Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = seawater electrolysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1166 KB  
Article
Evaluating Freshwater, Desalinated Water, and Treated Brine as Water Feed for Hydrogen Production in Arid Regions
by Hamad Ahmed Al-Ali and Koji Tokimatsu
Energies 2025, 18(15), 4085; https://doi.org/10.3390/en18154085 - 1 Aug 2025
Viewed by 367
Abstract
Hydrogen production is increasingly vital for global decarbonization but remains a water- and energy-intensive process, especially in arid regions. Despite growing attention to its climate benefits, limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment [...] Read more.
Hydrogen production is increasingly vital for global decarbonization but remains a water- and energy-intensive process, especially in arid regions. Despite growing attention to its climate benefits, limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment (LCA) approach to evaluate three water supply strategies for hydrogen production: (1) seawater desalination without brine treatment (BT), (2) desalination with partial BT, and (3) freshwater purification. Scenarios are modeled for the United Arab Emirates (UAE), Australia, and Spain, representing diverse electricity mixes and water stress conditions. Both electrolysis and steam methane reforming (SMR) are evaluated as hydrogen production methods. Results show that desalination scenarios contribute substantially to human health and ecosystem impacts due to high energy use and brine discharge. Although partial BT aims to reduce direct marine discharge impacts, its substantial energy demand can offset these benefits by increasing other environmental burdens, such as marine eutrophication, especially in regions reliant on carbon-intensive electricity grids. Freshwater scenarios offer lower environmental impact overall but raise water availability concerns. Across all regions, feedwater for SMR shows nearly 50% lower impacts than for electrolysis. This study focuses solely on the environmental impacts associated with water sourcing and treatment for hydrogen production, excluding the downstream impacts of the hydrogen generation process itself. This study highlights the trade-offs between water sourcing, brine treatment, and freshwater purification for hydrogen production, offering insights for optimizing sustainable hydrogen systems in water-stressed regions. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production in Renewable Energy Systems)
Show Figures

Figure 1

14 pages, 4489 KB  
Article
Numerical Simulation Analysis of Cu2+ Concentration for Marine Biological Control Based on Seawater Lifting Pump
by Zhishu Zhang, Jie Liu, Lei Li, Qingmiao Yang, Longqi Meng and Zhaoxuan Li
Processes 2025, 13(8), 2440; https://doi.org/10.3390/pr13082440 - 1 Aug 2025
Viewed by 305
Abstract
To prevent marine biofouling in seawater lift pumps, electrolyzed seawater containing Cu2+ needs to be injected into the pumps. This study employs Computational Fluid Dynamics (CFD) to simulate the variation in Cu2+ injection concentration required to achieve a Cu2+ concentration [...] Read more.
To prevent marine biofouling in seawater lift pumps, electrolyzed seawater containing Cu2+ needs to be injected into the pumps. This study employs Computational Fluid Dynamics (CFD) to simulate the variation in Cu2+ injection concentration required to achieve a Cu2+ concentration of 3 ppb within a 10 cm range around the pump under different operating conditions, including the installation of baffles and varying seawater flow rates. The simulation results demonstrate that CFD can accurately predict the distribution of Cu2+ concentration in electrolyzed seawater, with the distribution significantly influenced by seawater flow direction, necessitating reference to upstream data. When the lift pumps are idle, the required Cu2+ injection concentration increases with rising seawater flow rates, reaching 41.9 μg/L at the maximum flow rate of 1.9 m/s. During alternating pump operation, the required Cu2+ injection concentration also increases with the flow rate, significantly affected by the pump’s operational position: lower concentrations are required when the upstream pump is active compared to the downstream pump. Additionally, installing baffles around the pumps effectively mitigates the impact of seawater flow on Cu2+ distribution, significantly reducing the required injection concentration. This study provides theoretical and data-driven insights for optimising marine biofouling prevention in seawater lift pumps. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

