Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = sand-covered slope

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
57 pages, 13137 KiB  
Article
Compositional and Numerical Geomorphology Along a Basement–Foreland Transition, SE Germany, with Special Reference to Landscape-Forming Indices and Parameters in Genetic and Applied Terrain Analyses
by Harald G. Dill, Andrei Buzatu, Sorin-Ionut Balaban and Christopher Kleyer
Geosciences 2025, 15(2), 37; https://doi.org/10.3390/geosciences15020037 - 23 Jan 2025
Viewed by 1281
Abstract
The Münchberg Gneiss Complex (Central European Variscides, Germany) is separated by a deep-seated lineamentary fault zone, the Franconian Lineamentary Fault Zone, from its Mesozoic foreland. The study area offers insight into a great variety of landforms created by fluvial and mass wasting processes [...] Read more.
The Münchberg Gneiss Complex (Central European Variscides, Germany) is separated by a deep-seated lineamentary fault zone, the Franconian Lineamentary Fault Zone, from its Mesozoic foreland. The study area offers insight into a great variety of landforms created by fluvial and mass wasting processes together with their bedrocks, covering the full range from unmetamorphosed sediments to high-grade regionally metamorphic rocks. It renders the region an ideal place to conduct a study of compositional and numerical geomorphology and their landscape-forming indices and parameters. The landforms under consideration are sculpted out of the bedrocks (erosional landforms) and overlain by depositional landforms which are discussed by means of numerical landform indices (LFIs), all of which are coined for the first time in the current paper. They are designed to be suitable for applied geosciences such as extractive/economic geology as well as environmental geology. The erosional landform series are subdivided into three categories: (1) The landscape roughness indices, e.g., VeSival (vertical sinuosity—valley of landform series) and the VaSlAnalti (variation in slope angle altitude), which are used for a first order classification of landscapes into relief generations. The second order classification LFIs are devoted to the material properties of the landforms’ bedrocks, such as the rock strength (VeSilith) and the bedrock anisotropy (VaSlAnnorm). The third order scheme describes the hydrography as to its vertical changes by the inclination of the talweg and the different types of knickpoints (IncTallith/grad) and horizontal sinuosity (HoSilith/grad). The study area is subjected to a tripartite zonation into the headwater zone, synonymous with the paleoplain which undergoes some dissection at its edge, the step-fault plain representative of the track zone which undergoes widespread fluvial piracy, and the foreland plains which act as an intermediate sedimentary trap named the deposition zone. The area can be described in space and time with these landform indices reflecting fluvial and mass wasting processes operative in four different stages (around 17 Ma, 6 to 4 Ma, <1.7 Ma, and <0.4 Ma). The various groups of LFIs are a function of landscape maturity (pre-mature, mature, and super-mature). The depositional landforms are numerically defined in the same way and only differ from each other by their subscripts. Their set of LFIs is a mirror image of the composition of depositional landforms in relation to their grain size. The leading part of the acronym, such as QuantSanheav and QuantGravlith, refers to the process of quantification, the second part to the grain size, such as sand and gravel, and the subscript to the material, such as heavy minerals or lithological fragments. The three numerical indices applicable to depositional landforms are a direct measurement of the hydrodynamic and gravity-driven conditions of the fluvial and mass wasting processes using granulometry, grain morphology, and situmetry (clast orientation). Together with the previous compositional indices, the latter directly translate into the provenance analysis which can be used for environmental analyses and as a tool for mineral exploration. It creates a network between numerical geomorphology, geomorphometry, and the E&E issue disciplines (economic/extractive geology vs. environmental geology). The linguistics of the LFIs adopted in this publication are designed so as to be open for individual amendments by the reader. An easy adaptation to different landform suites worldwide, irrespective of their climatic conditions, geodynamic setting, and age of formation, is feasible due to the use of a software and a database available on a global basis. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

