Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,912)

Search Parameters:
Keywords = security threats

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1292 KB  
Review
Ricin and Abrin in Biosecurity: Detection Technologies and Strategic Responses
by Wojciech Zajaczkowski, Ewelina Bojarska, Elwira Furtak, Michal Bijak, Rafal Szelenberger, Marcin Niemcewicz, Marcin Podogrocki, Maksymilian Stela and Natalia Cichon
Toxins 2025, 17(10), 494; https://doi.org/10.3390/toxins17100494 - 3 Oct 2025
Abstract
Plant-derived toxins such as ricin and abrin represent some of the most potent biological agents known, posing significant threats to public health and security due to their high toxicity, relative ease of extraction, and widespread availability. These ribosome-inactivating proteins (RIPs) have been implicated [...] Read more.
Plant-derived toxins such as ricin and abrin represent some of the most potent biological agents known, posing significant threats to public health and security due to their high toxicity, relative ease of extraction, and widespread availability. These ribosome-inactivating proteins (RIPs) have been implicated in politically and criminally motivated events, underscoring their critical importance in the context of biodefense. Public safety agencies, including law enforcement, customs, and emergency response units, require rapid, sensitive, and portable detection methods to effectively counteract these threats. However, many existing screening technologies lack the capability to detect biotoxins unless specifically designed for this purpose, revealing a critical gap in current biodefense preparedness. Consequently, there is an urgent need for robust, field-deployable detection platforms that operate reliably under real-world conditions. End-users in the security and public health sectors demand analytical tools that combine high specificity and sensitivity with operational ease and adaptability. This review provides a comprehensive overview of the biochemical characteristics of ricin and abrin, their documented misuse, and the challenges associated with their detection. Furthermore, it critically assesses key detection platforms—including immunoassays, mass spectrometry, biosensors, and lateral flow assays—focusing on their applicability in operational environments. Advancing detection capabilities within frontline services is imperative for effective prevention, timely intervention, and the strengthening of biosecurity measures. Full article
Show Figures

Figure 1

25 pages, 1245 KB  
Article
Evaluating Cybersecurity Measures for Smart Grids Under Uncertainty: A Picture Fuzzy SWARA–CODAS Approach
by Betul Kara, Ertugrul Ayyildiz, Bahar Yalcin Kavus and Tolga Kudret Karaca
Appl. Sci. 2025, 15(19), 10704; https://doi.org/10.3390/app151910704 - 3 Oct 2025
Abstract
Smart grid operators face escalating cyber threats and tight resource constraints, demanding the transparent, defensible prioritization of security controls. This paper asks how to select cybersecurity controls for smart grids while retaining picture fuzzy evidence throughout and supporting policy-sensitive “what-if” analyses. We propose [...] Read more.
Smart grid operators face escalating cyber threats and tight resource constraints, demanding the transparent, defensible prioritization of security controls. This paper asks how to select cybersecurity controls for smart grids while retaining picture fuzzy evidence throughout and supporting policy-sensitive “what-if” analyses. We propose a hybrid Picture Fuzzy Stepwise Weight Assessment Ratio Analysis (SWARA) and Combinative Distance-based Assessment (CODAS) framework that carries picture fuzzy evidence end-to-end over a domain-specific cost/benefit criteria system and a relative-assessment matrix, complemented by multi-scenario sensitivity analysis. Applied to ten prominent solutions across twenty-nine sub-criteria in four dimensions, the model highlights Performance as the most influential main criterion; at the sub-criterion level, the decisive factors are updating against new threats, threat-detection capability, and policy-customization flexibility; and Zero Trust Architecture emerges as the best overall alternative, with rankings stable under varied weighting scenarios. A managerial takeaway is that foundation controls (e.g., OT-integrated monitoring and ICS-aware detection) consistently remain near the top, while purely deceptive or access-centric options rank lower in this context. The framework contributes an end-to-end picture fuzzy risk-assessment model for smart grid cybersecurity and suggests future work on larger expert panels, cross-utility datasets, and dynamic, periodically refreshed assessments. Full article
(This article belongs to the Special Issue Applications of Fuzzy Systems and Fuzzy Decision Making)
21 pages, 4053 KB  
Article
Self-Attention-Enhanced Deep Learning Framework with Multi-Scale Feature Fusion for Potato Disease Detection in Complex Multi-Leaf Field Conditions
by Ke Xie, Decheng Xu and Sheng Chang
Appl. Sci. 2025, 15(19), 10697; https://doi.org/10.3390/app151910697 - 3 Oct 2025
Abstract
Potato leaf diseases are recognized as a major threat to agricultural productivity and global food security, emphasizing the need for rapid and accurate detection methods. Conventional manual diagnosis is limited by inefficiency and susceptibility to bias, whereas existing automated approaches are often constrained [...] Read more.
Potato leaf diseases are recognized as a major threat to agricultural productivity and global food security, emphasizing the need for rapid and accurate detection methods. Conventional manual diagnosis is limited by inefficiency and susceptibility to bias, whereas existing automated approaches are often constrained by insufficient feature extraction, inadequate integration of multiple leaves, and poor generalization under complex field conditions. To overcome these challenges, a ResNet18-SAWF model was developed, integrating a self-attention mechanism with a multi-scale feature-fusion strategy within the ResNet18 framework. The self-attention module was designed to enhance the extraction of key features, including leaf color, texture, and disease spots, while the feature-fusion module was implemented to improve the holistic representation of multi-leaf structures under complex backgrounds. Experimental evaluation was conducted using a comprehensive dataset comprising both simple and complex background conditions. The proposed model was demonstrated to achieve an accuracy of 98.36% on multi-leaf images with complex backgrounds, outperforming baseline ResNet18 (91.80%), EfficientNet-B0 (86.89%), and MobileNet_V2 (88.53%) by 6.56, 11.47, and 9.83 percentage points, respectively. Compared with existing methods, superior performance was observed, with an 11.55 percentage point improvement over the average accuracy of complex background studies (86.81%) and a 0.7 percentage point increase relative to simple background studies (97.66%). These results indicate that the proposed approach provides a robust, accurate, and practical solution for potato leaf disease detection in real field environments, thereby advancing precision agriculture technologies. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

