Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (980)

Search Parameters:
Keywords = scratch test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4614 KB  
Article
Influence of Plasma Assistance on EB-PVD TBC Coating Thickness Distribution and Morphology
by Grzegorz Maciaszek, Krzysztof Cioch, Andrzej Nowotnik and Damian Nabel
Materials 2025, 18(17), 4109; https://doi.org/10.3390/ma18174109 - 1 Sep 2025
Abstract
In this study, the effects of plasma assistance on the electron beam physical vapour deposition (EB-PVD) process were investigated using an industrial coater (Smart Coater ALD Vacuum Technologies GmbH) equipped with a dual hollow cathode system. This configuration enabled the generation of a [...] Read more.
In this study, the effects of plasma assistance on the electron beam physical vapour deposition (EB-PVD) process were investigated using an industrial coater (Smart Coater ALD Vacuum Technologies GmbH) equipped with a dual hollow cathode system. This configuration enabled the generation of a plasma environment during the deposition of the ceramic top coat onto a metallic substrate. The objective was to assess how plasma assistance influences the microstructure and thickness distribution of 7% wt. yttria-stabilised zirconia (YSZ) thermal barrier coatings (TBCs). Coatings were deposited with and without plasma assistance to enable a direct comparison. The thickness uniformity and columnar morphology of the 7YSZ top coats were evaluated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanical properties of the deposited coatings were verified by the scratch test method. The results demonstrate that, in the presence of plasma, columnar grains become more uniformly spaced and exhibit sharper, well-defined boundaries even at reduced substrate temperatures. XRD analysis confirmed that plasma-assisted EB-PVD processes allow for maintaining the desired tetragonal phase of YSZ without inducing secondary phases or unwanted texture changes. These findings indicate that plasma-assisted EB-PVD can achieve desirable coating characteristics (uniform thickness and optimised columnar structure) more efficiently, offering potential advantages for high-temperature applications in aerospace and power-generation industries. Continued development of the EB-PVD process with the assistance of plasma generation could further improve deposition rates and TBC performance, underscoring the promising future of HC-assisted EB-PVD technology. Full article
(This article belongs to the Special Issue Advancements in Thin Film Deposition Technologies)
Show Figures

Figure 1

24 pages, 2419 KB  
Article
Interpretable Disorder Signatures: Probing Neural Latent Spaces for Schizophrenia, Alzheimer’s, and Autism Stratification
by Zafar Iqbal, Md. Mahfuzur Rahman, Qasim Zia, Pavel Popov, Zening Fu, Vince D. Calhoun and Sergey Plis
Brain Sci. 2025, 15(9), 954; https://doi.org/10.3390/brainsci15090954 - 1 Sep 2025
Abstract
Objective: This study aims to develop and validate an interpretable deep learning framework that leverages self-supervised time reversal (TR) pretraining to identify consistent, biologically plausible functional network biomarkers across multiple neurological and psychiatric disorders. Methods: We pretrained a hierarchical LSTM model using a [...] Read more.
Objective: This study aims to develop and validate an interpretable deep learning framework that leverages self-supervised time reversal (TR) pretraining to identify consistent, biologically plausible functional network biomarkers across multiple neurological and psychiatric disorders. Methods: We pretrained a hierarchical LSTM model using a TR pretext task on the Human Connectome Project (HCP) dataset. The pretrained weights were transferred to downstream classification tasks on five clinical datasets (FBIRN, BSNIP, ADNI, OASIS, and ABIDE) spanning schizophrenia, Alzheimer’s disease, and autism spectrum disorder. After fine-tuning, we extracted latent features and employed a logistic regression probing analysis to decode class-specific functional network contributions. Models trained from scratch without pretraining served as a baseline. Statistical tests (one-sample and two-sample t-tests) were performed on the latent features to assess their discriminative power and consistency. Results: TR pretraining consistently improved classification performance in four out of five datasets, with AUC gains of up to 5.3%, particularly in data-scarce settings. Probing analyses revealed biologically meaningful and consistent patterns: schizophrenia was associated with reduced auditory network activity, Alzheimer’s with disrupted default mode and cerebellar networks, and autism with sensorimotor anomalies. TR-pretrained models produced more statistically significant latent features and demonstrated higher consistency across datasets (e.g., Pearson correlation = 0.9003 for schizophrenia probing vs. −0.67 for non-pretrained). In contrast, non-pretrained models showed unstable performance and inconsistent feature importance. Conclusions: Time Reversal pretraining enhances both the performance and interpretability of deep learning models for fMRI classification. By enabling more stable and biologically plausible representations, TR pretraining supports clinically relevant insights into disorder-specific network disruptions. This study demonstrates the utility of interpretable self-supervised models in neuroimaging, offering a promising step toward transparent and trustworthy AI applications in psychiatry. Full article
Show Figures