17 pages, 51586 KiB  
Article
Application of Aerial Photographs and Coastal Field Data to Understand Sea Turtle Landing and Spawning Behavior at Kili-Kili Beach, Indonesia
by Arief Darmawan and Satoshi Takewaka
Geographies 2024, 4(4), 781-797; https://doi.org/10.3390/geographies4040043 - 6 Dec 2024
Viewed by 1321
Abstract
We investigated sea turtle landing and spawning behavior along 1.4 km of Kili-Kili Beach in East Java, Indonesia, by combining aerial photographs and field survey data. In the study, we surveyed marks of sea turtles landing and spawning on the beach and utilized [...] Read more.
We investigated sea turtle landing and spawning behavior along 1.4 km of Kili-Kili Beach in East Java, Indonesia, by combining aerial photographs and field survey data. In the study, we surveyed marks of sea turtles landing and spawning on the beach and utilized aerial photographs, beach profile survey records, grain size measurements of the beach material, and tide records to understand the behavior of the turtles. Firstly, aerial photographs are processed into ortho-mosaics, and beach surfaces are classified into land cover categories. Then, we calculate the number of spawning and non-spawning instances for each category, visualizing landing positions to identify local concentrations. Spawning distances from the waterline are estimated, and beach stability is evaluated by analyzing the temporal elevation change through standard deviation. Our findings reveal preferred spawning locations on bare sand surfaces, around 8 to 45 m from the waterline, with beach elevations ranging from 1 to 5 m. The standard deviations of beach elevation were between 0.0 and 0.7 m, with a mean slope of 0.07. This information is important for effectively conserving sandy beaches that serve as spawning sites for sea turtles. Full article
Show Figures

Figure 1

19 pages, 4409 KiB  
Article
Spatiotemporal Evolution and Drivers of Ecological Quality in the Tengger Desert (2001–2021)
by Feifei Dong, Fucang Qin, Xiaoyu Dong, Yihan Wu, Kai Zhao and Longfei Zhao
Land 2024, 13(11), 1838; https://doi.org/10.3390/land13111838 - 5 Nov 2024
Viewed by 1151
Abstract
Desert ecosystems, particularly in arid regions like the Tengger Desert, are highly sensitive to both anthropogenic activities and climate change, making the monitoring and evaluation of ecological quality critical for sustainable management and restoration efforts. This study analyses the spatiotemporal evolution of ecological [...] Read more.
Desert ecosystems, particularly in arid regions like the Tengger Desert, are highly sensitive to both anthropogenic activities and climate change, making the monitoring and evaluation of ecological quality critical for sustainable management and restoration efforts. This study analyses the spatiotemporal evolution of ecological quality in the Tengger Desert from 2001 to 2021 using the Remote Sensing Ecological Index (RSEI), incorporating meteorological factors (temperature, precipitation, wind speed), topographical factors (elevation, slope, relief) and anthropogenic indices (land use and land cover). The mean RSEI fluctuated between 0.1542 and 0.2906, indicating poor ecological quality, with a peak in 2008 attributed to national ecological projects. Despite initial improvements, overall ecological quality declined at a rate of 0.0008 a−1 from 2008 to 2021. Spatially, degradation was most pronounced in the central and southern areas. Due to sand-binding engineering in the Tengger Desert in 2008 and the mountain climate suitable for vegetation growth, improvements occurred in the northeast and southwest. Moran’s I and Hurst index analyses revealed significant spatial clustering of ecological quality and persistence of degradation trends, with over 49.53% of the area projected to experience further deterioration. Geodetector analysis identified land use and land use cover as the most influential factors on RSEI, especially in combination with wind speed, temperature, and precipitation, underscoring the role of both human activities and climate. The study highlights the need for sustained ecological management, particularly in areas showing continuous degradation, to prevent further ecological deterioration. Full article
Show Figures

