Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,141)

Search Parameters:
Keywords = scavenger

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7670 KB  
Article
Biogenic Synthesis of Gold Nanoparticles Using Scabiosa palaestina Extract: Characterization, Anticancer and Antioxidant Activities
by Heba Hellany, Adnan Badran, Ghosoon Albahri, Nadine Kafrouny, Riham El Kurdi, Marc Maresca, Digambara Patra and Elias Baydoun
Nanomaterials 2025, 15(17), 1368; https://doi.org/10.3390/nano15171368 - 4 Sep 2025
Abstract
Gold nanoparticles (AuNPs) are promising materials for the development of novel anticancer agents, and their green synthesis has become essential because of their numerous advantages. This study aimed to synthesize AuNPs using an ethanolic extract of Scabiosa palaestina, characterize their physicochemical properties, [...] Read more.
Gold nanoparticles (AuNPs) are promising materials for the development of novel anticancer agents, and their green synthesis has become essential because of their numerous advantages. This study aimed to synthesize AuNPs using an ethanolic extract of Scabiosa palaestina, characterize their physicochemical properties, and evaluate their anticancer properties and antioxidant potential. AuNPs were successfully synthesized and characterized using UV–visible spectroscopy, scanning electron microscopy (SEM), zeta potential analysis, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). The results indicated that the biosynthesized AuNPs were spherical and well-dispersed, exhibiting an absorption peak at 560 nm and an average size of 9.9 nm. Cytotoxicity assays demonstrated dose- and time-dependent inhibitory effects on MDA-MB-231, Capan-2, HCT116, and 22Rv1 cancer cell lines, with 22Rv1 and MDA-MB-231 cells showing the most potent responses. At the highest concentration tested (100 µg/mL), after 72 h, cell viability was reduced to 16.04  ±  1.8% for 22Rv1 and 17.48  ±  8.3% for MDA-MB-231 cells. Additionally, the AuNPs exhibited concentration-dependent antioxidant activity in both 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) scavenging assays. In summary, the synthesized AuNPs demonstrated multifunctional properties that make them suitable for a wide range of biomedical and biotechnological applications. Full article
Show Figures

Graphical abstract

16 pages, 1486 KB  
Article
Yield and Bioactive Compounds of Asparagus (Asparagus officinalis L.) Grown in Open Field and Rain Shelter Systems on Reclaimed Land in Saemangeum
by Ju Young Hong, Hyo Jung Jang, Han Na Lee, Seung Wook Choi, Hyun Hwan Jung, Myung Suk Ahn, In Bog Lee and Yang Gyu Ku
Horticulturae 2025, 11(9), 1067; https://doi.org/10.3390/horticulturae11091067 - 4 Sep 2025
Abstract
The aim of this study is to provide basic data on the yield and bioactive compound contents of the male asparagus cultivar ‘Avalim’ grown under two cultivation systems, i.e., an open field and a rain shelter house, in the Saemangeum reclaimed land. Spear [...] Read more.
The aim of this study is to provide basic data on the yield and bioactive compound contents of the male asparagus cultivar ‘Avalim’ grown under two cultivation systems, i.e., an open field and a rain shelter house, in the Saemangeum reclaimed land. Spear sprouting, yield parameters, polyphenol and flavonoid contents, antioxidant enzyme activities (catalase, ascorbate peroxidase, peroxidase, and superoxide dismutase), and DPPH and ABTS radical scavenging activities of 22-month-old asparagus cultivated in each system were measured. Spear sprouting occurred approximately 10 days earlier in the rain shelter house than in the open field. The number of asparagus spears per 1000 m2 was approximately 600 higher in the rain shelter house, and the total weight was 21% higher than that in the open field. Polyphenol and flavonoid contents, antioxidant enzyme activities, and DPPH and ABTS radical scavenging activities were higher in the open field than in the rain shelter house. The temperature in the rain shelter house during the cultivation period was 0.6 to 17.4 °C higher than that in the open field, while light intensity was 359.7 μmol·m−2·s−1 higher in the open field. Consequently, cultivation in Saemangeum reclaimed land resulted in higher yields in the rain shelter house, whereas the bioactive compound levels were higher in the open field. Therefore, selecting an appropriate cultivation system based on the intended purpose, focusing on yield or functional quality, when cultivating asparagus on reclaimed land is important. Full article
(This article belongs to the Section Vegetable Production Systems)
Show Figures