Figure 1

16 pages, 5596 KB  
Article
Unraveling the Mechanisms of Madecassoside Derivatives in Wound Healing: Network Pharmacology and Experimental Validation
by Jing Liu, Yuanyuan Li, Cheng Yang and Bingtian Zhao
Pharmaceuticals 2025, 18(9), 1292; https://doi.org/10.3390/ph18091292 - 28 Aug 2025
Viewed by 143
Abstract
Background: Madecassoside is widely utilized in wound healing due to its multiple physiological activities. However, its limited bioavailability and solubility hinder its clinical application. Enzymatic hydrolysis has been employed to enhance the bioavailability and bioactivity of natural products, but its potential for modifying [...] Read more.
Background: Madecassoside is widely utilized in wound healing due to its multiple physiological activities. However, its limited bioavailability and solubility hinder its clinical application. Enzymatic hydrolysis has been employed to enhance the bioavailability and bioactivity of natural products, but its potential for modifying madecassoside remains unexplored. Methods: In this study, we prepared MA1G and MA2G through enzymatic hydrolysis, inspired by the metabolic processes of madecassoside. Network pharmacology was employed to investigate the mechanisms of these madecassoside derivatives (MDs) in wound healing, and molecular docking was performed to evaluate their binding affinities. Transdermal permeation studies, scratch assays, and antioxidant and anti-inflammatory tests were conducted to characterize the biological properties and activities of MDs. Results: Network pharmacology identified TLR4, NF-κB, and STAT3 as key targets for wound healing, and the MDs inhibited the expression of these proteins in vitro. Additionally, the results demonstrated that MDs exhibited robust reactive oxygen species (ROS) scavenging activity (43.05–147.50% reduction) and significantly enhanced cell migration (36.76–77.28% increase). Notably, the biomodified MA2G showed superior transdermal permeability and biological activities. Conclusions: This paper represents the first report directly comparing the biological activities of the parent compound (madecassoside) and its metabolites while simultaneously proposing a novel therapeutic strategy for wound healing. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

25 pages, 11737 KB  
Article
Semaglutide Enhances Cellular Regeneration in Skin and Retinal Cells In Vitro
by Ioanna A. Anastasiou, Anastasios Tentolouris, Panagiotis Sarantis, Athanasia Katsaouni, Eleni Rebelos, Iordanis Mourouzis, Constantinos Pantos and Nikolaos Tentolouris
Pharmaceutics 2025, 17(9), 1115; https://doi.org/10.3390/pharmaceutics17091115 - 27 Aug 2025
Viewed by 251
Abstract
Background/Objectives: Glucagon-like peptide-1 (GLP-1) is an endogenous hormone with receptors widely expressed across multiple organs. GLP-1 receptor agonists (GLP-1RAs), primarily used for diabetes management, have demonstrated anti-inflammatory and antioxidant properties beyond glucose regulation. This study explores the protective effect of semaglutide, a GLP-1RA, [...] Read more.
Background/Objectives: Glucagon-like peptide-1 (GLP-1) is an endogenous hormone with receptors widely expressed across multiple organs. GLP-1 receptor agonists (GLP-1RAs), primarily used for diabetes management, have demonstrated anti-inflammatory and antioxidant properties beyond glucose regulation. This study explores the protective effect of semaglutide, a GLP-1RA, in reducing oxidative stress and promoting wound healing in human dermal fibroblasts. Additionally, it assesses whether semaglutide offers the direct protection of retinal endothelial cells under oxidative stress. Methods: Human dermal fibroblasts and retinal endothelial cells were treated with semaglutide at concentrations ranging from 0 to 45 pg/mL for 24 h under oxidative stress induced by hydrogen peroxide (H2O2). Cell viability and ATP levels were measured via MTT and ATP assays. Apoptosis was evaluated using propidium iodide staining. Intracellular reactive oxygen species (ROS) and mitochondrial superoxide were assessed through confocal microscopy with specific fluorescent probes. Wound healing was tested using scratch assays, with closure monitored over time and quantified with ImageJ (version 1.51). Gene expression levels of antioxidants, extracellular matrix components, inflammatory cytokines, and MMPs (MMP3, MMP9) were determined via real-time PCR. Results: Semaglutide significantly improved cell viability and ATP production under oxidative stress (p < 0.001), while reducing apoptosis and intracellular ROS levels. It notably accelerated fibroblast wound closure, achieving near-complete restoration. Gene analysis revealed increased expression of antioxidant and ECM-related genes, along with decreased pro-inflammatory cytokines and MMPs, indicating reduced inflammation and enhanced tissue remodeling. Conclusions: Semaglutide offers robust antioxidative and cytoprotective effects in dermal fibroblasts and retinal endothelial cells, promoting wound healing. These findings highlight its therapeutic potential for diabetic foot ulcers and diabetic retinopathy, supporting further in vivo investigation. Full article
Show Figures