Graphical abstract

15 pages, 2953 KiB  
Article
Evaluation of Straw Mulch as an Erosion Control Practice for Varying Soil Types on a 4:1 Slope
by John R. Cater, Wesley N. Donald, Michael Perez and Xing Fang
Water 2024, 16(19), 2819; https://doi.org/10.3390/w16192819 - 4 Oct 2024
Viewed by 1154
Abstract
Construction sites rely on erosion control practices to protect bare slopes and prevent soil loss. The effectiveness of certain erosion controls is often under-evaluated if they are not a part of a product evaluation program. Furthermore, erosion controls in general are not fully [...] Read more.
Construction sites rely on erosion control practices to protect bare slopes and prevent soil loss. The effectiveness of certain erosion controls is often under-evaluated if they are not a part of a product evaluation program. Furthermore, erosion controls in general are not fully understood regarding how their performance can be affected by site specific variables, such as soil variations. This study used large-scale rainfall simulators to evaluate how a commonly used erosion control on construction sites, broadcasted straw mulch, performs on three common soil types in Alabama. The study at the Auburn University, Stormwater Research Facility (AU-SRF) used the industry standard testing method and three different soil types: sand, loam, and clay in accordance with ASTM D6459-19, the standard test method for testing rolled erosion control products’ (RECPs) performance in protecting hillslopes from rainfall-induced erosion. As required by ASTM D6459-19, the rainfall simulators simulated a storm of varying 20 min increments of 2 in./h (5.08 cm/h), 4 in./h (10.16 cm/h), and 6 in./h (15.24 cm/h). A total of nine bare soil tests on the 4:1 test plots was performed with an average total soil loss of 1977 lb (897 kg), 236.2 lb (107 kg), and 114.2 lb (51.8 kg) for sand, loam, and clay, respectively. The average erodibility K-factor for each soil type is calculated to be 0.37 (sand), 0.043 (loam), and 0.013 (clay). Nine straw tests were performed on the 4:1 plots, with an average total soil loss of 44.31 lb (20.1 kg), 6.74 lb (3.1 kg), and 17.13 lb (7.8 kg) for sand, loam, and clay, respectively. Straw testing indicated substantial soil loss reduction with average cover management C-factor values under the revised universal soil loss equation (RUSLE) method of 0.021, 0.047, and 0.193 for sand, loam, and clay applications, respectively. This variation in C-factor across the three soil types indicates that the single C-factor, often reported by product manufacturers, is not adequate to imply performance. Full article
Show Figures

Figure 1

22 pages, 3936 KiB  
Article
Influence of Soil Moisture in Semi-Fixed Sand Dunes of the Tengger Desert, China, Based on PLS-SEM and SHAP Models
by Haidi Qi, Dinghai Zhang, Zhishan Zhang, Youyi Zhao and Zhanhong Shi
Sustainability 2024, 16(16), 6971; https://doi.org/10.3390/su16166971 - 14 Aug 2024
Cited by 1 | Viewed by 1982
Abstract
Drought stress significantly limits the function and stability of desert ecosystems. This research examines the distribution characteristics of soil moisture across different microtopographic types in the semi-fixed dunes located at the southeastern edge of the Tengger Desert. We constructed a path model to [...] Read more.
Drought stress significantly limits the function and stability of desert ecosystems. This research examines the distribution characteristics of soil moisture across different microtopographic types in the semi-fixed dunes located at the southeastern edge of the Tengger Desert. We constructed a path model to examine the direct and indirect impacts of topography, shrub vegetation, and herbaceous vegetation. The data encompassed soil moisture, topography, and vegetation variables, which were collected from field experiments to ensure their accuracy and relevance. Furthermore, SHAP models based on machine learning algorithms were utilized to elucidate the specific mechanisms through which key factors influence soil moisture. The results of the descriptive statistics indicate the highest surface soil moisture content, recorded at 1.21%, was observed at the bottom of the dunes, while the leeward slopes demonstrated elevated moisture levels in the middle and deep soil layers, with measurements of 2.25% and 2.43%, respectively. Soil moisture at different depths initially decreases and then increases with greater herbaceous cover and slope direction, while surface soil moisture follows a similar trend in terms of height difference, with 3 m serving as the boundary for trend changes. Middle and deep soil moistures initially increase and then decrease with greater biomass and shrub coverage, with 30 g and 40% serving as the boundary for trend changes respectively. This study elucidates the spatial distribution patterns and influencing factors of soil moisture in semi-fixed dunes, offering valuable references for the establishment of sand-stabilizing vegetation in desert regions. Full article
Show Figures