24 pages, 3062 KB  
Article
Green Hydrogen in Jordan: Stakeholder Perspectives on Technological, Infrastructure, and Economic Barriers
by Hussam J. Khasawneh, Rawan A. Maaitah and Ahmad AlShdaifat
Energies 2025, 18(15), 3929; https://doi.org/10.3390/en18153929 - 23 Jul 2025
Viewed by 668
Abstract
Green hydrogen, produced via renewable-powered electrolysis, offers a promising path toward deep decarbonisation in energy systems. This study investigates the major technological, infrastructural, and economic challenges facing green hydrogen production in Jordan—a resource-constrained yet renewable-rich country. Key barriers were identified through a structured [...] Read more.
Green hydrogen, produced via renewable-powered electrolysis, offers a promising path toward deep decarbonisation in energy systems. This study investigates the major technological, infrastructural, and economic challenges facing green hydrogen production in Jordan—a resource-constrained yet renewable-rich country. Key barriers were identified through a structured survey of 52 national stakeholders, including water scarcity, low electrolysis efficiency, limited grid compatibility, and underdeveloped transport infrastructure. Respondents emphasised that overcoming these challenges requires investment in smart grid technologies, seawater desalination, advanced electrolysers, and policy instruments such as subsidies and public–private partnerships. These findings are consistent with global assessments, which recognise similar structural and financial obstacles in scaling up green hydrogen across emerging economies. Despite the constraints, over 50% of surveyed stakeholders expressed optimism about Jordan’s potential to develop a competitive green hydrogen sector, especially for industrial and power generation uses. This paper provides empirical, context-specific insights into the conditions required to scale green hydrogen in developing economies. It proposes an integrated roadmap focusing on infrastructure modernisation, targeted financial mechanisms, and enabling policy frameworks. Full article
(This article belongs to the Special Issue Green Hydrogen Energy Production)
Show Figures

Figure 1

18 pages, 6225 KB  
Article
Copper Slag Cathodes for Eco-Friendly Hydrogen Generation: Corrosion and Electrochemical Insights for Saline Water Splitting
by Susana I. Leiva-Guajardo, Manuel Fuentes Maya, Luis Cáceres, Víctor M. Jimenez-Arevalo, Álvaro Soliz, Norman Toro, José Ángel Cobos Murcia, Victor E. Reyes Cruz, Mauricio Morel, Edward Fuentealba and Felipe M. Galleguillos Madrid
Materials 2025, 18(13), 3092; https://doi.org/10.3390/ma18133092 - 30 Jun 2025
Viewed by 558
Abstract
The increasing demand for sustainable energy and clean water has prompted the exploration of alternative solutions to reduce reliance on fossil fuels. In this context, hydrogen production through water electrolysis powered by solar energy presents a promising pathway toward a zero-carbon footprint. This [...] Read more.
The increasing demand for sustainable energy and clean water has prompted the exploration of alternative solutions to reduce reliance on fossil fuels. In this context, hydrogen production through water electrolysis powered by solar energy presents a promising pathway toward a zero-carbon footprint. This study investigates the potential of copper slag, an abundant industrial waste, as a low-cost electrocatalyst for the hydrogen evolution reaction (HER) in contact with saline water such as 0.5 M NaCl and seawater, comparing the electrochemical response when in contact with geothermal water from El Tatio (Atacama Desert). The physicochemical characterisation of copper slag was performed using XRD, Raman, and SEM-EDS to determine its surface properties. Electrochemical evaluations were conducted in 0.5 M NaCl and natural seawater using polarisation techniques to assess the corrosion behaviour and catalytic efficiency of the copper slag electrodes. The results indicate that copper slag exhibits high stability and promising HER kinetics, particularly in seawater, where its mesoporous structure facilitates efficient charge transfer processes. The key novelty of this manuscript lies in the direct revalorisation of untreated copper slag as a functional electrode for HER in real seawater and geothermal water, avoiding the use of expensive noble metals and aligning with circular economy principles. This innovative combination of recycled material and natural saline electrolyte enhances both the technical and economic viability of electrolysis, while reducing environmental impact and promoting green hydrogen production in coastal regions with high solar potential. This research contributes to the value of industrial waste, offering a viable pathway for advancing sustainable hydrogen technologies in real-world environments. Full article
Show Figures