Figure 1

11 pages, 4000 KB  
Proceeding Paper
Development of Biochar-Based Sustainable Corrosion-Resistant Coating
by Ganesh Zade and Malhari Kulkarni
Eng. Proc. 2025, 105(1), 5; https://doi.org/10.3390/engproc2025105005 - 27 Aug 2025
Viewed by 1392
Abstract
Conventional protective coatings based on petroleum raw materials have certain limitations in terms of their availability, environmental pollution, and sustainability. Therefore, this research successfully investigates the potential of sheep wool-derived biochar to develop a sustainable, high-performance protective coating. Two variants of biochar, namely [...] Read more.
Conventional protective coatings based on petroleum raw materials have certain limitations in terms of their availability, environmental pollution, and sustainability. Therefore, this research successfully investigates the potential of sheep wool-derived biochar to develop a sustainable, high-performance protective coating. Two variants of biochar, namely SW800 and SW1000, were developed by pyrolyzing sheep wool at 800 °C and at 1000 °C for 1 h, respectively. The prepared samples were characterized using FTIR, FESEM-EDX, and XRD analyses to confirm the structural and elemental differences between both biochar samples. Furthermore, biochar-based epoxy coatings were developed by varying the concentration of prepared biochar from 1% to 5%. The coating performance was evaluated for its aesthetic, mechanical, chemical resistance, and hydrophobicity. Crucially, this study demonstrated that biochar inclusion did not compromise critical mechanical and chemical properties like adhesion (5B), flexibility (7 mm), scratch hardness (3500 gms), pencil hardness (3H), acid-alkali resistance, and solvent rub test (rating 5). However, a key finding of this research is that the incorporation of biochar into an epoxy coating resulted in a significant improvement in hydrophobicity, which is measured using water contact angle. The incorporation of SW800 and SW1000 into coating formulations at varying concentrations resulted in an increase in water angle of approximately 18% and 20%, respectively. The outcomes of this project establish biochar-based coatings as a promising solution for eco-friendly and high-performance protective applications. Full article
Show Figures