Figure 1

19 pages, 8758 KiB  
Article
Assessing the Susceptibility of the Xiangka Debris Flow Using Analytic Hierarchy Process, Fuzzy Comprehensive Evaluation Method, and Cloud Model
by Yan Li, Jianguo Wang, Keping Ju, Shengyun Wei, Zhinan Wang and Jian Hu
Sustainability 2024, 16(13), 5392; https://doi.org/10.3390/su16135392 - 25 Jun 2024
Cited by 7 | Viewed by 1682
Abstract
The seasonal Xiangka debris flow, breaking out frequently in Xinghai County, Qinghai Province, poses a serious threat to resident safety, has significant potential economic impacts, and inflicts severe damage on the geological environment, vegetation, and land resources in the area. Therefore, a susceptibility [...] Read more.
The seasonal Xiangka debris flow, breaking out frequently in Xinghai County, Qinghai Province, poses a serious threat to resident safety, has significant potential economic impacts, and inflicts severe damage on the geological environment, vegetation, and land resources in the area. Therefore, a susceptibility assessment is crucial. Utilizing data from field investigations, meteorology, and remote sensing, this study devised an assessment system using 10 evaluation factors with pronounced regional characteristics as susceptibility indices. Based on data processing using ArcGIS 10.7 and MATLAB R2016B, this study assessed the susceptibility of the Xiangka debris flow using AHP, the fuzzy comprehensive evaluation method, and a cloud model. The analysis results show that, based on AHP, the primary index affecting the occurrence of Xiangka debris flow is mainly source factor (0.447). The secondary indices are mainly the length ratio of the mud sand supply section (0.219), fractional vegetation cover (FVC, 0.208), and watershed area (0.192). Combined with the actual characteristics, it can be seen that the formation conditions of the Xiangka debris flow primarily encompass the following: sources such as slope erosion and accumulation at gully exits, challenging topography and terrain conducive to the accumulation of water and solid materials, and water source aspects like surface runoff from intense rainfall. Based on the fuzzy mathematical method—fuzzy coordinate method—cloud model, it is concluded that the degree of susceptibility is mild-to-moderate. The combination of these methods provides a new idea for the evaluation of debris flow susceptibility. This study can provide a theoretical basis for the layout of treatment engineering and geological disaster prevention in this area and promote the sustainable development of the ecological environment. Full article
Show Figures

Figure 1

20 pages, 7220 KiB  
Article
Soils on Recent Tephra of the Somma–Vesuvius Volcanic Complex, Italy
by Antonella Ermice and Carmine Amalfitano
Soil Syst. 2024, 8(2), 50; https://doi.org/10.3390/soilsystems8020050 - 30 Apr 2024
Viewed by 2359
Abstract
The Somma–Vesuvius volcanic complex emitted huge quantities of volcanic materials over a period from before 18,300 years BP to 1944. The activity during the last period, from post-AD 1631 to 1944, primarily produced lava and pyroclastics via effusive and strombolian eruptions. We investigated [...] Read more.
The Somma–Vesuvius volcanic complex emitted huge quantities of volcanic materials over a period from before 18,300 years BP to 1944. The activity during the last period, from post-AD 1631 to 1944, primarily produced lava and pyroclastics via effusive and strombolian eruptions. We investigated the pedogenesis on rocks formed from post-AD 1631 to 1944, occurring on the slopes of Mt. Vesuvius up to Gran Cono Vesuviano and in the northern valley separating Vesuvius from the older Mt. Somma edifice. Pertinent morphological, physical, chemical, and mineralogical (XRD and FT-IR) soil properties were studied. The results indicated the existence of thin and deep stratified soils on lava, as well as the presence of loose detritic covers formed via pyroclastic emplacement and redistribution. The soils showed minimal profile differentiation, frequently with layering recording the episodic addition of sediments. We found that the dominant coarse size of primary mineral particles was preserved, and there was a low level of clay production. The main mineralogical assemblage present in sands also persisted in clays, indicating the physical breaking of the parent material. Chemical weathering produced mineral modifications towards the active forms of Al and Fe and was also attested in selected soils by glass alteration, allophane production, and the presence of analcime in clay as a secondary product from leucite. The differences in glass alteration and analcime production found in the selected soils on lava were related to soil particle size and soil thickness. Concerning the youngest soil present on Gran Cono Vesuviano, other factors, such as the substratum’s age and site elevation, appeared to be implicated. Full article
Show Figures