Figure 1

13 pages, 3803 KB  
Article
Direct 2400 h Seawater Electrolysis Catalyzed by Pt-Loaded Nanoarray Sheets
by Huijun Xin, Zudong Shen, Xiaojie Li, Jinjie Fang, Haoran Sun, Chen Deng, Linlin Zhou and Yun Kuang
Catalysts 2025, 15(7), 634; https://doi.org/10.3390/catal15070634 - 29 Jun 2025
Viewed by 572
Abstract
Seawater electrolysis offers a sustainable route for large-scale, carbon-neutral hydrogen production, but its industrial application is limited by the poor efficiency and durability of current electrocatalysts under high current densities. Herein, we synthesized ultrasmall Pt nanoclusters uniformly anchored on FeCoNi phosphide nanosheet arrays, [...] Read more.
Seawater electrolysis offers a sustainable route for large-scale, carbon-neutral hydrogen production, but its industrial application is limited by the poor efficiency and durability of current electrocatalysts under high current densities. Herein, we synthesized ultrasmall Pt nanoclusters uniformly anchored on FeCoNi phosphide nanosheet arrays, forming a composite catalyst with outstanding hydrogen evolution reaction (HER) performance in alkaline seawater. The catalyst achieves an ultralow overpotential of 17 mV at −10 mA cm−2, far surpassing commercial Pt/C, and stably delivers industrial-level current densities up to 2000 A m−2 for over 2400 h with minimal voltage degradation and low energy consumption (4.16 kWh/Nm3 H2). X-ray photoelectron spectroscopy revealed strong interfacial electronic interactions between Pt and Fe/Co species, involving electron transfer from Pt that modulates its electronic structure, weakens hydrogen adsorption, and enhances both HER kinetics and Pt dispersion. This work presents a scalable and robust catalyst platform, bridging the gap between laboratory research and industrial seawater electrolysis for green hydrogen production. Full article
(This article belongs to the Special Issue Powering the Future: Advances of Catalysis in Batteries)
Show Figures

Graphical abstract

22 pages, 5025 KB  
Review
Recent Progress in Seawater Splitting Hydrogen Production Assisted by Value-Added Electrooxidation Reactions
by Yuanping Guo, Chenghao Yang, Jianli Yang, Xin Xiao, Maofei Ran and Jing Li
Energies 2025, 18(12), 3016; https://doi.org/10.3390/en18123016 - 6 Jun 2025
Viewed by 809
Abstract
Electrolysis of abundant seawater resources is a promising approach for hydrogen production. However, the high-concentration chloride ion in seawater readily induces the chlorine evolution reaction (CER), resulting in catalyst degradation and decreased electrolysis efficiency. In recent years, the electrooxidation of small organic molecules [...] Read more.
Electrolysis of abundant seawater resources is a promising approach for hydrogen production. However, the high-concentration chloride ion in seawater readily induces the chlorine evolution reaction (CER), resulting in catalyst degradation and decreased electrolysis efficiency. In recent years, the electrooxidation of small organic molecules (e.g., methanol), biomass-derived compounds (e.g., 5-hydroxymethylfurfural), and plastic monomers (e.g., ethylene glycol) has been seen to occur at lower potentials to substitute for the traditional oxygen evolution reaction (OER) and CER. This alternative approach not only significantly reduces energy consumption for hydrogen production but also generates value-added products at the anode. This review provides a comprehensive summary of research advancements in value-added electrooxidation reaction-assisted seawater hydrogen production technologies and emphasizes the underlying principles of various reactions and catalyst design methodologies. Finally, the current challenges in this field and potential future research directions are systematically discussed. Full article
Show Figures