23 pages, 1019 KB  
Article
Simulating Collaboration in Small Modular Nuclear Reactor Cybersecurity with Agent-Based Models
by Michael B. Zamperini and Diana J. Schwerha
J. Cybersecur. Priv. 2025, 5(4), 83; https://doi.org/10.3390/jcp5040083 - 3 Oct 2025
Abstract
This study proposes methods of computer simulation to study and optimize the cybersecurity of Small Modular Nuclear Reactors (SMRs). SMRs hold the potential to help build a clean and sustainable power grid but will struggle to gain widespread adoption without public confidence in [...] Read more.
This study proposes methods of computer simulation to study and optimize the cybersecurity of Small Modular Nuclear Reactors (SMRs). SMRs hold the potential to help build a clean and sustainable power grid but will struggle to gain widespread adoption without public confidence in their security. SMRs are emerging technologies and potentially carry higher cyber threats due to remote operations, large numbers of cyber-physical systems, and cyber connections with other industrial concerns. A method of agent-based computer simulations to model the effects, or payoff, of collaboration between cyber defenders, power plants, and cybersecurity vendors is proposed to strengthen SMR cybersecurity as these new power generators enter into the market. The agent-based model presented in this research is intended to illustrate the potential of using simulation to model a payoff function for collaborative efforts between stakeholders. Employing simulation to heighten cybersecurity will help to safely leverage the potential of SMRs in a modern and low-emission energy grid. Full article
(This article belongs to the Special Issue Intrusion/Malware Detection and Prevention in Networks—2nd Edition)
Show Figures