Figure 1

26 pages, 14585 KiB  
Article
Geotechnical Characterisation of Flysch-Derived Colluvial Soils from a Pre-Alpine Slope Affected by Recurrent Landslides
by Marco Del Fabbro, Paolo Paronuzzi and Alberto Bolla
Geosciences 2024, 14(5), 115; https://doi.org/10.3390/geosciences14050115 - 24 Apr 2024
Cited by 2 | Viewed by 2510
Abstract
Heterogeneous rock masses that include rhythmic alternations of marl, shale, marly limestone, sandstone, siltstone, and argillite, such as Flysch, are particularly prone to generating colluvial deposits on gentle slopes, which are often subject to failures triggered by heavy rainfall. Flysch-derived colluvial soils are [...] Read more.
Heterogeneous rock masses that include rhythmic alternations of marl, shale, marly limestone, sandstone, siltstone, and argillite, such as Flysch, are particularly prone to generating colluvial deposits on gentle slopes, which are often subject to failures triggered by heavy rainfall. Flysch-derived colluvial soils are made up of highly heterogeneous sediments ranging from clayey loam to rock fragments, and they have been studied more rarely than homogeneous soils. In this work, we present a geotechnical and hydraulic characterisation performed both in situ and in the laboratory on flysch-derived colluvial soils that were involved in a channelised landslide in the pre-alpine area of the Friuli Venezia Giulia region (NE Italy). The investigated soils were characterised by the average values of the grain size composition of about 25% gravel, 20% sand, 30% silt, and 25% clay. The loamy matrix presented low-to-medium values of the liquid and plastic limits, as well as of the plasticity index (LL = 40%, PL = 23%, and PI = 17%, respectively). The values of the peak friction angle for natural intact samples were 33° < ϕp < 38°, whereas the residual friction angle fell to 23–24° at great depths and high vertical stresses, for a prevailing silty–clayey matrix. Variable head permeability tests were performed both in situ and in the laboratory, showing that the values of the vertical and horizontal permeability were very close and in the range 1 × 10−4–1 × 10−6 m/s. The soil permeability measured in the field was generally higher than the hydraulic conductivity calculated on laboratory samples. The proposed geotechnical and hydrological characterisation of flysch-derived colluvial soils can be of fundamental importance before the use of more thorough analyses/models aimed at forecasting the possible occurrence of slope failures and evaluating the related landslide hazard. The reported geotechnical and hydraulic parameters of flysch-derived colluvial materials can represent a useful reference for rainfall infiltration modelling and slope stability analyses of colluvial covers that are subject to intense and/or prolonged precipitation. However, when facing engineering problems involving colluvial soils, particularly those coming from flysch rock masses, the intrinsic variability in their grain size composition, consistency, and plasticity characteristics is a key feature and attention should be paid to the proper assumption of the corresponding geotechnical and hydraulic parameters. Full article
Show Figures

Figure 1

23 pages, 34117 KiB  
Article
Sediment Response after Wildfires in Mountain Streams and Their Effects on Cultural Heritage: The Case of the 2021 Navalacruz Wildfire (Avila, Spain)
by Jose A. Ortega-Becerril, Clara Suarez, Daniel Vázquez-Tarrío, Julio Garrote and Miguel Gomez-Heras
Fire 2024, 7(2), 52; https://doi.org/10.3390/fire7020052 - 8 Feb 2024
Cited by 2 | Viewed by 3973
Abstract
The 2021 Navalacruz wildfire occurred in a mountainous area in the Sistema Central (Spain). Despite having an average low severity index (dNBR), the loss of vegetation cover associated with the fire was responsible for a high rate of sedimentation in the rivers and [...] Read more.
The 2021 Navalacruz wildfire occurred in a mountainous area in the Sistema Central (Spain). Despite having an average low severity index (dNBR), the loss of vegetation cover associated with the fire was responsible for a high rate of sedimentation in the rivers and streams. Additionally, the burned area affected up to 60 cultural heritage sites, including archaeological and ethnological sites, and damage ranged from burnt pieces of wood to the burial of archaeological sites. In the present work, we document and analyze the post-fire evolution in several rivers and streams. This is based on a field survey of infiltration rates, hydrodynamic modeling, and the study of channel morphological changes. Our analysis revealed how the first post-fire rains caused the mobilization and transport of ashes. This created hydrophobicity in the soils, resulting in large amounts of materials being transported to rivers and streams by subsequent medium- and low-magnitude storms. A hydrological and hydraulic model of the study catchments under pre- and post-fire conditions suggests that these trends are a consequence of a post-fire increase in flow rates for similar rainfall scenarios. In this respect, our estimates point at a significant increase in sediment transport capacities associated with this post-fire increase in flow rates. The combination of locally steep slopes with high-severity fire patches, and a considerable regolith (derived from pre-fire weathering), resulted in a series of cascading responses, such as an exacerbated supply of sand to the drainage network and the triggering of debris flows, followed by erosion and entrenchment. Full article
Show Figures