Figure 1

30 pages, 3060 KB  
Review
Solid–Solid Interface Design for Hydrogen Production by Direct Seawater Electrolysis: Progress and Challenges
by Bowei Zhou, Tong Wu, Yilin Dong, Yinbo Zhan, Fei Wei, Dongliang Zhang and Xia Long
Inorganics 2025, 13(6), 183; https://doi.org/10.3390/inorganics13060183 - 4 Jun 2025
Viewed by 1244
Abstract
Using direct seawater electrolysis (DSE) for hydrogen production has garnered increasing scientific attention as a promising pathway toward sustainable energy solutions. Given the complex ionic environment of seawater, researchers have proposed a diverse range of strategies aimed at addressing the issue of enhancing [...] Read more.
Using direct seawater electrolysis (DSE) for hydrogen production has garnered increasing scientific attention as a promising pathway toward sustainable energy solutions. Given the complex ionic environment of seawater, researchers have proposed a diverse range of strategies aimed at addressing the issue of enhancing the corrosion resistance of anodes, yet no optimal solution has been found so far. Among the emerging approaches, a design using multilayer electrode architecture offers notable advantages by introducing abundant active sites, diverse chemical environments, and robust physical structures. Crucially, these configurations enable the synergistic integration of distinct material properties across different layers, thereby enhancing both electrochemical activity and structural stability in harsh seawater environments. Despite these benefits, a limited understanding of the role played by solid–solid interfaces has hindered the rational design and practical application of such electrodes. This review focuses on the design principles and functional roles of solid–solid interfaces in multilayer anodes for the oxygen evolution reaction (OER) under DSE conditions. In addition, we systematically summarize and discuss the representative fabrication methods for constructing solid–solid interfaces in hierarchically structured electrodes. By screening recent advances in these techniques, we further highlight how engineered interfaces influence interfacial bonding, electron transfer, and mass transport during DSE processes, enhancing the intrinsic catalytic activity, as well as protecting the metallic electrode from corrosion. Finally, current challenges and future research directions to deepen the mechanistic understanding of interface phenomena are discussed, with the aim of accelerating the development of robust and scalable electrodes for direct seawater electrolysis. Full article
(This article belongs to the Special Issue Novel Catalysts for Photoelectrochemical Energy Conversion)
Show Figures

Graphical abstract

18 pages, 3933 KB  
Article
Ru Nanoparticle Assemblies Modified with Single Mo Atoms for Hydrogen Evolution Reactions in Seawater Electrocatalysis
by Shuhan Wang, Jiani Qin, Yong Zhang, Shuai Chen, Wenjun Yan, Haiqing Zhou and Xiujun Fan
Catalysts 2025, 15(5), 475; https://doi.org/10.3390/catal15050475 - 12 May 2025
Viewed by 616
Abstract
Ru-based catalysts manifest unparalleled hydrogen evolution reaction (HER) performance, but the hydrolysis of Ru species and the accumulation of corresponding reaction intermediates greatly limit HER activity and stability. Herein, Ru nanoparticle assemblies modified with single Mo atoms and supported on N-incorporated graphene (referred [...] Read more.
Ru-based catalysts manifest unparalleled hydrogen evolution reaction (HER) performance, but the hydrolysis of Ru species and the accumulation of corresponding reaction intermediates greatly limit HER activity and stability. Herein, Ru nanoparticle assemblies modified with single Mo atoms and supported on N-incorporated graphene (referred to as MoRu-NG) are compounded via hydrothermal and chemical vapor deposition (CVD) methods. The incorporation of single Mo atoms into Ru lattices modifies the local atomic milieu around Ru centers, significantly improving HER catalytic behavior and stability. More specifically, MoRu-NG achieves overpotentials of 53 mV and 28 mV at 10 mA cm−2, with exceptional stability in acidic and alkaline seawater solutions, respectively. In MoRu-NG, Ru atoms have a special electronic structure and thus possess optimal hydrogen adsorption energy, which indicates that excellent HER activity mainly hinges upon Ru centers. To be specific, the d-electron orbitals of Ru atoms are close to half full, giving Ru atoms moderate bond energy for the assimilation and release of hydrogen, which is beneficial for the conversion of reaction intermediates. Moreover, the incorporation of single Mo atoms facilitates the formation of O and O’-bidentate ligands, significantly enhancing the structural stability of MoRu-NG in universal-pH seawater electrolysis. This work advances a feasible construction method of hexagonal octahedral configuration (Ru-O-Mo-N-C) and provides a route to synthesize an efficient and stable catalyst for electrocatalytic HER in universal-pH seawater. Full article
Show Figures

