigated in this study. Melon seedlings overexpressing CmDUF239-1 (OEDUF239-1), generated via root transformation, exhibited significantly lower reductions in fresh and dry mass under heat stress compared to controls, indicating enhanced heat tolerance. One day post-stress, antioxidant enzyme activities (SOD, POD, CAT, APX, and GR) increased significantly in OEDUF239-1, while malondialdehyde (MDA) levels decreased. Additionally, proline content and the activity of its synthesizing enzyme (P5CS) rose, whereas the activity of proline dehydrogenase (ProDH) dropped. Transcriptomic and qPCR analyses revealed that CmDUF239-1 overexpression upregulated antioxidant enzyme-related genes (e.g., CmCSD1, CmPOD1) and proline-related genes (e.g., CmP5CS), as well as Heat Shock Protein (HSP) genes (e.g., CmHSP17.6II, CmHSP18.2). In summary, the enhancement of heat tolerance in melon by the CmDUF239-1 gene was mediated through the upregulation of genes involved in antioxidant defense and proline metabolism, together with increased accumulation of HSPs, providing a mechanistic basis for heat-resilient breeding programs. Full article
(This article belongs to the Special Issue Abiotic Stress Responses of Vegetable Crops—2nd Edition)
Show Figures

Figure 1

25 pages, 4779 KB  
Article
Decoding Salinity Tolerance in Salicornia europaea L.: Image-Based Oxidative Phenotyping and Histochemical Mapping of Pectin and Lignin
by Susana Dianey Gallegos Cerda, Aleksandra Orzło, José Jorge Chanona Pérez, Josué David Hernández Varela, Agnieszka Piernik and Stefany Cárdenas Pérez
Plants 2025, 14(19), 3055; https://doi.org/10.3390/plants14193055 - 2 Oct 2025
Abstract
Halophytes such as Salicornia europaea rely on biochemical and structural mechanisms to survive in saline environments. This study aimed to evaluate oxidative stress and structural defense responses in four inland populations—Poland (Inowrocław, Ciechocinek), Germany (Salzgraben-Salzdahlum, Salz), and Soltauquelle (Soltq)—subjected to 0, 200, 400, [...] Read more.
Halophytes such as Salicornia europaea rely on biochemical and structural mechanisms to survive in saline environments. This study aimed to evaluate oxidative stress and structural defense responses in four inland populations—Poland (Inowrocław, Ciechocinek), Germany (Salzgraben-Salzdahlum, Salz), and Soltauquelle (Soltq)—subjected to 0, 200, 400, and 1000 mM NaCl, using non-destructive, image-based approaches. Lipid peroxidation was assessed via malondialdehyde (MDA) detected with Schiff’s reagent, and hydrogen peroxide (H2O2) accumulation was visualized with 3,3′-diaminobenzidine (DAB). Roots and shoots were analyzed through colour image analysis and quantified using a computer vision system (CVS). MDA accumulation revealed population-specific differences, with Salz tending to exhibit lower peroxidation, characterized by lower L* ≈ 42–43 and higher b* ≈ 37–18 in shoots at 200–400 mM, which may reflect a potentially more effective salt-management strategy. Although H2O2 responses deviated from a direct salinity-dependent trend, particularly in the tolerant Salz and Soltq populations, both approaches effectively tracked population-specific adaptation, with German populations displaying detectable basal H2O2 levels, consistent with its multifunctional signalling role in salt management and growth regulation. Structural defences were further explored through histochemical mapping and image analysis of pectin and lignin distribution, which revealed population-specific patterns consistent with cell wall remodelling under stress. Non-destructive, image-based methods proved effective for detecting oxidative and structural responses in halophytes. Such a non-destructive, cost-efficient, and reproducible approach can accelerate the identification of salt-tolerant ecotypes for saline agriculture and reinforce S. europaea as a model species for elucidating salt-tolerance mechanisms. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants—Second Edition)
22 pages, 2167 KB  
Article
Effects of Ultra-Processed Diets on Adiposity, Gut Barrier Integrity, Inflammation, and Microbiota in Male and Female Mice
by Caroline de Menezes, Clara Machado Campolim, Angie Triana, Kênia Moreno de Oliveira, Leticia Gama S. Calixto, Fernanda Garofalo Xavier, Mario J. A. Saad, Everardo Magalhães Carneiro and Patricia O. Prada
Nutrients 2025, 17(19), 3116; https://doi.org/10.3390/nu17193116 - 30 Sep 2025
Abstract
Background/Objectives: The consumption of highly palatable ultra-processed foods (UPFs), enriched in sugar, saturated fat, and salt, increases the risk of morbidity and mortality by inducing obesity, type 2 diabetes (T2DM), cardiovascular disease, and cancer. The present study aimed to investigate the impact of [...] Read more.
Background/Objectives: The consumption of highly palatable ultra-processed foods (UPFs), enriched in sugar, saturated fat, and salt, increases the risk of morbidity and mortality by inducing obesity, type 2 diabetes (T2DM), cardiovascular disease, and cancer. The present study aimed to investigate the impact of a UPF-rich diet on adiposity, feeding behavior, glucose homeostasis, intestinal barrier markers, expression of inflammatory cytokines, and microbiota in male and female C57BL/6J mice. Methods: Animals received a chow diet or a UPF diet for 10 (UPF10) or 30 days (UPF30). UPF10 induced greater calorie intake as early as 10 days on a UPF diet. Fat accumulation occurs in both sexes, specifically after 30 days of exposure. Results: The duration of UPF exposure significantly influenced glucose metabolism and insulin sensitivity. A 10-day UPF diet was associated with lower fasting blood glucose levels, without higher insulin levels, in both sexes. Females showed early impairment in glucose tolerance. Male mice on UPF30 exhibited elevated systemic IL-6 levels, as well as reduced intestinal expression of Occludin and E-cadherin genes. In females, UPF30 increased TNF-α expression in the gut and increased microbial diversity. Both sexes displayed dysbiosis, with females showing pronounced changes in the proportion between predominant phyla, and males showing more specific changes in bacterial genera. Conclusions: A diet high in UPFs promoted metabolic, inflammatory, and gut microbiota alterations, with effects varying according to exposure duration and biological context, and becoming more pronounced after 30 days. Full article
(This article belongs to the Special Issue Food–Gut–Brain: Control of Appetite and Weight Management)
Show Figures