Figure 1

24 pages, 5531 KB  
Article
Characterization of the Anticholinesterase and Antioxidant Properties of Phytochemicals from Moringa oleifera as a Potential Treatment for Alzheimer’s Disease
by Adel M. Aljadaan, Ayman M. AlSaadi, Ibrahim A. Shaikh, Alison Whitby, Arundhati Ray, Dong-Hyun Kim and Wayne G. Carter
Biomedicines 2025, 13(9), 2148; https://doi.org/10.3390/biomedicines13092148 - 3 Sep 2025
Abstract
Background/Objectives: Alzheimer’s disease (AD) is the most prevalent form of dementia and is characterized by a decline in cognition that may be due, in part, to deficient cholinergic signalling. Cholinesterase inhibitors (ChEIs) are the first-line pharmacotherapies for treating the diminished cholinergic function in [...] Read more.
Background/Objectives: Alzheimer’s disease (AD) is the most prevalent form of dementia and is characterized by a decline in cognition that may be due, in part, to deficient cholinergic signalling. Cholinesterase inhibitors (ChEIs) are the first-line pharmacotherapies for treating the diminished cholinergic function in AD patients. Plant phytochemicals may provide useful ChEIs and mitigate other elements of AD pathology, including oxidative stress. Methods: Herein, the phytochemicals present in Moringa oleifera aqueous and methanolic extracts were identified by LC-MS/MS and the potential of several phytochemicals (4-O-caffeoylquinic acid (4-CQA), quercetin 3-β-D-glucoside (Q3-β-D), chlorogenic acid (CGA), and rutin) to act as ChEIs and antioxidants was assessed. Results: The phytochemicals inhibited human acetylcholinesterase (AChE) in the following order of potency: 4-CQA > Q3-β-D > CGA > rutin; for AChE from Electrophorus electricus, the order of potency was Q3-β-D > 4-CQA > CGA > rutin. For human butyrylcholinesterase (hBuChE), the order of potency was rutin > 4-CQA > Q3-β-D > CGA and for equine serum BuChE, it was 4-CQA > Q3-β-D > rutin > CGA. Molecular docking validated the binding of the phytochemicals to cholinesterases, with binding affinities comparable to or higher than those of ChEI drugs. All the phytochemicals displayed potent radical-scavenging and antioxidant activities across six assays. 4-CQA was the most effective antioxidant in three of the assays. Conclusions: M. oleifera contains phytochemicals with weak ChEI activity and potent antioxidant capacity, with potential use as nutraceuticals to treat the cholinergic signalling deficit and oxidative stress that typifies AD pathology. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

24 pages, 4015 KB  
Article
Selenium Nanoparticles: Synthesis, Stability and In Vitro Evaluation in Human Lens Epithelial Cells
by Lulwah Al-Bassam, Mohammed M. Naiyer, Christopher J. Morris, Steve Brocchini and Gareth R. Williams
Pharmaceutics 2025, 17(9), 1157; https://doi.org/10.3390/pharmaceutics17091157 - 3 Sep 2025
Abstract
Background/Objectives: Oxidative stress plays a critical role in the development of ocular diseases such as cataracts. Selenium nanoparticles (SeNPs) offer antioxidant benefits with low toxicity. This study aimed to evaluate the antioxidant activity of SeNPs coated with D-α-tocopheryl polyethylene glycol succinate (TPGS) [...] Read more.
Background/Objectives: Oxidative stress plays a critical role in the development of ocular diseases such as cataracts. Selenium nanoparticles (SeNPs) offer antioxidant benefits with low toxicity. This study aimed to evaluate the antioxidant activity of SeNPs coated with D-α-tocopheryl polyethylene glycol succinate (TPGS) in human lens epithelial (HLE) cells. Methods: SeNPs were synthesised by reducing sodium selenite with ascorbic acid in the presence of TPGS. Physicochemical characterisation was carried out using dynamic light scattering to assess size and surface charge. Antioxidant activity was measured by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Cytocompatibility was assessed on adult retinal pigment epithelial (ARPE-19) and HLE cells using PrestoBlue. Functional antioxidant performance was determined through enzymatic assays for glutathione peroxidase (GPx), thioredoxin reductase (TrxR), and glutathione (GSH), and lipid peroxidation was assessed using malondialdehyde (MDA) quantification. Catalase mimicry was evaluated under 3-amino-1,2,4-triazole (3-AT)-induced inhibition. Results: The optimal SeNP formulation had an average hydrodynamic diameter of 44 ± 3 nm, low PDI (<0.1), and a surface charge of −15 ± 3 mV. These TPGS-SeNPs demonstrated strong radical scavenging (EC50 ≈ 1.55 µg/mL) and were well tolerated by ARPE-19 cells (IC50 = 524 µg/mL), whereas HLE cells had a narrower biocompatibility window (≤0.4 µg/mL, IC50 = 2.2 µg/mL). Under oxidative stress, SeNPs significantly enhanced GPx and TrxR activity but did not affect GSH or MDA levels. No catalase-mimetic activity was observed. Conclusions: TPGS-SeNPs exhibit potent antioxidant enzyme modulation under stress conditions in HLE cells. Although not affecting all oxidative markers, these nanoparticles show promise for non-invasive strategies targeting lens-associated oxidative damage, including cataract prevention. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