Graphical abstract

27 pages, 9780 KB  
Article
Hydrogen and Ammonia Production and Transportation from Offshore Wind Farms: A Techno-Economic Analysis
by Farhan Haider Joyo, Andrea Falasco, Daniele Groppi, Adriana Scarlet Sferra and Davide Astiaso Garcia
Energies 2025, 18(9), 2292; https://doi.org/10.3390/en18092292 - 30 Apr 2025
Cited by 1 | Viewed by 1536
Abstract
Offshore wind energy is increasingly considered a vital resource to contribute to the renewable energy future. This renewable energy can be converted to clean energy alternatives such as hydrogen and ammonia via power-to-x technologies, enabling storage, energy security, and decarbonization of hard-to-abate sectors. [...] Read more.
Offshore wind energy is increasingly considered a vital resource to contribute to the renewable energy future. This renewable energy can be converted to clean energy alternatives such as hydrogen and ammonia via power-to-x technologies, enabling storage, energy security, and decarbonization of hard-to-abate sectors. This study assesses the techno-economic feasibility of integrating offshore wind energy with hydrogen and ammonia production as sustainable energy carriers and their transportation via pipelines or shipping. The methodology incorporates Proton Exchange Membrane (PEM) electrolysis for hydrogen production, seawater desalination, and the Haber–Bosch process for ammonia production. Offshore transport scenarios are compared to evaluate their cost-effectiveness based on distance and electrolyzer capacity. Results show the levelized cost of hydrogen (LCOH2) ranges from EUR 6.7 to 9.8/kg (EUR 0.20–0.29/kWh), and the levelized cost of ammonia (LCOA) ranges from EUR 1.9 to 2.8/kg (EUR 0.37–0.55/kWh). Transportation costs vary significantly with distance and electrolyzer capacity, with levelized cost of transport (LCOT) between EUR 0.2 and 15/kg for pipelines and EUR 0.3 and 10.2/kg for shipping. Also, for distances up to 500 km, pipeline transport is the most cost-effective option for both hydrogen and ammonia. Despite high production costs, economies of scale and technological improvements can make offshore hydrogen and ammonia a promising means for a sustainable energy future. Full article
Show Figures

Figure 1

26 pages, 3491 KB  
Project Report
Integrated Design and Construction of a 50 kW Flexible Hybrid Renewable Power Hydrogen System Testbed
by Jonathan G. Love, Michelle Gane, Anthony P. O’Mullane and Ian D. R. Mackinnon
Energy Storage Appl. 2025, 2(2), 5; https://doi.org/10.3390/esa2020005 - 21 Mar 2025
Cited by 1 | Viewed by 1324
Abstract
We report on the first stage of an energy systems integration project to develop hybrid renewable energy generation and storage of hydrogen for subsequent use via research-based low regret system testbeds. This study details the design and construction of a flexible plug-and-play hybrid [...] Read more.
We report on the first stage of an energy systems integration project to develop hybrid renewable energy generation and storage of hydrogen for subsequent use via research-based low regret system testbeds. This study details the design and construction of a flexible plug-and-play hybrid renewable power and hydrogen system testbed with up to 50 kW capacity aimed at addressing and benchmarking the operational parameters of the system as well as key components when commissioned. The system testbed configuration includes three different solar technologies, three different battery technologies, two different electrolyser technologies, hydrogen storage, and a fuel cell for regenerative renewable power. Design constraints include the current limit of an AC microgrid, regulations for grid-connected inverters, power connection inefficiencies, and regulated hazardous area approval. We identify and show the resolution of systems integration challenges encountered during construction that may benefit planning for the emerging pilot, or testbed, configurations at other sites. These testbed systems offer the opportunity for informed decisions on economic viability for commercial-scale industry applications. Full article
Show Figures

Graphical abstract

18 pages, 602 KB  
Article
Sustainable Fuel Supply for Very Small Island Transportation: The Potential of Hybrid Renewable Energy and Green Hydrogen
by Evanthia Kostidi, Anna Maria Kotrikla, Artemis Maglara and Theodore Lilas
J. Mar. Sci. Eng. 2025, 13(3), 579; https://doi.org/10.3390/jmse13030579 - 16 Mar 2025
Viewed by 1444
Abstract
The transition to a low-carbon future necessitates innovative approaches to renewable energy deployment, particularly in the marine environment, where abundant resources remain underutilized. This paper explores the potential of hybrid renewable energy systems and green hydrogen production to address the energy challenges faced [...] Read more.
The transition to a low-carbon future necessitates innovative approaches to renewable energy deployment, particularly in the marine environment, where abundant resources remain underutilized. This paper explores the potential of hybrid renewable energy systems and green hydrogen production to address the energy challenges faced by Very Small Islands (VSIs). These islands heavily rely on imported fossil fuels, making them vulnerable to global price fluctuations and contributing to economic instability and environmental degradation. Offshore floating platforms present a transformative opportunity by harnessing marine renewable resources, integrating wind, solar, and wave energy to maximize energy production while minimizing land use conflicts. Green hydrogen, produced through the electrolysis of seawater, powered by these renewable sources, offers a sustainable alternative for decarbonizing transportation, particularly in the maritime sector. The study aims to assess the feasibility of converting small conventional passenger vessels to hydrogen propulsion and evaluate the technical, economic, and environmental impacts of deploying offshore platforms for hydrogen production. By examining these aspects, this research contributes to the broader discourse on sustainable energy solutions for island communities and provides actionable insights into implementing renewable hydrogen-based maritime transport. Full article
Show Figures