Figure 1

19 pages, 5815 KiB  
Article
Effect of the Mid-Layer on the Diversion Length and Drainage Performance of a Three-Layer Cover with Capillary Barrier
by Ayşenur Aslan Fidan and Mehmet Muhit Berilgen
Appl. Sci. 2024, 14(1), 21; https://doi.org/10.3390/app14010021 - 19 Dec 2023
Cited by 2 | Viewed by 1472
Abstract
The capillary barrier is a type of soil cover system commonly used in various geotechnical applications, such as limiting infiltration for slopes or landfills or providing cover for solid waste. It serves to prevent the movement of water through the soil layers by [...] Read more.
The capillary barrier is a type of soil cover system commonly used in various geotechnical applications, such as limiting infiltration for slopes or landfills or providing cover for solid waste. It serves to prevent the movement of water through the soil layers by utilizing contrasting particle sizes. This paper focuses on investigating the effect of the granular layer on the performance of a three-layer cover with a capillary barrier, integrating the granular layer within clayey sand. The investigation involved one-dimensional infiltration tests utilizing four uniform granular soils with varying grain sizes. These tests were instrumental in calibrating soil water characteristic curves and hydraulic conductivity curves via back analysis. Subsequently, numerical analyses were conducted using a 15 m long model for each of the four distinct cover types. The results indicated that the fine gravel significantly improved the barrier performance beyond one-dimensional tests, owing to its high permeability and the influence of the slope. After the capillary barrier failure, the intermediate layers transitioned into efficient drainage layers, particularly in the gravel layer with the highest lateral drainage capacity. Clayey sand at the bottom delayed percolation, thereby supporting the conversion of the intermediate layer into an effective drainage component. Overall, the multi-layer system showed superior percolation performance compared to the clayey sand cover lacking a granular layer. Full article
(This article belongs to the Special Issue Seepage Problems in Geotechnical Engineering)
Show Figures

Figure 1

23 pages, 18071 KiB  
Article
Groundwater Recharge Potentiality Mapping in Wadi Qena, Eastern Desert Basins of Egypt for Sustainable Agriculture Base Using Geomatics Approaches
by Hanaa A. Megahed, Abd El-Hay A. Farrag, Amira A. Mohamed, Paola D’Antonio, Antonio Scopa and Mohamed A. E. AbdelRahman
Hydrology 2023, 10(12), 237; https://doi.org/10.3390/hydrology10120237 - 12 Dec 2023
Cited by 8 | Viewed by 4962
Abstract
In arid and hyper-arid areas, groundwater is a precious and rare resource. The need for water supply has grown over the past few decades as a result of population growth, urbanization, and agricultural endeavors. This research aims to locate groundwater recharge potential zones [...] Read more.
In arid and hyper-arid areas, groundwater is a precious and rare resource. The need for water supply has grown over the past few decades as a result of population growth, urbanization, and agricultural endeavors. This research aims to locate groundwater recharge potential zones (GWPZs) using multi-criteria evaluation (MCE) in the Wadi Qena Basin, Eastern Desert of Egypt, which represents one of the most promising valleys on which the government depends for land reclamations and developments. These approaches have been used to integrate and delineate the locations of high groundwater recharge and the potential of the Quaternary aquifer in the Wadi Qena basin. After allocating weight factors to identify features in each case based on infiltration, land use/land cover, slope, geology, topology, soil, drainage density, lineament density, rainfall, flow accumulation, and flow direction, these thematic maps were combined. The results of the GIS modeling led to the division of the area’s groundwater recharge potential into five groups, ranging from very high (in the western part) to very low (in the eastern part of the basin). The zones with the best prospects for groundwater exploration turned out to be the alluvial and flood plains, with their thick strata of sand and gravel. The groundwater recharge potential map was validated using data from the field and earlier investigations. The promising recharging areas show high suitability for soil cultivation. The results overall reveal that RS and GIS methodologies offer insightful instruments for more precise assessment, planning, and monitoring of water resources in arid regions and anywhere with similar setups for groundwater prospecting and management. Full article
Show Figures