17 pages, 592 KB  
Review
Exploring the Influence of Extraction Methods, Solvents, and Temperature on Total Phenolic Recovery and Antioxidant Capacity in Olive Leaf Extracts: A Systematic Review with Quantitative Synthesis
by María Castillo-Correa, Cristina Montalbán-Hernández, María D. Navarro-Hortal, Diego Peña-Guzmán, Alberto Badillo-Carrasco, Alfonso Varela-López, Daniel Hinojosa-Nogueira and Jose M. Romero Márquez
Separations 2025, 12(9), 236; https://doi.org/10.3390/separations12090236 - 3 Sep 2025
Abstract
Background: Olive leaves are a rich source of bioactive phenolic compounds, but extraction yields vary depending on methodological choices. The aim was to identify optimal parameters for maximizing recovery and preserving antioxidant activity. Methods: Fourteen studies (149 samples) were included, following predefined eligibility [...] Read more.
Background: Olive leaves are a rich source of bioactive phenolic compounds, but extraction yields vary depending on methodological choices. The aim was to identify optimal parameters for maximizing recovery and preserving antioxidant activity. Methods: Fourteen studies (149 samples) were included, following predefined eligibility criteria and PRISMA guidelines for systematic review. Data on TPC, TFC, and antioxidant assays (DPPH, FRAP, ABTS) were extracted and analyzed according to extraction method, solvent type, and processing conditions. Results: Soxhlet extraction and shaking achieved the highest TPC and antioxidant capacity, whereas ultrasound-assisted and high-voltage electrical discharge extractions showed lower averages unless intensity or duration was increased. Solvent polarity was critical: ≥75% aqueous methanol provided the highest TPC and FRAP, while ≥75% ethanol yielded the greatest TFC and ABTS activity. Pure water consistently gave the lowest yields. Extractions at >50 °C increased TPC up to fivefold compared to room temperature but did not proportionally improve radical-scavenging capacity. Most phenolic compounds were recovered within ≤1 h under optimized, heated, or assisted conditions, with longer times offering no significant advantage. Conclusions: Optimizing solvent composition, temperature, and extraction time is essential for maximizing yield and maintaining antioxidant quality in olive leaf extracts, and standardized protocols are needed to enable direct comparisons across studies. Full article
Show Figures