Figure 1

17 pages, 2724 KB  
Article
A Dual Photoelectrode System for Solar-Driven Saltwater Electrolysis: Simultaneous Production of Chlorine and Hydrogen
by Yue Gao, Na Li, Xuan Qi, Fujiang Zhou, Hao Yan, Danfeng He, Wei Xia and Yu Zhang
Crystals 2025, 15(3), 233; https://doi.org/10.3390/cryst15030233 - 28 Feb 2025
Cited by 1 | Viewed by 736
Abstract
Chlorine plays an essential role in various industries, such as wastewater treatment, disinfection, plastics, and pharmaceuticals, contributing to a significant global demand. Traditional methods of chlorine production, including chemical reactions involving manganese dioxide, potassium chlorate, and potassium permanganate, as well as the electrolysis [...] Read more.
Chlorine plays an essential role in various industries, such as wastewater treatment, disinfection, plastics, and pharmaceuticals, contributing to a significant global demand. Traditional methods of chlorine production, including chemical reactions involving manganese dioxide, potassium chlorate, and potassium permanganate, as well as the electrolysis of saturated salt solutions, are associated with safety and efficiency concerns. This study introduces a novel approach for the photoelectrocatalytic production of chlorine gas through the oxidation of chloride ions in potassium chloride solutions using a dual semiconductor photoelectrode system composed of TiO2 and Cu2O. By harnessing solar energy, this system enables the concurrent, safe, and efficient production of both chlorine and hydrogen gases. The TiO2 photoelectrode is employed for chlorine production, while Cu2O is used for hydrogen generation. The dual photoelectrode system mimics the process of electrolytic seawater electrolysis, offering a promising alternative to conventional methods. Through linear sweep voltammetry, current–time tests, and electrochemical impedance spectroscopy, we demonstrate the effectiveness of this approach, supported by a detailed analysis of the energy band structure. Additionally, the material’s characteristics were verified using X-ray diffraction (XRD) and scanning electron microscopy (SEM). This work not only provides a safer and more efficient method for chlorine production but also highlights the potential of solar-powered photoelectrocatalysis in large-scale applications. These findings point toward a sustainable and environmentally friendly direction for chlorine production under simulated seawater conditions, with significant implications for renewable energy-driven industrial processes. Full article
(This article belongs to the Special Issue Optical Properties of Crystalline Semiconductors and Nanomaterials)
Show Figures

Figure 1

15 pages, 2733 KB  
Article
Seawater Membrane Distillation Coupled with Alkaline Water Electrolysis for Hydrogen Production: Parameter Influence and Techno-Economic Analysis
by Xiaonan Xu, Zhijie Zhao, Chunfeng Song, Li Xu and Wen Zhang
Membranes 2025, 15(2), 60; https://doi.org/10.3390/membranes15020060 - 11 Feb 2025
Cited by 2 | Viewed by 2132
Abstract
The production of green hydrogen requires renewable electricity and a supply of sustainable water. Due to global water scarcity, using seawater to produce green hydrogen is particularly important in areas where freshwater resources are scarce. This study establishes a system model to simulate [...] Read more.
The production of green hydrogen requires renewable electricity and a supply of sustainable water. Due to global water scarcity, using seawater to produce green hydrogen is particularly important in areas where freshwater resources are scarce. This study establishes a system model to simulate and optimize the integrated technology of seawater desalination by membrane distillation and hydrogen production by alkaline water electrolysis. Technical economics is also performed to evaluate the key factors affecting the economic benefits of the coupling system. The results show that an increase in electrolyzer power and energy efficiency will reduce the amount of pure water. An increase in the heat transfer efficiency of the membrane distillation can cause the breaking of water consumption and production equilibrium, requiring a higher electrolyzer power to consume the water produced by membrane distillation. The levelized costs of pure water and hydrogen are US$1.28 per tonne and $1.37/kg H2, respectively. The most important factors affecting the production costs of pure water and hydrogen are electrolyzer power and energy efficiency. When the price of hydrogen rises, the project’s revenue increases significantly. The integrated system offers excellent energy efficiency compared to conventional desalination and hydrogen production processes, and advantages in terms of environmental protection and resource conservation. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