Figure 1

26 pages, 30652 KB  
Article
Hybrid ViT-RetinaNet with Explainable Ensemble Learning for Fine-Grained Vehicle Damage Classification
by Ananya Saha, Mahir Afser Pavel, Md Fahim Shahoriar Titu, Afifa Zain Apurba and Riasat Khan
Vehicles 2025, 7(3), 89; https://doi.org/10.3390/vehicles7030089 - 25 Aug 2025
Viewed by 354
Abstract
Efficient and explainable vehicle damage inspection is essential due to the increasing complexity and volume of vehicular incidents. Traditional manual inspection approaches are not time-effective, prone to human error, and lead to inefficiencies in insurance claims and repair workflows. Existing deep learning methods, [...] Read more.
Efficient and explainable vehicle damage inspection is essential due to the increasing complexity and volume of vehicular incidents. Traditional manual inspection approaches are not time-effective, prone to human error, and lead to inefficiencies in insurance claims and repair workflows. Existing deep learning methods, such as CNNs, often struggle with generalization, require large annotated datasets, and lack interpretability. This study presents a robust and interpretable deep learning framework for vehicle damage classification, integrating Vision Transformers (ViTs) and ensemble detection strategies. The proposed architecture employs a RetinaNet backbone with a ViT-enhanced detection head, implemented in PyTorch using the Detectron2 object detection technique. It is pretrained on COCO weights and fine-tuned through focal loss and aggressive augmentation techniques to improve generalization under real-world damage variability. The proposed system applies the Weighted Box Fusion (WBF) ensemble strategy to refine detection outputs from multiple models, offering improved spatial precision. To ensure interpretability and transparency, we adopt numerous explainability techniques—Grad-CAM, Grad-CAM++, and SHAP—offering semantic and visual insights into model decisions. A custom vehicle damage dataset with 4500 images has been built, consisting of approximately 60% curated images collected through targeted web scraping and crawling covering various damage types (such as bumper dents, panel scratches, and frontal impacts), along with 40% COCO dataset images to support model generalization. Comparative evaluations show that Hybrid ViT-RetinaNet achieves superior performance with an F1-score of 84.6%, mAP of 87.2%, and 22 FPS inference speed. In an ablation analysis, WBF, augmentation, transfer learning, and focal loss significantly improve performance, with focal loss increasing F1 by 6.3% for underrepresented classes and COCO pretraining boosting mAP by 8.7%. Additional architectural comparisons demonstrate that our full hybrid configuration not only maintains competitive accuracy but also achieves up to 150 FPS, making it well suited for real-time use cases. Robustness tests under challenging conditions, including real-world visual disturbances (smoke, fire, motion blur, varying lighting, and occlusions) and artificial noise (Gaussian; salt-and-pepper), confirm the model’s generalization ability. This work contributes a scalable, explainable, and high-performance solution for real-world vehicle damage diagnostics. Full article
Show Figures

Figure 1

17 pages, 4112 KB  
Article
Preparation of High Self-Healing Diels–Alder (DA) Synthetic Resin and Its Influence on the Surface Coating Properties of Poplar Wood and Glass
by Yang Dong and Xiaoxing Yan
Coatings 2025, 15(9), 988; https://doi.org/10.3390/coatings15090988 - 24 Aug 2025
Viewed by 442
Abstract
Self-healing coatings can replace conventional coatings and are capable of self-healing and continuing to protect the substrate after coating damage. In this study, two types of self-healing resins were synthesized as coatings: Type-A via Diels–Alder crosslinking of furfuryl-modified diglycidyl ether bisphenol A with [...] Read more.
Self-healing coatings can replace conventional coatings and are capable of self-healing and continuing to protect the substrate after coating damage. In this study, two types of self-healing resins were synthesized as coatings: Type-A via Diels–Alder crosslinking of furfuryl-modified diglycidyl ether bisphenol A with bismaleimide, and Type-B through epoxy blending/curing to form a semi-interpenetrating network. FTIR and Raman spectroscopy confirmed the formation of Diels–Alder (DA) bonds, while GPC tests indicated incomplete monomer conversion. Both resins were applied to glass and wood substrates, with performance evaluated through TGA, colorimetry (ΔE), gloss analysis, and scratch-healing tests (120 °C/30 min). The results showed that Type-A resins had a higher healing efficiency (about 80% on glass substrates and 60% on wood substrates), while Type-B resins had a lower healing rate (about 65% on glass substrates and 55% on wood substrates). However, Type-B is more heat-resistant, has a slower decomposition rate between 300 and 400 °C, higher gloss retention, and less color difference (ΔE) between wood and glass substrates. The visible light transmission of Type-B (74.14%) is also significantly higher. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