Figure 1

24 pages, 1864 KB  
Review
Multiple Applications of Nanomaterials in the Diagnosis and Treatment of Hemorrhagic Stroke
by Boyao Yuan, Taotao Jiang, Jingjing Han, Ting Zheng and Manxia Wang
Biomolecules 2025, 15(9), 1272; https://doi.org/10.3390/biom15091272 - 3 Sep 2025
Abstract
Hemorrhagic stroke is a severe cerebrovascular disease with a high rate of disability and mortality. Its complex pathological mechanisms, such as blood–brain barrier damage, neuroinflammation, and oxidative stress, along with the restrictive nature of the blood–brain barrier, have restricted the clinical therapeutic effects [...] Read more.
Hemorrhagic stroke is a severe cerebrovascular disease with a high rate of disability and mortality. Its complex pathological mechanisms, such as blood–brain barrier damage, neuroinflammation, and oxidative stress, along with the restrictive nature of the blood–brain barrier, have restricted the clinical therapeutic effects of drugs. Nanotechnology, with its advantages of targeting ability, biocompatibility, and multifunctionality, has provided a new approach for the precise diagnosis and treatment of hemorrhagic stroke. In terms of diagnosis, imaging technology enhanced by magnetic nanoparticles can achieve real-time bedside monitoring of hematoma dynamics and cerebral perfusion, significantly improving the timeliness compared with traditional imaging methods. In the field of treatment, the nanodrug delivery system can remarkably improve the bioavailability and brain targeting of clinical drugs and herbal medicines by enhancing drug solubility, crossing the blood–brain barrier, and responsive and targeting drug release. Multifunctional inorganic nanomaterials, such as cerium oxide nanoparticles, graphene, and perfluorooctyl octyl ether nanoparticles, can alleviate brain edema and neuronal damage through antioxidant and anti-inflammatory effects, and the scavenging of free radicals. Moreover, gene delivery mediated by nanocarriers and stem cell transplantation protection strategies have provided innovative solutions for regulating molecular pathways and promoting nerve repair. Although nanotechnology has shown great potential in the diagnosis and treatment of hemorrhagic stroke, its clinical translation still faces challenges such as the evaluation of biosafety, standardization of formulations, and verification of long-term efficacy. In the future, it is necessary to further optimize material design and combine multimodal treatment strategies to promote a substantial breakthrough in this field from basic research to clinical application. Full article
(This article belongs to the Section Bio-Engineered Materials)
Show Figures

Figure 1

14 pages, 1465 KB  
Article
Ku2: A Novel Korean Purple-Green Tea Germplasm (Camellia sinensis) with Enhanced Polyphenols and Antioxidant Activity
by Yun-Suk Kwon, Doo-Gyung Moon, Ha Rim Hong, Byung-Hyuk Kim, Eun Young Song, Chun Hwan Kim and Su Jin Kim
Plants 2025, 14(17), 2742; https://doi.org/10.3390/plants14172742 - 2 Sep 2025
Abstract
Although colored-leaf tea germplasms can broaden product diversity and functional potential, such resources have been rarely reported in Korea. Herein, we comprehensively characterized Ku2, a newly discovered purple-green line of Camellia sinensis, and benchmarked it against the conventional green-leaf ‘Sangmok’. Five-year-old plants [...] Read more.
Although colored-leaf tea germplasms can broaden product diversity and functional potential, such resources have been rarely reported in Korea. Herein, we comprehensively characterized Ku2, a newly discovered purple-green line of Camellia sinensis, and benchmarked it against the conventional green-leaf ‘Sangmok’. Five-year-old plants grown under identical open-field conditions were evaluated for growth characteristics, leaf pigmentation, biochemical composition, and antioxidant capacity. Ku2 exhibited a more vigorous growth habit with denser branching and produced leaves that were 11% longer and 17% wider than those of ‘Sangmok’, but chlorophyll concentrations were 29–33% lower. Young shoots of Ku2 in the first flush accumulated markedly higher levels of total polyphenols (+38%), anthocyanins (+78%), and total catechins (+35%), including a 70% increase in epigallocatechin-3-gallate. But amino acid and theanine contents were reduced to 30% and 25% of those in ‘Sangmok’, respectively. Consistent with its polyphenol enrichment, Ku2 extracts displayed superior radical-scavenging activity, with lower DPPH and ABTS IC50 values (7.6 ± 0.5 and 11.6 ± 0.2 µg·mL−1) than ‘Sangmok’ (10.1 ± 0.4 and 15.1 ± 0.1 µg·mL−1), approaching ascorbic acid and Trolox standards. These findings highlight Ku2 as a valuable germplasm for developing premium Korean teas and for breeding colored-leaf cultivars enriched with health-promoting metabolites. Full article
Show Figures