Figure 1

19 pages, 10338 KB  
Article
Halophyte-Mediated Metal Immobilization and Divergent Enrichment in Arid Degraded Soils: Mechanisms and Remediation Framework for the Tarim Basin, China
by Jingyu Liu, Lang Wang, Shuai Guo and Hongli Hu
Sustainability 2025, 17(19), 8771; https://doi.org/10.3390/su17198771 - 30 Sep 2025
Abstract
Understanding heavy metal behavior in arid saline soils is critical for phytoremediation in degraded lands. This study investigated metal distribution and plant enrichment in the Tarim Basin using 323 soil and 55 plant samples (Populus euphratica, Tamarix ramosissima, cotton, jujube). [...] Read more.
Understanding heavy metal behavior in arid saline soils is critical for phytoremediation in degraded lands. This study investigated metal distribution and plant enrichment in the Tarim Basin using 323 soil and 55 plant samples (Populus euphratica, Tamarix ramosissima, cotton, jujube). Analyses included redundancy analysis (RDA) and bioconcentration factor (BCF) assessments. Key findings reveal that elevated salinity (total salts, TS > 200 g/kg) and alkalinity (pH > 8.5) immobilized As, Cd, Cu, and Zn. Precipitation and competitive leaching reduced metal mobility by 42–68%. Plant enrichment strategies diverged significantly: P. euphratica hyperaccumulated Cd (BCF = 1.59) and Zn (BCF = 2.41), while T. ramosissima accumulated As and Pb (BCF > 0.05). Conversely, cotton posed Hg transfer risks (BCF = 2.15), and jujube approached Cd safety thresholds in phosphorus-rich soils. RDA indicated that pH and total salinity (TS) jointly suppressed metal bioavailability, explaining 57.6% of variance. Total phosphorus (TP) and soil organic carbon (SOC) enhanced metal availability (36.8% variance), with notable TP-Cd synergy (Pearson’s r = 0.42). We propose a dual-threshold management framework: (1) leveraging salinity–alkalinity suppression (TS > 200 g/kg + pH > 8.5) for natural immobilization; and (2) implementing TP control (TP > 0.8 g/kg) to mitigate crop Cd risks. P. euphratica demonstrates targeted phytoremediation potential for degraded saline agricultural systems. This framework guides practical management by spatially delineating zones for natural immobilization versus targeted remediation (e.g., P. euphratica planting in Cd/Zn hotspots) and implementing phosphorus control in high-risk croplands. Full article
Show Figures