24 pages, 2364 KB  
Article
Breakthrough Position and Trajectory of Sustainable Energy Technology
by Bart Bossink, Sandra Hasanefendic, Marjolein Hoogstraaten and Charusheela Ramanan
Sustainability 2025, 17(1), 313; https://doi.org/10.3390/su17010313 - 3 Jan 2025
Cited by 1 | Viewed by 1377
Abstract
This research aims to determine the position and the breakthrough trajectory of sustainable energy technologies. Fine-grained insights into these breakthrough positions and trajectories are limited. This research seeks to fill this gap by analyzing sustainable energy technologies’ breakthrough positions and trajectories in terms [...] Read more.
This research aims to determine the position and the breakthrough trajectory of sustainable energy technologies. Fine-grained insights into these breakthrough positions and trajectories are limited. This research seeks to fill this gap by analyzing sustainable energy technologies’ breakthrough positions and trajectories in terms of development, application, and upscaling. To this end, the breakthrough positions and trajectories of seven sustainable energy technologies, i.e., hydrogen from seawater electrolysis, hydrogen airplanes, inland floating photovoltaics, redox flow batteries, hydrogen energy for grid balancing, hydrogen fuel cell electric vehicles, and smart sustainable energy houses, are analyzed. This is guided by an extensively researched and literature-based model that visualizes and describes these technologies’ experimentation and demonstration stages. This research identifies where these technologies are located in their breakthrough trajectory in terms of the development phase (prototyping, production process and organization, and niche market creation and sales), experiment and demonstration stage (technical, organizational, and market), the form of collaboration (public–private, private–public, and private), physical location (university and company laboratories, production sites, and marketplaces), and scale-up type (demonstrative, and first-order and second-order transformative). For scientists, this research offers the opportunity to further refine the features of sustainable energy technologies’ developmental positions and trajectories at a detailed level. For practitioners, it provides insights that help to determine investments in various sustainable energy technologies. Full article
(This article belongs to the Special Issue Sustainable Clean Energy and Green Economic Growth)
Show Figures

Figure 1

23 pages, 6271 KB  
Review
Offshore Wind Power—Seawater Electrolysis—Salt Cavern Hydrogen Storage Coupling System: Potential and Challenges
by Xiaoyi Liu, Yashuai Huang, Xilin Shi, Weizheng Bai, Si Huang, Peng Li, Mingnan Xu and Yinping Li
Energies 2025, 18(1), 169; https://doi.org/10.3390/en18010169 - 3 Jan 2025
Cited by 2 | Viewed by 4429
Abstract
Offshore wind power construction has seen significant development due to the high density of offshore wind energy and the minimal terrain restrictions for offshore wind farms. However, integrating this energy into the grid remains a challenge. The scientific community is increasingly focusing on [...] Read more.
Offshore wind power construction has seen significant development due to the high density of offshore wind energy and the minimal terrain restrictions for offshore wind farms. However, integrating this energy into the grid remains a challenge. The scientific community is increasingly focusing on hydrogen as a means to enhance the integration of these fluctuating renewable energy sources. This paper reviews the research on renewable energy power generation, water electrolysis for hydrogen production, and large-scale hydrogen storage. By integrating the latest advancements, we propose a system that couples offshore wind power generation, seawater electrolysis (SWE) for hydrogen production, and salt cavern hydrogen storage. This coupling system aims to address practical issues such as the grid integration of offshore wind power and large-scale hydrogen storage. Regarding the application potential of this coupling system, this paper details the advantages of developing renewable energy and hydrogen energy in Jiangsu using this system. While there are still some challenges in the application of this system, it undeniably offers a new pathway for coastal cities to advance renewable energy development and sets a new direction for hydrogen energy progress. Full article
Show Figures

Figure 1

Back to TopTop