Graphical abstract

29 pages, 1067 KB  
Article
Synthesis, Purification, Characterization, and ABTS Antioxidant Evaluation of Novel Azo Dyes
by Jeremy A. Rodríguez-Vargas, Sebastián H. Díaz-Rodríguez, Víctor G. Vergara-Rodríguez, Ángel Vidal-Rosado, Cristtian Rivera-Torres, Alejandra Ríos-Rodríguez, Martín Rodríguez-Del Valle, Daliana Agosto-Disdier, Marielys Torres-Díaz, Kai H. Griebenow and Raúl R. Rodríguez-Berríos
Organics 2025, 6(3), 39; https://doi.org/10.3390/org6030039 - 2 Sep 2025
Abstract
The search for bioactive compounds with antioxidant properties is critical in combating oxidative stress-related diseases and advancing novel therapeutic agents. Azo dyes, traditionally used in textiles, food, and cosmetics, have recently attracted attention due to their emerging biological activities, including antioxidant potential. In [...] Read more.
The search for bioactive compounds with antioxidant properties is critical in combating oxidative stress-related diseases and advancing novel therapeutic agents. Azo dyes, traditionally used in textiles, food, and cosmetics, have recently attracted attention due to their emerging biological activities, including antioxidant potential. In this study, we synthesized and characterized 267 azo dyes derived from natural phenolic cores such as salicylic acid, syringol, and 5,6,7,8-tetrahydro-2-naphthol. Eighteen of these compounds are novel. Structural characterization was performed using NMR, UV-Vis, IR spectroscopy, and mass spectrometry. Antioxidant activity was assessed using in vitro assays with ABTS radical scavenging method. SAR analysis revealed that dyes derived from syringol and 5, 6, 7, 8-tetrahydro-2-naphthol showed the most consistent and potent antioxidant activity. Notably, azo dyes bearing fluoro and nitro substituents in the para position exhibited the lowest IC50 values, highlighting the influence of electron-withdrawing groups and substitution patterns on antioxidant behavior. This work establishes a precedent for SAR-driven evaluation of azo dyes using ABTS and supports their further exploration as functional antioxidant agents in medicinal chemistry. Full article
29 pages, 2817 KB  
Review
Post-Translational Modifications of Lipoproteins: Emerging Players Linking Inflammation and Cardiovascular Disease in Rheumatoid Arthritis—A Narrative Review
by Chuanhui Xu, Javier Rodríguez-Carrio, Yang Xie, Fanlei Hu, Wei Ming Chong, Han Wei Hou, Rinkoo Dalan and Khai Pang Leong
Int. J. Mol. Sci. 2025, 26(17), 8514; https://doi.org/10.3390/ijms26178514 - 2 Sep 2025
Viewed by 151
Abstract
Patients with rheumatoid arthritis (RA) have an increased risk of cardiovascular disease (CVD) that cannot be fully explained by traditional cardiometabolic risk factors. The observed ‘lipid paradox’, where RA patients with lower total cholesterol and low-density lipoprotein cholesterol (LDL-C) levels exhibit higher CVD [...] Read more.
Patients with rheumatoid arthritis (RA) have an increased risk of cardiovascular disease (CVD) that cannot be fully explained by traditional cardiometabolic risk factors. The observed ‘lipid paradox’, where RA patients with lower total cholesterol and low-density lipoprotein cholesterol (LDL-C) levels exhibit higher CVD risk, may be attributed to post-translational modifications (PTMs). These lipoprotein PTMs likely arise from inflammatory pathways. While PTMs like citrullination and carbamylation are well recognized in RA joint pathology, their occurrence in other protein compartments and their role in CVD have been less well explored. This scoping review summarizes the current literature on PTMs of lipoproteins, including oxidation, nitration, carbamylation, and citrullination, and their impacts on CVD in RA. We also discuss immune responses to these PTMs, their interactions with scavenger receptors, and the effects of disease-modifying antirheumatic drugs. Further research on PTMs may uncover new pathways linking autoimmunity, inflammation, and vascular damage, offering novel diagnostic and therapeutic opportunities for RA-associated CVD. Full article
(This article belongs to the Special Issue Cardioimmunology: Inflammation and Immunity in Cardiovascular Disease)
Show Figures