Figure 1

17 pages, 18033 KiB  
Article
Long-Term Dynamics of Sandy Vegetation and Land in North China
by Zhaosheng Wang
Remote Sens. 2023, 15(19), 4803; https://doi.org/10.3390/rs15194803 - 2 Oct 2023
Cited by 2 | Viewed by 1636
Abstract
Owing to the lack of long-term, continuous, large-scale, and high-resolution monitoring data and methods, we still cannot accurately understand the detailed processes of sand change in northern China. To some extent, this hinders the scientific implementation of sand prevention and control actions. To [...] Read more.
Owing to the lack of long-term, continuous, large-scale, and high-resolution monitoring data and methods, we still cannot accurately understand the detailed processes of sand change in northern China. To some extent, this hinders the scientific implementation of sand prevention and control actions. To gain a more accurate and detailed understanding of the process of sandy land change, we conducted an investigation using a reconstructed, long-term, continuous, 250 m-high spatial resolution normalized difference vegetation index (NDVI) and fractional vegetation cover (FVC) data from 1982 to 2018 to examine vegetation changes in sandy land in northern China. This study revealed that vegetation activity (NDVI slope = 0.011/a, R2 = 0.148) and vegetation coverage (FVC slope = 0.011/a, R2 = 0.080) in the northern sandy land (NSL) have slowed the desertification trend. The NSL desertification and reverse areas show decreasing and increasing trends, respectively, indicating an improvement in the degree of desertification from 1982 to 2018. Furthermore, we employed a newly proposed sandy classification method to investigate the area changes in mobile, semi-mobile, semi-fixed, and fixed sandy lands. Over the past 37 years, the total NSL area has shown a significantly weak decreasing trend (slope = −0.0009 million km2/year, r = −0.374, p = 0.023), with relatively small changes in the total area. However, the distribution area of large mobile sandy lands has significantly decreased, whereas the area of fixed sandy lands has significantly increased. Additionally, a survey of changes in the location of sandy lands revealed that 71.86% of the distribution of sandy land remained relatively fixed between 1982 and 2018, with only 28.14% of the distribution remaining in an unstable state. Stable mobile and fixed sandy lands accounted for 85.40% and 82.41% of the total area of mobile and fixed sandy lands, respectively, whereas there were more unstable sandy land distribution areas in the semi-mobile and semi-fixed sandy lands. These results indicate the alleviation of NSL desertification. The new sandy classification and monitoring methods proposed in this study will help improve the remote sensing monitoring of large-scale sand dynamics and offer new ideas for monitoring desertification on a large scale using remote sensing techniques. Full article
(This article belongs to the Special Issue Machine Learning in Global Change Ecology: Methods and Applications)
Show Figures

Figure 1

17 pages, 19300 KiB  
Article
Mapping Groundwater Recharge Potential in High Latitude Landscapes Using Public Data, Remote Sensing, and Analytic Hierarchy Process
by Edgar J. Guerrón-Orejuela, Kai C. Rains, Tyelyn M. Brigino, William J. Kleindl, Shawn M. Landry, Patricia Spellman, Coowe M. Walker and Mark C. Rains
Remote Sens. 2023, 15(10), 2630; https://doi.org/10.3390/rs15102630 - 18 May 2023
Cited by 5 | Viewed by 3056
Abstract
Understanding where groundwater recharge occurs is essential for managing groundwater resources, especially source-water protection. This can be especially difficult in remote mountainous landscapes where access and data availability are limited. We developed a groundwater recharge potential (GWRP) map across such a landscape based [...] Read more.
Understanding where groundwater recharge occurs is essential for managing groundwater resources, especially source-water protection. This can be especially difficult in remote mountainous landscapes where access and data availability are limited. We developed a groundwater recharge potential (GWRP) map across such a landscape based on six readily available datasets selected through the literature review: precipitation, geology, soil texture, slope, drainage density, and land cover. We used field observations, community knowledge, and the Analytical Hierarchy Process to rank and weight the spatial datasets within the GWRP model. We found that GWRP is the highest where precipitation is relatively high, geologic deposits are coarse-grained and unconsolidated, soils are variants of sands and gravels, the terrain is flat, drainage density is low, and land cover is undeveloped. We used GIS to create a map of GWRP, determining that over 83% of this region has a moderate or greater capacity for groundwater recharge. We used two methods to validate this map and assessed it as approximately 87% accurate. This study provides an important tool to support informed groundwater management decisions in this and other similar remote mountainous landscapes. Full article
(This article belongs to the Special Issue Remote Sensing Approaches to Groundwater Management and Mapping)
Show Figures