21 pages, 1124 KB  
Article
Effects of Dance-Based Aerobic Training on Functional Capacity and Risk of Falls in Older Adults with Mild Cognitive Impairment
by Marcelina Sánchez-Alcalá, María del Carmen Carcelén-Fraile, Paulino Vico-Rodríguez, Marta Cano-Orihuela and María del Mar Carcelén-Fraile
J. Clin. Med. 2025, 14(16), 5900; https://doi.org/10.3390/jcm14165900 - 21 Aug 2025
Viewed by 417
Abstract
Background: Older adults with mild cognitive impairment are at increased risk for physical decline and falls due to decreased strength, flexibility, balance, and gait. Dance-based aerobic training has emerged as a promising and enjoyable intervention to promote physical function and cognitive stimulation. This [...] Read more.
Background: Older adults with mild cognitive impairment are at increased risk for physical decline and falls due to decreased strength, flexibility, balance, and gait. Dance-based aerobic training has emerged as a promising and enjoyable intervention to promote physical function and cognitive stimulation. This study aimed to evaluate the efficacy of a 12-week structured dance-based aerobic program, based on line dancing and Latin rhythms (e.g., salsa, merengue, and bachata), in improving functional capacity and reducing the risk of falls in older adults with mild cognitive impairment. Methods: A randomized controlled trial was conducted with 92 participants aged ≥65 years diagnosed with mild cognitive impairment. The participants were randomly assigned to an experimental group (dance-based training, twice weekly for 12 weeks) or a control group (usual activity). Outcomes included muscle strength (grip dynamometry), flexibility (back scratch and chair sit-and-reach tests), gait speed (Timed Up and Go test), balance (Tinetti scale), and total falls risk score (Tinetti). Mixed ANOVA and Cohen’s d were used for statistical analysis. Results: Significant improvements were observed in the experimental group on all variables compared to the control group. Muscle strength (p < 0.001, d = 0.86), gait speed (p = 0.026, d = 0.48), and upper and lower extremity flexibility (d = 0.43–0.79) improved significantly. The balance and gait components of the Tinetti scale also increased (p = 0.007 and p = 0.048, respectively), as did the total Tinetti score (p = 0.002, d = 0.67), indicating a reduction in the risk of falls. Conclusions: These findings suggest that, under structured conditions, dance-based aerobic training may serve as a promising non-pharmacological strategy to support healthy aging in older adults with mild cognitive impairment, although further validation in larger cohorts is needed. Full article
Show Figures

Figure 1

22 pages, 2638 KB  
Article
Identification of Bioactive Compounds in Warburgia salutaris Leaf Extracts and Their Pro-Apoptotic Effects on MCF-7 Breast Cancer Cells
by Lebogang Valentia Monama, Daniel Lefa Tswaledi, Tshisikhawe Masala Hadzhi, Makgwale Sharon Mphahlele, Mopeledi Blandina Madihlaba, Matlou Phineas Mokgotho, Leshweni Jeremia Shai and Emelinah Hluphekile Mathe
Int. J. Mol. Sci. 2025, 26(16), 8065; https://doi.org/10.3390/ijms26168065 - 20 Aug 2025
Viewed by 439
Abstract
The apoptotic mechanism is complex and involves many pathways. Defects can occur at any time along these pathways, resulting in malignant cell transformation and resistance to anticancer drugs. Collective efforts have made great progress in the implementation of natural products in clinical use [...] Read more.
The apoptotic mechanism is complex and involves many pathways. Defects can occur at any time along these pathways, resulting in malignant cell transformation and resistance to anticancer drugs. Collective efforts have made great progress in the implementation of natural products in clinical use and in discovering new therapeutic opportunities. This study aimed to screen volatile compounds of Warburgia salutaris leaf extracts and investigate their pro-apoptotic effects on MCF-7 cells. The approach was mainly based on determining cell viability using MTT and scratch assays, and DNA synthesis and damage using BrdU and comet assays, respectively. DAPI/PI stains were used for morphological analysis and expression was determined by RT-PCR and human apoptotic proteome profiler. Warburgia salutaris extracts exhibited antiproliferative effects on MCF-7 cells in a time- and dose-dependent manner. Acetone and methanol extracts exhibited low IC50 at 24, 48 and 72 h. Furthermore, the scratch test revealed that MCF-7 does not metastasise when treated with IC50. Expression showed upregulation of pro-apoptotic proteins and executioner caspases. Taken together, these findings suggest that leaves can promote apoptosis through the intrinsic apoptotic pathway, as observed by upregulation of the Bax and caspase 3 proteins. This paper provides new insights into the mechanisms of action of W. salutaris leaf extracts in the development of anticancer drugs. Full article
(This article belongs to the Special Issue New Agents and Novel Drugs Use for the Oncological Diseases Treatment)
Show Figures