Figure 1

18 pages, 556 KB  
Review
Pea-Derived Antioxidant Peptides: Applications, Bioactivities, and Mechanisms in Oxidative Stress Management
by Yiming Gan, Ni Xie and Deju Zhang
Chemistry 2025, 7(5), 141; https://doi.org/10.3390/chemistry7050141 - 2 Sep 2025
Viewed by 42
Abstract
Chronic injuries and diseases related to oxidative stress are major global concerns as they impose a great medical burden and lead to serious public health issues. Antioxidant peptides derived from pea protein can serve as potent antioxidants and food additives, contributing to address [...] Read more.
Chronic injuries and diseases related to oxidative stress are major global concerns as they impose a great medical burden and lead to serious public health issues. Antioxidant peptides derived from pea protein can serve as potent antioxidants and food additives, contributing to address the challenges posed by oxidative stress. This review will focus on the antioxidant effects of pea peptides demonstrated in various in vitro chemical, cellular, and in vivo antioxidant models. Additionally, this review also summarizes the regulatory role of pea peptides on the Nrf2 (NF-E2-related factor 2)/Kelch-like ECH-associated protein 1 (Keap1) pathway, aiming to elucidate their antioxidant mechanisms. Our review found that pea peptides with smaller molecular weights (<1 kDa) obtained through enzymatic hydrolysis or fermentation and/or those containing amino acids such as Glu, Asp, Gly, Pro, and Leu tend to exhibit higher antioxidant activity. These pea peptides exert their antioxidant effects by scavenging free radicals, chelating pro-oxidative transition metals, reducing hydrogen peroxide, inactivating reactive oxygen species, enhancing the expression of antioxidant enzymes, and reducing the accumulation of lipid peroxides. Our study provides a theoretical foundation for the development of pea resources and the processing of pea-related functional foods. Full article
Show Figures

Figure 1

34 pages, 9695 KB  
Article
Anticancer Effects of Ascorbic Acid: Not All Sides Fit All
by Uche O. Arunsi, Jeremiah O. Olugbami and Adegboyega K. Oyelere
Cancers 2025, 17(17), 2877; https://doi.org/10.3390/cancers17172877 - 1 Sep 2025
Viewed by 118
Abstract
Background/Objectives: Ascorbic acid (AA)is a micronutrient with concentration-dependent anticancer properties, acting either as a reactive oxygen species (ROS) scavenger or inducer. Methods: Conventional redox-based assays such as MTS/MTT often overestimate cell proliferation due to AA’s interaction with tetrazolium salts, leading to increased [...] Read more.
Background/Objectives: Ascorbic acid (AA)is a micronutrient with concentration-dependent anticancer properties, acting either as a reactive oxygen species (ROS) scavenger or inducer. Methods: Conventional redox-based assays such as MTS/MTT often overestimate cell proliferation due to AA’s interaction with tetrazolium salts, leading to increased formazan production. To overcome this limitation, we employed the Propidium Iodide Triton X-100 (PI/TX-100) assay to evaluate AA’s cytotoxic effects across a diverse panel of cancer and normal cell lines, including prostate (22Rv1, C4-2B, DU-145, LNCaP), breast (MCF-7, MDA-MB-231, MDA-MB-453), lung (A549), liver (HepG2, SK-HEP-1, Huh7), and kidney (Vero) cells. Results: AA significantly suppressed cancer cell viability compared to normal cells (RWPE1 and Vero), with the strongest effects observed in hormone receptor-positive lines. The relative sensitivity to AA followed distinct patterns within each cancer type. Mechanistically, AA-induced cell death involved ROS generation, lipid peroxidation, cell cycle arrest, ferroptosis, apoptosis, and downregulation of pyruvate dehydrogenase kinase 1 (PDHK1). Conclusions: These findings further support the potential of AA as a selective anticancer agent and highlight the importance of assay choice in evaluating its therapeutic efficacy. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Graphical abstract