Figure 1

21 pages, 2222 KB  
Article
Machine Learning-Driven Security and Privacy Analysis of a Dummy-ABAC Model for Cloud Computing
by Baby Marina, Irfana Memon, Fizza Abbas Alvi, Ubaidullah Rajput and Mairaj Nabi
Computers 2025, 14(10), 420; https://doi.org/10.3390/computers14100420 - 2 Oct 2025
Abstract
The Attribute-Based Access Control (ABAC) model provides access control decisions based on subject, object (resource), and contextual attributes. However, the use of sensitive attributes in access control decisions poses many security and privacy challenges, particularly in cloud environment where third parties are involved. [...] Read more.
The Attribute-Based Access Control (ABAC) model provides access control decisions based on subject, object (resource), and contextual attributes. However, the use of sensitive attributes in access control decisions poses many security and privacy challenges, particularly in cloud environment where third parties are involved. To address this shortcoming, we present a novel privacy-preserving Dummy-ABAC model that obfuscates real attributes with dummy attributes before transmission to the cloud server. In the proposed model, only dummy attributes are stored in the cloud database, whereas real attributes and mapping tokens are stored in a local machine database. Only dummy attributes are used for the access request evaluation in the cloud, and real data are retrieved in the post-decision mechanism using secure tokens. The security of the proposed model was assessed using a simulated threat scenario, including attribute inference, policy injection, and reverse mapping attacks. Experimental evaluation using machine learning classifiers (“DecisionTree” DT, “RandomForest” RF), demonstrated that inference accuracy dropped from ~0.65 on real attributes to ~0.25 on dummy attributes confirming improved resistance to inference attacks. Furthermore, the model rejects malformed and unauthorized policies. Performance analysis of dummy generation, token generation, encoding, and nearest-neighbor search, demonstrated minimal latency in both local and cloud environments. Overall, the proposed model ensures an efficient, secure, and privacy-preserving access control in cloud environments. Full article
Show Figures

Figure 1

18 pages, 479 KB  
Review
A Digital Twin Threat Survey
by Manuel Suárez-Román, Mario Sanz-Rodrigo, Andrés Marín-López and David Arroyo
Big Data Cogn. Comput. 2025, 9(10), 252; https://doi.org/10.3390/bdcc9100252 - 2 Oct 2025
Abstract
Virtual and digital twins are means of high value to characterize, model and control physical systems, providing the basis for a simulation environment and lab. In the case of a digital twin, it is possible to have a replica of a physical environment [...] Read more.
Virtual and digital twins are means of high value to characterize, model and control physical systems, providing the basis for a simulation environment and lab. In the case of a digital twin, it is possible to have a replica of a physical environment by means of reliable sensor networks and accurate data. In this paper we analyse in detail the threats to the reliability of the information extracted from these sensor networks, along with a set of challenges to guarantee data liveness and trustworthiness. Full article
25 pages, 877 KB  
Article
Cyber Coercion Detection Using LLM-Assisted Multimodal Biometric System
by Abdulaziz Almehmadi
Appl. Sci. 2025, 15(19), 10658; https://doi.org/10.3390/app151910658 - 2 Oct 2025
Abstract
Cyber coercion, where legitimate users are forced to perform actions under duress, poses a serious insider threat to modern organizations, especially to critical infrastructure. Traditional security controls and monitoring tools struggle to distinguish coerced actions from normal user actions. In this paper, we [...] Read more.
Cyber coercion, where legitimate users are forced to perform actions under duress, poses a serious insider threat to modern organizations, especially to critical infrastructure. Traditional security controls and monitoring tools struggle to distinguish coerced actions from normal user actions. In this paper, we propose a cyber coercion detection system that analyzes a user’s activity using an integrated large language model (LLM) to evaluate contextual cues from user commands or actions and current policies and procedures. If the LLM indicates coercion, behavioral methods, such as keystroke dynamics and mouse usage patterns, and physiological signals such as heart rate are analyzed to detect stress or anomalies indicative of duress. Experimental results show that the LLM-assisted multimodal approach shows potential in detecting coercive activity with and without detected coercive communication, where multimodal biometrics assist the confidence of the LLM in cases in which it does not detect coercive communication. The proposed system may add a critical detection capability against coercion-based cyber-attacks, providing early warning signals that could inform defensive responses before damage occurs. Full article
Show Figures