Figure 1

19 pages, 1457 KB  
Article
ScratchJr Bots: Maker Literacies for the Hearts and Minds of Young Children
by Marina Umaschi Bers, Jessica Blake-West, Abigail J. Bergman, Caleb Weinstock, Francisca Carocca P. and Eliot Laidlaw
Educ. Sci. 2025, 15(8), 1062; https://doi.org/10.3390/educsci15081062 - 19 Aug 2025
Viewed by 532
Abstract
This paper describes the ScratchJr Bots project aimed at helping young children develop maker literacies, which is the ability to design, program, and build technology-rich projects with developmentally appropriate tools to express themselves. Maker literacies can involve hands-on learning, collaborative experimentation, critical thinking, [...] Read more.
This paper describes the ScratchJr Bots project aimed at helping young children develop maker literacies, which is the ability to design, program, and build technology-rich projects with developmentally appropriate tools to express themselves. Maker literacies can involve hands-on learning, collaborative experimentation, critical thinking, and problem-solving, as well as the development of socio-emotional skills. By engaging with the design process, children become active creators rather than passive consumers—brainstorming ideas, prototyping, testing, and making improvements toward sharing a final project. Maker literacies engage children in Positive Technological Development in the form of six behaviors—content creation, creativity, choices of conduct, communication, collaboration, and community building. Additionally, children develop character strengths, or virtues, such as patience, generosity, and forgiveness while making. This paper will first introduce the concept of maker literacies as it applies to early childhood and the theoretical background supporting this work. Then, it will introduce the ScratchJr Bots project developed by the DevTech Research Group, a new technology and curriculum that affords the development of maker literacies. Finally, by using design-based research as the methodological approach, two pilot projects are described, including children’s learning experiences, to illustrate the positive behaviors and character strengths that children can exhibit while engaging with ScratchJr Bots. Full article
Show Figures

Figure 1

21 pages, 3050 KB  
Article
Cosmetic Upgrade of EGF: Genetically Modified Probiotic-Derived Cell-Free Supernatants Containing Human EGF Protein Exhibit Diverse Biological Activities
by Jun Young Ahn, Seungwoo Kim, Jaewon Ha, Yoon Jin Roh, Yongku Ryu, Myung Jun Chung, Kui Young Park and Byung Chull An
Cosmetics 2025, 12(4), 176; https://doi.org/10.3390/cosmetics12040176 - 19 Aug 2025
Viewed by 602
Abstract
Although epidermal growth factor (EGF) has potential wide applications in the cosmetic industry, it still has limitations, such as a costly purification process and low stability in the surrounding environment. To overcome these limitations, we developed genetically modified Pediococcus pentosaceus CBT SL4, which [...] Read more.
Although epidermal growth factor (EGF) has potential wide applications in the cosmetic industry, it still has limitations, such as a costly purification process and low stability in the surrounding environment. To overcome these limitations, we developed genetically modified Pediococcus pentosaceus CBT SL4, which can secrete EGF protein in growth media, thereby producing probiotic-derived PP-EGF culture medium supernatant (PP-EGF-SUP). Even at low EGF concentrations, PP-EGF-SUP exhibited EGF activities, such as cell scratch wound healing, tyrosinase inhibition, and improvements in anti-wrinkle factors, similar to or stronger than those of recombinant human EGF (rhEGF), which was used as a positive control. PP-EGF-SUP exhibited strong additional biological activities, such as antioxidant, anti-inflammatory, and anti-microbial activities, even though rhEGF did not have such properties. PP-EGF-SUP could be easily transformed to PP-EGF-SUP dried powder (PP-EGF-DP) using the freeze-drying method, and it could also be well resolved in water up to 20 mg/mL; furthermore, it still maintained its bioactivity after the manufacturing process. To determine melasma improvement efficacy, a human application test was performed using melasma ampoules containing 1% or 5% PP-EGF-DP formulations for four weeks. When comparing the melasma values before and after treatment, it was found that the light melasma value statistically decreased by 3.38% and 3.79% and that the dark melasma value statistically decreased by 1.74% and 2.93% in the test groups applying the 1% and 5% PP-EGF-DP melasma ampoules, respectively. In addition, the melasma area also decreased by 21.21% and 29.1%, while the control group showed no statistical difference. During the study period, no significant adverse skin reactions were observed due to the application of the PP-EGF-DP melasma ampoule. In conclusion, PP-EGF-DP may offer unique advantages in the cosmetic ingredient market, such as safety (as a probiotic derivative), stability (postbiotics protect EGF activity), and diverse bioactivities (activity potentiation and postbiotic-derived biological activities). Full article
(This article belongs to the Section Cosmetic Technology)
Show Figures