Figure 1

23 pages, 17838 KB  
Article
Integrating Multi-Temporal Sentinel-1/2 Vegetation Signatures with Machine Learning for Enhanced Soil Salinity Mapping Accuracy in Coastal Irrigation Zones: A Case Study of the Yellow River Delta
by Junyong Zhang, Tao Liu, Wenjie Feng, Lijing Han, Rui Gao, Fei Wang, Shuang Ma, Dongrui Han, Zhuoran Zhang, Shuai Yan, Jie Yang, Jianfei Wang and Meng Wang
Agronomy 2025, 15(10), 2292; https://doi.org/10.3390/agronomy15102292 - 27 Sep 2025
Abstract
Soil salinization poses a severe threat to agricultural sustainability in the Yellow River Delta, where conventional spectral indices are limited by vegetation interference and seasonal dynamics in coastal saline-alkali landscapes. To address this, we developed an inversion framework integrating spectral indices and vegetation [...] Read more.
Soil salinization poses a severe threat to agricultural sustainability in the Yellow River Delta, where conventional spectral indices are limited by vegetation interference and seasonal dynamics in coastal saline-alkali landscapes. To address this, we developed an inversion framework integrating spectral indices and vegetation temporal features, combining multi-temporal Sentinel-2 optical data (January 2024–March 2025), Sentinel-1 SAR data, and terrain covariates. The framework employs Savitzky–Golay (SG) filtering to extract vegetation temporal indices—including NDVI temporal extremum and principal component features, capturing salt stress response mechanisms beyond single-temporal spectral indices. Based on 119 field samples and Variable Importance in Projection (VIP) feature selection, three ensemble models (XGBoost, CatBoost, LightGBM) were constructed under two strategies: single spectral features versus fused spectral and vegetation temporal features. The key results demonstrate the following: (1) The LightGBM model with fused features achieved optimal validation accuracy (R2 = 0.77, RMSE = 0.26 g/kg), outperforming single-feature models by 13% in R2. (2) SHAP analysis identified vegetation-related factors as key predictors, revealing a negative correlation between peak biomass and salinity accumulation, and the summer crop growth process affects soil salinization in the following spring. (3) The fused strategy reduced overestimation in low-salinity zones, enhanced model robustness, and significantly improved spatial gradient continuity. This study confirms that vegetation phenological features effectively mitigate agricultural interference (e.g., tillage-induced signal noise) and achieve high-resolution salinity mapping in areas where traditional spectral indices fail. The multi-temporal integration framework provides a replicable methodology for monitoring coastal salinization under complex land cover conditions. Full article
Show Figures