Figure 1

31 pages, 1144 KB  
Systematic Review
Smart Contracts, Blockchain, and Health Policies: Past, Present, and Future
by Kenan Kaan Kurt, Meral Timurtaş, Sevcan Pınar, Fatih Ozaydin and Serkan Türkeli
Information 2025, 16(10), 853; https://doi.org/10.3390/info16100853 - 2 Oct 2025
Abstract
The integration of blockchain technology into healthcare systems has emerged as a technical solution for enhancing data security, protecting privacy, and improving interoperability. Blockchain-based smart contracts offer reliability, transparency, and efficiency in healthcare services, making them a focal point of many studies. However, [...] Read more.
The integration of blockchain technology into healthcare systems has emerged as a technical solution for enhancing data security, protecting privacy, and improving interoperability. Blockchain-based smart contracts offer reliability, transparency, and efficiency in healthcare services, making them a focal point of many studies. However, challenges such as scalability, regulatory compliance, and interoperability continue to limit their widespread adoption. This study conducts a comprehensive literature review to assess blockchain-driven health data management, focusing on the classification of blockchain-based smart contracts in health policy and the health protocols and standards applicable to blockchain-based smart contracts. This review includes 80 core studies published between 2019 and 2025, identified through searches in PubMed, Scopus, and Web of Science using the PRISMA method. Risk of bias and methodological quality were assessed using the Joanna Briggs Institute tool. The findings highlight the potential of blockchain-enabled smart contracts in health policy management, emphasizing their advantages, limitations, and implementation challenges. Additionally, the research underscores their transformative impact on digital health policies in ensuring data integrity, enhancing patient autonomy, and fostering a more resilient healthcare ecosystem. Recent advancements in quantum technologies are also considered as they present both novel opportunities and emerging threats to the future security and design of healthcare blockchain systems. Full article
Show Figures

Figure 1

23 pages, 1735 KB  
Article
FortiNIDS: Defending Smart City IoT Infrastructures Against Transferable Adversarial Poisoning in Machine Learning-Based Intrusion Detection Systems
by Abdulaziz Alajaji
Sensors 2025, 25(19), 6056; https://doi.org/10.3390/s25196056 - 2 Oct 2025
Abstract
In today’s digital era, cyberattacks are rapidly evolving, rendering traditional security mechanisms increasingly inadequate. The adoption of AI-based Network Intrusion Detection Systems (NIDS) has emerged as a promising solution, due to their ability to detect and respond to malicious activity using machine learning [...] Read more.
In today’s digital era, cyberattacks are rapidly evolving, rendering traditional security mechanisms increasingly inadequate. The adoption of AI-based Network Intrusion Detection Systems (NIDS) has emerged as a promising solution, due to their ability to detect and respond to malicious activity using machine learning techniques. However, these systems remain vulnerable to adversarial threats, particularly data poisoning attacks, in which attackers manipulate training data to degrade model performance. In this work, we examine tree classifiers, Random Forest and Gradient Boosting, to model black box poisoning attacks. We introduce FortiNIDS, a robust framework that employs a surrogate neural network to generate adversarial perturbations that can transfer between models, leveraging the transferability of adversarial examples. In addition, we investigate defense strategies designed to improve the resilience of NIDS in smart city Internet of Things (IoT) settings. Specifically, we evaluate adversarial training and the Reject on Negative Impact (RONI) technique using the widely adopted CICDDoS2019 dataset. Our findings highlight the effectiveness of targeted defenses in improving detection accuracy and maintaining system reliability under adversarial conditions, thereby contributing to the security and privacy of smart city networks. Full article
Show Figures