Figure 1

18 pages, 8227 KB  
Article
The Influence of PEO Process Parameters on the Mechanical and Sclerometric Properties of Coatings on the Ultralight Magnesium Alloy LA141
by Mateusz Niedźwiedź, Joanna Korzekwa, Marek Bara, Sławomir Kaptacz, Krzysztof Aniołek, Maciej Sowa and Wojciech Simka
Coatings 2025, 15(8), 961; https://doi.org/10.3390/coatings15080961 - 18 Aug 2025
Viewed by 340
Abstract
This study explores the influence of significant manufacturing parameters, i.e., peak current density and frequency, on the oxide coatings’ micromechanical and sclerometric properties. The parameter levels were determined using a full experimental design with two variables at three levels. Plasma electrolytic oxidation (PEO) [...] Read more.
This study explores the influence of significant manufacturing parameters, i.e., peak current density and frequency, on the oxide coatings’ micromechanical and sclerometric properties. The parameter levels were determined using a full experimental design with two variables at three levels. Plasma electrolytic oxidation (PEO) was conducted on an ultralight LA141 magnesium alloy in an alkaline ternary electrolyte. Coating performance was characterized by measuring hardness (HIT) and Young’s modulus (EIT), as well as three loads significant to coating failure: Lc1, the initiation of Hertzian tensile cracks; Lc2, the initiation of cohesive coating failure; and Lc3, full delamination of the coating. Scratch testing was complemented by profilographic analysis to provide isometric surface images. Statistical analysis was then employed to ascertain correlations of process parameters with the developed mechanical and sclerometric properties. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

17 pages, 4237 KB  
Article
Controlled Release of D-Limonene from Biodegradable Films with Enzymatic Treatment
by Viktor Nakonechnyi, Viktoriia Havryliak and Vira Lubenets
Polymers 2025, 17(16), 2238; https://doi.org/10.3390/polym17162238 - 17 Aug 2025
Viewed by 584
Abstract
The instability of many volatile organic compounds (VOCs) limits their usage in different fragrance carriers and products. In scratch-and-sniff applications, VOCs are bound so strongly that release cannot happen without an external trigger. On the other hand, other fixatives like cyclodextrins release unstable [...] Read more.
The instability of many volatile organic compounds (VOCs) limits their usage in different fragrance carriers and products. In scratch-and-sniff applications, VOCs are bound so strongly that release cannot happen without an external trigger. On the other hand, other fixatives like cyclodextrins release unstable volatile molecules too rapidly. We engineered biodegradable gelatin films whose release profile can be tuned by glycerol plasticization and alkaline protease degradation. Digitalized VOC release profiles acquired with the described near-real-time analysis toolkit are digital twins that replicate the behavior of the evaluated films in silico. Seven formulations were cast from 10% gelatin containing D-limonene, glycerol (5%, 20%), protease-C 30 kU mL−1, and samples with additional water to establish a higher hydromodule for protease catalytic activity. Release profiles were monitored for nine days at 23 ± 2 °C in parallel by metal-oxide semiconductor (MOS) e-noses, gravimetric weight loss, and near-infrared measurements (NIR). These continuous measurements were cross-checked with gel electrophoresis, FTIR spectroscopy, hardness tests, and sensory intensity ratings. Results showed acceleration of VOC release by enzymatic treatment during the first days, as well as overall impact on the release profile. Differences in low and high glycerol films were observed, and principal component analysis of NIR spectra separated low and high glycerol groups, mirroring the MOS and FTIR data. Usability of MOS data was explored in comparison to more biased and subjective intensity results from sensory panel evaluation. Overall, the created toolkit showed good cross-checked results and enabled the possibility for close to real-time analysis for bio-based VOC carriers. Full article
(This article belongs to the Special Issue Polymer Thin Films and Their Applications)
Show Figures