Figure 1

15 pages, 9898 KB  
Article
Degradation Law and Experimental Study of High- Performance Shotcrete Under the Coupling Effect of Sulfate and Chloride Salt
by Jianyu Yang, Senrui Deng, Guanglin Li and Xujun Dai
Materials 2025, 18(19), 4505; https://doi.org/10.3390/ma18194505 - 27 Sep 2025
Abstract
Shotcrete used in underground structures like tunnels is susceptible to sulfate and chloride erosion. In order to systematically study the deterioration law and mechanism of the durability of high-performance shotcrete under a salt erosion environment, the durability test of high-performance shotcrete was carried [...] Read more.
Shotcrete used in underground structures like tunnels is susceptible to sulfate and chloride erosion. In order to systematically study the deterioration law and mechanism of the durability of high-performance shotcrete under a salt erosion environment, the durability test of high-performance shotcrete was carried out by an indoor long-term immersion test using a clear water solution, Na2SO4 solution, and Na2SO4 and NaCl mixed solution as erosion mediums. A comparative study was conducted on the effects of different curing time, erosion time, erosion medium, and erosion direction on the physical and mechanical properties and SO42− content. The microstructure was analyzed to reveal the time evolution process and mechanism of the durability of high-performance shotcrete under coupled erosion. The results show the following: (1) The mass change rate of high-performance shotcrete under the action of coupling erosion increases first, then decreases, and then increases. The compressive strength of the surface perpendicular to the jet direction is better than that of the surface along the vertical jet direction. (2) The diffusion depth of SO42− along the injection direction is larger, and the content of SO42− is larger at the same depth. The existence of Cl delays the diffusion of SO42− to a certain extent. (3) In the early stage of erosion, the corrosion expansion products generated by the external SO42− entering the concrete will fill the original pores and cracks, which improves the durability of the concrete. In the late stages of erosion, the accumulation of corrosion products increases, which accelerates the deterioration of its durability. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

28 pages, 9915 KB  
Article
Mechanism of Herbaceous Plant Root Disturbance on Yongning Fortress Rammed Earth Heritage: A Case Study
by Xudong Chu, Xinliang Ji and Weicheng Han
Buildings 2025, 15(19), 3491; https://doi.org/10.3390/buildings15193491 - 27 Sep 2025
Abstract
This study investigated the Yongning Fortress ruins in Taiyuan through a comprehensive analytical approach employing scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), laser particle size analysis, X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), and ion chromatography (IC). The research focused on elucidating [...] Read more.
This study investigated the Yongning Fortress ruins in Taiyuan through a comprehensive analytical approach employing scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), laser particle size analysis, X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), and ion chromatography (IC). The research focused on elucidating the disturbance mechanisms and environmental impacts induced by the root systems of five representative herbaceous species on rammed earth structures. The results demonstrated distinct, species-specific disturbance patterns. Melica roots created three-dimensional network damage, Artemisia capillaris primarily caused deep root penetration, Fallopia aubertii exhibited coupled physical–chemical effects, Convolvulus arvensis induced shallow horizontal expansion damage, while Cirsium formed a heterogeneous structure characterized by dense taproots and loose lateral roots. Environmental conditions, particularly moisture content, significantly influenced disturbance intensity. All root activities led to common deterioration processes, including particle rounding, gradation degradation, and formation of organic–mineral composites. Notably, vegetation markedly altered soluble salt distribution patterns, with Cirsium increasing total salt content to 3.7 times that of undisturbed rammed earth (0.48%), while sulfate ion concentration (1.16 × 10−3) approached hazardous thresholds. The study established a theoretical framework linking plant traits, disturbance mechanisms, and environmental response, and proposed risk-based zoning strategies for preservation. These outcomes provide significant theoretical foundations and practical guidance for the scientific conservation of rammed earth heritage sites. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 3835 KB  
Article
Drainage Recycling Ratio Influences Yield, Fruit Quality, and Antioxidant Properties of Korean Strawberry ‘Seolhyang’
by Minkyung Kim, M. G. Rabbani, Youngae Jeong, Mewuleddeg Zebro, Jeonghyeon Baek and Ki-Young Choi
Plants 2025, 14(19), 2984; https://doi.org/10.3390/plants14192984 - 26 Sep 2025
Abstract
Closed hydroponic systems for strawberries (Fragaria × ananassa Duch.) are infrequently used because the crop is highly sensitive to salt accumulation and prone to root diseases, resulting in yield reduction. This study investigated semi-closed hydroponic systems using various drainage recycling ratios (30%, [...] Read more.
Closed hydroponic systems for strawberries (Fragaria × ananassa Duch.) are infrequently used because the crop is highly sensitive to salt accumulation and prone to root diseases, resulting in yield reduction. This study investigated semi-closed hydroponic systems using various drainage recycling ratios (30%, 50%, and 70% of drainage EC) to determine their impact on yield, fruit quality, and antioxidant properties. Recycling at moderate levels (30–50%) effectively maintained ionic balance, particularly with respect to K/N and K/Ca ratios, which enabled stable yields and increased fruit weight similar to the control (open hydroponic system) group. Conversely, a high recycling ratio (70%) led to ionic imbalances—characterized by increased K/N ratios and higher concentrations of Na+, Cl, and SO42−—that were associated with decreased fruit size. Measures of antioxidant capacity, such as total phenol and flavonoid content, ferric reducing antioxidant power, and DPPH activity, were not significantly influenced by the recycling ratio alone. Nevertheless, the relatively elevated antioxidant activity observed at the 70% recycling level indicates a mild ionic and osmotic stress response likely caused by increased salt concentration. Changes related to the cropping system season, rather than ion variations from recycling, exerted a stronger influence on antioxidant accumulation. In summary, moderate drainage recycling facilitates optimal fruit production without negatively affecting quality, while excessive recycling may increase antioxidant activity but leads to reduced yields. The results provide practical recommendations for optimizing nutrient reuse in semi-closed strawberry hydroponic systems. Full article
Show Figures