Figure 1

23 pages, 8931 KiB  
Article
Refined Simulation Study on the Effect of Scour Environments on Local Scour of Tandem Bridge Piers
by Pengcheng Gao, Xianyou Mou and Honglan Ji
Sustainability 2023, 15(9), 7171; https://doi.org/10.3390/su15097171 - 25 Apr 2023
Cited by 5 | Viewed by 1960
Abstract
Ice cover is a natural phenomenon unique to rivers in cold regions, and its existence is one of the reasons for the collapse of structural foundations of bridge piers across rivers. In order to understand the influence of different scouring environments on the [...] Read more.
Ice cover is a natural phenomenon unique to rivers in cold regions, and its existence is one of the reasons for the collapse of structural foundations of bridge piers across rivers. In order to understand the influence of different scouring environments on the hydrodynamics and sand bed morphology in the local scour holes around bridge pier foundations, this paper simulates the dynamic evolution process of the local scouring of tandem combination piers under open-flow and ice-cover environments, based on a turbulence model using the Reynolds-averaged Navier Stokes (RANS) method and a sediment transport model considering the slope collapse effect, respectively. This study also takes the vortex flow and shear stress distribution at different characteristic moments of the pier perimeter section as the penetration point to analyze the effect of the influence law of the scouring environment on the morphology and relative time scale of the scour hole, and makes a detailed comparison with the results of the indoor flume test. The results of this study show that: for local scouring in open-flow conditions, sediment initiation is doubly inhibited and the hydrodynamic forces in the scouring hole are weakened; the local scouring caused by ice cover contributes to the total scouring of the submerged pier within its coverage area, which significantly increases the depth and range of the local scouring hole; and, although the interaction of turbulent eddies and shear stress on the pier side is the main dynamic mechanism of the scouring generated around the pier, the two have a strong correlation. The results of this study, obtained by accurately quantifying the amount of eddies and shear stress around the pier, are the basis for the reasonable estimation of the maximum local scouring depth, which can provide a reference for the study of the evolution of the riverbed around submerged structures in cold areas and is essential to avoid structural damage to the piers and reduce the economic loss of traffic.. Full article
Show Figures

Figure 1

27 pages, 23166 KiB  
Article
Evolution of the Chenglingji–Datong Channel in the Middle and Lower Reaches of the Yangtze River and Its Drivers
by Xiaoai Dai, Wenyu Li, Shijin Chen, Jianwen Zeng, Chenbo Tong, Jiayun Zhou, Tianyu Xiang, Junjun Zhang, Cheng Li, Yakang Ye, Li Xu and Xiaoli Jiang
Water 2023, 15(8), 1484; https://doi.org/10.3390/w15081484 - 11 Apr 2023
Cited by 2 | Viewed by 3540
Abstract
In recent years, the water–sand composition of the Yangtze River channel has changed due to the influence of human factors, especially the construction of water reservoirs such as the Three Gorges Project. Changing water–sand conditions have a long-term impact on the shaping of [...] Read more.
In recent years, the water–sand composition of the Yangtze River channel has changed due to the influence of human factors, especially the construction of water reservoirs such as the Three Gorges Project. Changing water–sand conditions have a long-term impact on the shaping of the river channel morphology in the middle and lower reaches of the Yangtze River, and the erosion retreat of local river sections has caused great harm to embankment projects. This paper focuses on the river evolution mechanism of the river channel from Chenglingji to Datong in the middle and lower reaches of the Yangtze River over the past 31 years. Landsat remote sensing images from 1989–2019 were used to extract and interpret water bodies, river shorelines, and central bars in the study area using the Modified Normalized Difference Water Index (MNDWI) combined with visual interpretation. We used near analysis to study the morphological evolution characteristics of the river, the channel, and selected typical river reaches for comparative analysis. We found out that the overall change in river morphology between 1989 and 2019 was small in the horizontal direction, but the local area changed significantly. Considerable scouring occurred in the vertical direction. Combining hydrological and meteorological data, we investigated the effects of the Three Gorges Dam, instream sand mining, boundary conditions, vegetation cover on both sides of the riverbanks, and aspects of storm flooding in the watershed on the evolution of the river. The study indicated that the geological conditions on both sides of the river, the implementation of the bank protection project, and the improvement of vegetation cover on both sides of the river have made the riverbanks more resistant to scouring. However, heavy rainfall floods, the operation of the Three Gorges Reservoir, and sand mining activities in the river channel make the river channel more susceptible to scouring. Based on the calculation of the slope change rate of the accumulated volume, it was found that the runoff is mainly influenced by precipitations, while the sand transport is mainly affected by human activities. This study shows that natural and anthropogenic activities affect the equilibrium state of the river’s water and sediment to varying degree. Full article
Show Figures

Figure 1

Back to TopTop