31 pages, 4629 KB  
Article
Mandragora autumnalis: Phytochemical Composition, Antioxidant and Anti-Cancerous Bioactivities on Triple-Negative Breast Cancer Cells
by Ghosoon Albahri, Adnan Badran, Heba Hellany, Serine Baydoun, Rola Abdallah, Mohamad Alame, Akram Hijazi, Marc Maresca and Elias Baydoun
Int. J. Mol. Sci. 2025, 26(17), 8506; https://doi.org/10.3390/ijms26178506 - 1 Sep 2025
Viewed by 179
Abstract
Breast cancer is a common and chronic condition, and despite improvements in diagnosis, treatment, and prevention, the number of cases of breast cancer is rising annually. New therapeutic drugs that target specific checkpoints should be created to fight breast cancer. Mandragora autumnalis possesses [...] Read more.
Breast cancer is a common and chronic condition, and despite improvements in diagnosis, treatment, and prevention, the number of cases of breast cancer is rising annually. New therapeutic drugs that target specific checkpoints should be created to fight breast cancer. Mandragora autumnalis possesses substantial cultural value as a herb and is regarded as one of the most significant medicinal plants; however, little is known about its anticancerous biological activity and chemopreventive molecular pathways against the triple-negative breast cancer (MDA-MB-231) cell line. In this study, the antioxidant, anticancer, and underlying molecular mechanisms of the Mandragora autumnalis ethanolic leaves extract (MAE) were evaluated, and its phytochemical composition was determined. Results indicated that MAE diminished the viability of MDA-MB-231 cells in a concentration- and time-dependent manner. Although MAE exhibited 55% radical scavenging activity at higher concentrations in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, the attenuation of its cytotoxic effects in MDA-MB-231 cells with N-acetylcysteine (NAC) co-treatment suggests a potential role of oxidative stress. Additionally, MAE caused an increase in the tumor suppressor p53. Moreover, this extract caused a significant decrease in the expression of Ki-67 (a cellular proliferation marker), MMP-9 (matrix metalloproteinase-9, an enzyme involved in extracellular matrix degradation and metastasis), and STAT-3 (a transcription factor regulating cell growth and survival). Also, MAE altered cell cycle, cell migration, angiogenesis, invasion, aggregation, and adhesion to suppress cellular processes linked to metastasis. All of our research points to MAE’s potential to function as an anticancer agent and opens up new possibilities for the development of innovative triple-negative breast cancer treatments. Full article
Show Figures

Graphical abstract

16 pages, 6554 KB  
Article
MfWRKY40 Positively Regulates Drought Tolerance in Arabidopsis thaliana by Scavenging Reactive Oxygen Species
by Xueli Zhang, Wei Duan, Yuxiang Wang, Zhihu Jiang and Qian Li
Int. J. Mol. Sci. 2025, 26(17), 8495; https://doi.org/10.3390/ijms26178495 - 1 Sep 2025
Viewed by 99
Abstract
Drought stress is a major abiotic constraint that severely restricts the growth of Medicago falcata L. by inducing the accumulation of reactive oxygen species (ROS) in plants. WRKY transcription factors (TFs) play a key role in regulating plant responses to drought stress. In [...] Read more.
Drought stress is a major abiotic constraint that severely restricts the growth of Medicago falcata L. by inducing the accumulation of reactive oxygen species (ROS) in plants. WRKY transcription factors (TFs) play a key role in regulating plant responses to drought stress. In this study, we investigated the role of the MfWRKY40 gene in drought tolerance. Under mannitol and ABA stress treatments, MfWRKY40-overexpressing lines (OEs) showed significantly longer primary roots, increased lateral roots, and higher fresh weight compared to wild-type (Col) lines, indicating significantly enhanced growth and drought tolerance. Similarly, under soil drought conditions, transgenic Arabidopsis thaliana exhibited enhanced drought tolerance. NBT staining demonstrated decreased ROS accumulation in transgenic lines after stress treatment. Correspondingly, the MfWRKY40-overexpressing lines displayed significantly lower levels of hydrogen peroxide (H2O2), superoxide anion (O2), and malondialdehyde (MDA) compared to Col, along with elevated activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), as well as increased proline (Pro) content. Furthermore, MfWRKY40 upregulated the expression of antioxidant enzyme genes (AtPOD3, AtSOD4, and AtCAT1) and modulated the expression of other drought-related genes. In summary, our results demonstrate that MfWRKY40 enhances drought tolerance in A. thaliana by improving ROS scavenging capacity. This study provides a theoretical foundation for further exploration of MfWRKY40’s functional mechanisms in drought stress adaptation. Full article
(This article belongs to the Special Issue Abiotic Stress in Plants: Physiological and Molecular Responses)
Show Figures