Figure 1

22 pages, 2710 KB  
Article
Divergent Hepatic Outcomes of Chronic Ketone Supplementation: Ketone Salts Preserve Liver Health While Ketone Esters and Precursors Drive Inflammation and Steatosis
by Csilla Ari and Dominic P. D’Agostino
Pharmaceuticals 2025, 18(10), 1436; https://doi.org/10.3390/ph18101436 - 25 Sep 2025
Abstract
Background/Objectives: Exogenous ketone supplements elevate circulating ketones without carbohydrate restriction, but their long-term hepatic safety remains unclear. This study evaluated the formulation-dependent impact of chronic ketone supplementation on liver histopathology, inflammatory signaling, and systemic biomarkers in rats. Methods: Male Sprague-Dawley rats were orally [...] Read more.
Background/Objectives: Exogenous ketone supplements elevate circulating ketones without carbohydrate restriction, but their long-term hepatic safety remains unclear. This study evaluated the formulation-dependent impact of chronic ketone supplementation on liver histopathology, inflammatory signaling, and systemic biomarkers in rats. Methods: Male Sprague-Dawley rats were orally administered 1,3-butanediol (BD), medium-chain triglycerides (MCTs), ketone ester (KE), ketone electrolytes/salts (KSs), or a ketone salt–MCT combination (KSMCT) for 4 weeks. In a separate arm, animals received standard diet (SD), or SD supplemented with low-dose KE (LKE) or high-dose KE (HKE), for 83 days. Liver structure was assessed by hematoxylin and eosin staining with quantification of red blood cell density and lipid accumulation. Inflammatory and metabolic responses were evaluated by TNF-α and arginase immunohistochemistry. Serum biochemistry included glucose, proteins, electrolytes, and liver and kidney function markers. Results: BD and KE induced macrovesicular steatosis, vascular congestion, and elevated TNF-α and arginase expression, consistent with hepatic stress. MCT caused moderate hepatocellular ballooning and lipid deposition, whereas KS preserved near-normal hepatic morphology. KSMCT produced intermediate effects, reducing lipid accumulation and TNF-α compared with MCT or KE alone. KE supplementation caused dose-dependent reductions in globulin and elevations in creatinine, while HKE reduced sodium and glucose levels. Conclusions: Chronic hepatic responses to exogenous ketones are highly formulation dependent. KS demonstrated the most favorable safety profile under the tested conditions, maintaining normal hepatic structure, while BD and KE elicited adverse changes. Formulation choice is critical for the safe long-term use of exogenous ketones. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