Graphical abstract

15 pages, 2267 KB  
Article
Development of an Ex Vivo Platform to Model Urethral Healing
by Christopher Foster, Ryan Tran, Khushi Grover, Abdullah Salama and Courtney K. Rowe
Methods Protoc. 2025, 8(4), 96; https://doi.org/10.3390/mps8040096 - 15 Aug 2025
Viewed by 478
Abstract
Background: Urethral strictures impact millions, causing significant morbidity and millions in healthcare costs. Testing new interventions is limited by the lack of inexpensive urethral healing models. We developed an ex vivo model of early urethral wound healing using explanted rabbit urethral tissue. This [...] Read more.
Background: Urethral strictures impact millions, causing significant morbidity and millions in healthcare costs. Testing new interventions is limited by the lack of inexpensive urethral healing models. We developed an ex vivo model of early urethral wound healing using explanted rabbit urethral tissue. This was used to test the impact of six growth factors (GFs). Methods: The rabbit urethra was detubularized by cutting it between the corpora cavernosa, and then it was stitched flat using a custom 3D-printed platform. The tissue was carefully scratched to produce a visible wound, and the specimens were placed in media containing growth factors at 100 ng/mL and 10 ng/mL. Images were taken at 0, 24, 48, 72, and 96 h, and the wound area was measured by blinded reviewers to determine the rate of wound contraction. Results: Specimens with IGF at 100 ng/mL showed a statistically significant difference in wound contraction when compared to those with GF-free control medium, showing that IGF-1 supports early urethral epithelization and may improve healing. Conclusions: The developed protocol provides a simple explant platform that can be used to investigate methods of enhancing early phases of urethral healing or used to investigate other areas of urethral health, including drug delivery, infection, and mechanical properties. Full article
(This article belongs to the Section Synthetic and Systems Biology)
Show Figures

Figure 1

15 pages, 1580 KB  
Article
Syringin (Sinapyl Alcohol 4-O-Glucoside) Improves the Wound Healing Capacity of Fibroblasts and Keratinocytes In Vitro
by Andrzej Parzonko, Agnieszka Filipek, Marcin Równicki and Anna K. Kiss
Int. J. Mol. Sci. 2025, 26(16), 7827; https://doi.org/10.3390/ijms26167827 - 13 Aug 2025
Viewed by 373
Abstract
Wound healing is a complex process in which TGFβ plays a key role. Previous studies have shown that syringin, a phenylpropanoid glycoside present in lilac bark (Syringa vulgaris L.), stimulates TGFβ expression in human monocyte-derived macrophages in addition to inhibiting the secretion [...] Read more.
Wound healing is a complex process in which TGFβ plays a key role. Previous studies have shown that syringin, a phenylpropanoid glycoside present in lilac bark (Syringa vulgaris L.), stimulates TGFβ expression in human monocyte-derived macrophages in addition to inhibiting the secretion of pro-inflammatory cytokines. Here, we investigated the effect of syringin on migration, invasion, and TGFβ production, as well as the effect on the release of pro-inflammatory cytokines in human dermal fibroblasts (NHDF) and keratinocytes (HaCaT) and its mechanism of action. NHDF and HaCaT cells were treated with the tested compound (12.5–100 µM), and a scratch assay was performed. The effect of migration using modified Boyden chambers was analyzed. TGFβ and IL-6 release were also assessed using ELISA kits. Cell proliferation was assessed using MTT and BrdU incorporation tests, while cytotoxicity was assessed using a neutral red uptake test. Smad2 and Smad3 phosphorylation were assessed using Western Blotting. ACTA2, COL1A1, and TIMP3 expression was analyzed using qPCR. Cells treated with syringin showed an increase in invasion potential in the scratch assay. A significant increase in skin fibroblast migration through the porous membrane was also observed. Syringin increased TGFβ release and inhibited IL-6 release by NHDF and HaCaT cells. No effect of syringin on cell proliferation or cytotoxic effects was observed. Western blot analysis showed significant activation of Smad2 and Smad3 in the presence of syringin in NHDF cells, but not in HaCaT. Quantitative PCR analysis revealed a strong increase in ACTA2 and COL1A1 gene expression in fibroblast cells treated with syringin. The present study demonstrated that syringin present in S. vulgaris stem bark increased dermal fibroblasts and keratinocytes’ wound healing function through activation of cell migration. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

Back to TopTop