Figure 1

22 pages, 4544 KB  
Article
Immune Enhancement Effects and Extraction Optimization of Polysaccharides from Peristrophe roxburghiana
by Yong Chen, Zilong Zhao, Yanyan Xu, Fuyan Li and Qiping Zhan
Antioxidants 2025, 14(9), 1072; https://doi.org/10.3390/antiox14091072 - 1 Sep 2025
Viewed by 127
Abstract
The present study aims to optimize the extraction process and systematically investigate the bioactivity of polysaccharides derived from Peristrophe roxburghiana (Schult.) Brem. (CPPRs). To this end, the Box–Behnken design–response surface methodology was employed to optimize the extraction parameters of polysaccharides. The optimal extraction [...] Read more.
The present study aims to optimize the extraction process and systematically investigate the bioactivity of polysaccharides derived from Peristrophe roxburghiana (Schult.) Brem. (CPPRs). To this end, the Box–Behnken design–response surface methodology was employed to optimize the extraction parameters of polysaccharides. The optimal extraction conditions were as follows: extraction temperature, 84 °C; extraction duration, 208 min; liquid-to-material ratio, 1:27 g/mL; extraction times, 4 times. The maximum extraction yield reached 17.89%, and the yield under non-optimal extraction conditions is 11–16%. This study systematically investigated the polysaccharides’ physicochemical, structural, and morphological properties using multiple advanced techniques (FTIR, SEM, XRD, HPLC, rheology, and TGA). CPPRs are primarily composed of arabinose, galactose and glucose as the main monosaccharides, amorphous, and capable of low-viscosity gels at low shear rates. Furthermore, CPPRs displayed notable antioxidant activity in vitro, scavenging ABTS•+ and DPPH and reducing Fe3+ (with scavenging/reducing rates exceeding 40% at a concentration of 1 mg/mL). Meanwhile, 3 mg/mL CPPRs reduced oxidative damage of red blood cells induced by AAPH, scavenging more than 50% of ROS, and reducing the hemolysis rate by 94.5%. Additionally, CPPRs significantly promoted secretion of cytokines (including TNF-α, IL-6, and IL-10) and NO in RAW264.7 macrophages in vitro compared with the untreated control group. These findings collectively highlight the potential of CPPRs—possessing both antioxidant and immune-enhancing properties—as promising functional ingredients for application in the food and pharmaceutical industries. Full article
Show Figures

Figure 1

22 pages, 8840 KB  
Article
Assessment of Nutritional Components, Mineral Profiles, and Aroma Compounds in Zanthoxylum armatum Fruit from Different Harvest Times, Tree Age and Fruiting Position
by Yixiao Xiao, Tao Gu, Shiyao Hu, Yiming Kong, Jingwen Huang, Yaxuan Sun, Ting Yu, Guoqing Zhuang and Shun Gao
Horticulturae 2025, 11(9), 1028; https://doi.org/10.3390/horticulturae11091028 - 1 Sep 2025
Viewed by 182
Abstract
Zanthoxylum armatum DC. (Z. armatum) is a versatile plant species valued for its aroma oil and nutritional components. However, the variability of chemical composition in Z. armatum fruits in the field remains largely unknown, and it is still unclear how harvest [...] Read more.
Zanthoxylum armatum DC. (Z. armatum) is a versatile plant species valued for its aroma oil and nutritional components. However, the variability of chemical composition in Z. armatum fruits in the field remains largely unknown, and it is still unclear how harvest parameters affect the aroma and nutritional quality of the fruits. To address this gap, Z. armatum fruits from varying harvest times, tree ages, and fruiting positions were analyzed for physicochemical properties, nutrients, minerals, aroma profiles, and antioxidant activity. A quality assessment method was developed based on key Z. armatum fruit parameters. Results showed significant differences in the size, weight, total phenol, flavonoid and sanshool content of Z. armatum fruit from different harvest parameters. Z. armatum fruits contained abundant minerals, showing diverse harvest-condition variations. In vitro antioxidant assays showed higher ABTS/DPPH scavenging activity and reducing capacity (23–54 mg/g). HS-SPME-GC-MS identified 64 aroma compounds, encompassing terpenes, alcohols, etc. Linalool was the predominant constituent (46.65%). PLS-DA and Volcano plot analyses highlighted significant differences in VOCs among harvest times and tree ages, while fruit positions showed minimal impact. The Mantel test identified aroma-active compounds associated with antioxidant activity. These findings facilitate a science-based harvesting strategy to standardize Z. armatum fruit quality and marketability. Full article
Show Figures

Graphical abstract

Back to TopTop