18 pages, 7433 KB  
Article
Priming with Porcine Blood Polypeptide Enhances Salt Tolerance in Wheat Seedlings
by Yong Shen, Yanling Ma, Yiming Yuan, Meitian Dong, Yanan Wang, Jilong Zhou, Jinpeng Yang, Yang Guo, Weiwei Guo, Huifang Wang, Yumei Zhang and Ximei Li
Plants 2025, 14(19), 2968; https://doi.org/10.3390/plants14192968 - 25 Sep 2025
Abstract
Porcine blood polypeptide (PBP) has been reported to play roles in plant growth. However, its functions in alleviating salt stress in wheat remain unclear. The present study was conducted to investigate the physiological and biochemical mechanisms underlying the effects of PBP on wheat [...] Read more.
Porcine blood polypeptide (PBP) has been reported to play roles in plant growth. However, its functions in alleviating salt stress in wheat remain unclear. The present study was conducted to investigate the physiological and biochemical mechanisms underlying the effects of PBP on wheat salt tolerance. Morphological analysis showed that PBP-primed seedlings exhibited improved growth performance, significantly greater biomass accumulation, and enhanced root system development. Physiological assessments showed that primed seedlings displayed higher values of Pn, Gs, Tr, Fv/Fm, Fv′/Fm′, ΦPSII, and NPQ, along with increased contents of total chlorophyll, Pro, TSS, and RWC. In addition, the activities of antioxidant enzymes, including SOD, CAT, POD, and APX, were significantly elevated, whereas the levels of H2O2, O2, MDA, and REC were significantly reduced. PCA indicated that antioxidant enzyme activity, osmotic regulation, and ROS accumulation were the major factors associated with the PBP-mediated salt stress response. Furthermore, qRT-PCR analysis suggested that exogenous PBP might enhance wheat salt tolerance by coordinately modulating multiple molecular mechanisms. Taken together, this study broadens the potential applications of PBP by demonstrating its capacity to improve wheat salt tolerance. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Figure 1

15 pages, 1964 KB  
Article
Expression Regulatory Mechanisms of the Key Structural Genes in the Carotenoid Biosynthesis Pathway Under Salt Stress of Lycium barbarum
by Zhi-Hang Hu, Li-Xiang Wang, Nan Zhang, Chen Chen, Jing Zhuang, Yue Yin and Ai-Sheng Xiong
Horticulturae 2025, 11(10), 1149; https://doi.org/10.3390/horticulturae11101149 - 24 Sep 2025
Viewed by 116
Abstract
Salt stress is a major abiotic factor limiting wolfberry (Lycium barbarum) growth. As a high-value medicinal and edible crop, wolfberry relies on its carotenoid content, a critical determinant of fruit quality and nutritional value. To elucidate the expression regulatory mechanisms of [...] Read more.
Salt stress is a major abiotic factor limiting wolfberry (Lycium barbarum) growth. As a high-value medicinal and edible crop, wolfberry relies on its carotenoid content, a critical determinant of fruit quality and nutritional value. To elucidate the expression regulatory mechanisms of key genes in the carotenoid biosynthesis pathway under salt stress, this study systematically identified 17 structural genes within the L. barbarum carotenoid pathway using genomic and transcriptomic approaches. Comprehensive analyses were conducted on gene structure, chromosomal distribution, conserved domains, and cis-acting elements. The results revealed that these genes were clustered on chromosomes Chr08 and Chr10 and exhibit strong collinearity with tomato (18 syntenic pairs). Their promoters were enriched with light-responsive (G-box) and stress-responsive (ABRE, DRE) elements. Tissue-specific expression analysis demonstrated high expression in mid-to-late fruit developmental stages (LbaPSY1, LbaPDS) and in photoprotective genes (LbaZEP, LbaVDE) in leaves. Under 300 mM NaCl stress treatment, the genes exhibited a staged response: Early stage (1–3 h): upstream MEP pathway genes (LbaDXS, LbaGGPS) were rapidly induced to supply precursors. Mid-stage (6–12 h): midstream genes (LbaPSY, LbaPDS, LbaZDS) were continuously upregulated, promoting lycopene synthesis and preferentially activating the β-branch (LbaLCYB). Late stage (12–24 h): downstream xanthophyll cycle genes (LbaBCH, LbaZEP, LbaVDE) were significantly enhanced, facilitating the accumulation of antioxidant compounds like violaxanthin and neoxanthin. This coordinated regulation formed a synergistic “precursor supply–antioxidant product” network. This study revealed the phased and coordinated regulatory network of carotenoid biosynthesis genes under salt stress in L. barbarum. It also provided potential target genes for the new cultivar selection with enhanced salt tolerance and nutritional quality. Full article
(This article belongs to the Special Issue New Insights into Protected Horticulture Stress)
Show Figures

Figure 1

16 pages, 7832 KB  
Article
Overexpression of Maize Expansin Gene ZmEXPA6 Improves Salt Tolerance of Arabidopsis thaliana
by Yue Sun, Qiantong Liu, Zhenwei Yan, Shijun Ma, Xia Liu, Chunhua Mu, Guoqi Yao and Bingying Leng
Agronomy 2025, 15(9), 2240; https://doi.org/10.3390/agronomy15092240 - 22 Sep 2025
Viewed by 159
Abstract
Maize is a globally vital crop for both grain and forage production. Its cultivation and growth are significantly restricted by salt stress. Expansins are non-enzymatic plant cell wall proteins that play pivotal roles in growth, development, and stress responses by mediating cell wall [...] Read more.
Maize is a globally vital crop for both grain and forage production. Its cultivation and growth are significantly restricted by salt stress. Expansins are non-enzymatic plant cell wall proteins that play pivotal roles in growth, development, and stress responses by mediating cell wall loosening. We identified ZmEXPA6, an α-expansin gene, as exhibiting high expression levels in maize roots under salt stress. In this study, the ZmEXPA6 gene was cloned and functionally characterized. Heterologous overexpression of ZmEXPA6 promoted root elongation and enhanced salt tolerance of Arabidopsis thaliana. Under salt stress, the ZmEXPA6 overexpression lines exhibited elevated levels of anthocyanin (61.70%, 59.70%), proline (16.39%, 15.11%), soluble sugars (11.97%, 8.68%), and soluble proteins (14.83%, 13.74%) compared to the WT. Concurrently, the expression of genes associated with anthocyanin and proline biosynthesis was markedly up-regulated in these overexpression lines. The ZmEXPA6 overexpression lines exhibited elevated activities of SOD (23.81%, 23.51%), CAT (13.86%, 10.93%), and POD (4.27%, 1.39%) compared to the WT, along with significantly reduced accumulation of MDA (23.47%, 24.48%), O2 (21.9%, 19.8%), and H2O2 (27.61%, 18.07%). These results indicate that ZmEXPA6 is involved in the growth and development of Arabidopsis thaliana and improves its salt tolerance through enhanced osmotic adjustment and elevated antioxidant capacity. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

11 pages, 1040 KB  
Article
Purification and Characterization of Polyhydroxyalkanoate Synthase from Extremely Halophilic Archaeon Haloferax mediterranei: Key Enzyme of Biodegradable Plastic Synthesis
by Diya Alsafadi, Yomen Ghalawinji and Fawwaz I. Khalili
Bioengineering 2025, 12(9), 1003; https://doi.org/10.3390/bioengineering12091003 - 22 Sep 2025
Viewed by 483
Abstract
The biosynthesis of polyhydroxyalkanoate (PHA) biopolymer is highly dependent on the activity of a key enzyme, PHA synthase (PhaC). The halophilic archaeon Haloferax mediterranei can accumulate large amounts of PHAs from different carbon sources under non-sterilized conditions. In this study, a PhaC enzyme [...] Read more.
The biosynthesis of polyhydroxyalkanoate (PHA) biopolymer is highly dependent on the activity of a key enzyme, PHA synthase (PhaC). The halophilic archaeon Haloferax mediterranei can accumulate large amounts of PHAs from different carbon sources under non-sterilized conditions. In this study, a PhaC enzyme from H. mediterranei was produced and subsequently partially purified by ion exchange chromatography. The protein was visualized by SDS-PAGE, with a subunit molecular mass of 56.4 kDa. The purified enzyme converts hydroxybutyryl CoA molecules into PHA, being optimally active at pH 10.0 and pH 8.0. The PhaC was thermoactive in the range of 30 °C to 70 °C, with maximum activity registered at 50 °C. The enzyme was confirmed to be haloalkaliphilic (active at pH > 7.0 and high salt concentration) and exhibit a degree of stability at 25 °C for 24 h. Full article
(This article belongs to the Special Issue Advances in Polyhydroxyalkanoate (PHA) Production, 5th Edition)
Show Figures

Figure 1

Back to TopTop