Figure 1

30 pages, 1774 KB  
Review
A Systematic Literature Review on AI-Based Cybersecurity in Nuclear Power Plants
by Marianna Lezzi, Luigi Martino, Ernesto Damiani and Chan Yeob Yeun
J. Cybersecur. Priv. 2025, 5(4), 79; https://doi.org/10.3390/jcp5040079 - 1 Oct 2025
Abstract
Cybersecurity management plays a key role in preserving the operational security of nuclear power plants (NPPs), ensuring service continuity and system resilience. The growing number of sophisticated cyber-attacks against NPPs requires cybersecurity experts to detect, analyze, and defend systems and data from cyber [...] Read more.
Cybersecurity management plays a key role in preserving the operational security of nuclear power plants (NPPs), ensuring service continuity and system resilience. The growing number of sophisticated cyber-attacks against NPPs requires cybersecurity experts to detect, analyze, and defend systems and data from cyber threats in near real time. However, managing a large numbers of attacks in a timely manner is impossible without the support of Artificial Intelligence (AI). This study recognizes the need for a structured and in-depth analysis of the literature in the context of NPPs, referring to the role of AI technology in supporting cyber risk assessment processes. For this reason, a systematic literature review (SLR) is adopted to address the following areas of analysis: (i) critical assets to be preserved from cyber-attacks through AI, (ii) security vulnerabilities and cyber threats managed using AI, (iii) cyber risks and business impacts that can be assessed by AI, and (iv) AI-based security countermeasures to mitigate cyber risks. The SLR procedure follows a macro-step approach that includes review planning, search execution and document selection, and document analysis and results reporting, with the aim of providing an overview of the key dimensions of AI-based cybersecurity in NPPs. The structured analysis of the literature allows for the creation of an original tabular outline of emerging evidence (in the fields of critical assets, security vulnerabilities and cyber threats, cyber risks and business impacts, and AI-based security countermeasures) that can help guide AI-based cybersecurity management in NPPs and future research directions. From an academic perspective, this study lays the foundation for understanding and consciously addressing cybersecurity challenges through the support of AI; from a practical perspective, it aims to assist managers, practitioners, and policymakers in making more informed decisions to improve the resilience of digital infrastructure. Full article
(This article belongs to the Section Security Engineering & Applications)
Show Figures

Figure 1

21 pages, 2975 KB  
Article
ARGUS: An Autonomous Robotic Guard System for Uncovering Security Threats in Cyber-Physical Environments
by Edi Marian Timofte, Mihai Dimian, Alin Dan Potorac, Doru Balan, Daniel-Florin Hrițcan, Marcel Pușcașu and Ovidiu Chiraș
J. Cybersecur. Priv. 2025, 5(4), 78; https://doi.org/10.3390/jcp5040078 - 1 Oct 2025
Abstract
Cyber-physical infrastructures such as hospitals and smart campuses face hybrid threats that target both digital and physical domains. Traditional security solutions separate surveillance from network monitoring, leaving blind spots when attackers combine these vectors. This paper introduces ARGUS, an autonomous robotic platform designed [...] Read more.
Cyber-physical infrastructures such as hospitals and smart campuses face hybrid threats that target both digital and physical domains. Traditional security solutions separate surveillance from network monitoring, leaving blind spots when attackers combine these vectors. This paper introduces ARGUS, an autonomous robotic platform designed to close this gap by correlating cyber and physical anomalies in real time. ARGUS integrates computer vision for facial and weapon detection with intrusion detection systems (Snort, Suricata) for monitoring malicious network activity. Operating through an edge-first microservice architecture, it ensures low latency and resilience without reliance on cloud services. Our evaluation covered five scenarios—access control, unauthorized entry, weapon detection, port scanning, and denial-of-service attacks—with each repeated ten times under varied conditions such as low light, occlusion, and crowding. Results show face recognition accuracy of 92.7% (500 samples), weapon detection accuracy of 89.3% (450 samples), and intrusion detection latency below one second, with minimal false positives. Audio analysis of high-risk sounds further enhanced situational awareness. Beyond performance, ARGUS addresses GDPR and ISO 27001 compliance and anticipates adversarial robustness. By unifying cyber and physical detection, ARGUS advances beyond state-of-the-art patrol robots, delivering comprehensive situational awareness and a practical path toward resilient, ethical robotic security. Full article
(This article belongs to the Special Issue Cybersecurity Risk Prediction, Assessment and Management)
Show Figures

Figure 1

15 pages, 1705 KB  
Article
Enhancing Two-Step Random Access in LEO Satellite Internet an Attack-Aware Adaptive Backoff Indicator (AA-BI)
by Jiajie Dong, Yong Wang, Qingsong Zhao, Ruiqian Ma and Jiaxiong Yang
Future Internet 2025, 17(10), 454; https://doi.org/10.3390/fi17100454 - 1 Oct 2025
Abstract
Low-Earth-Orbit Satellite Internet (LEO SI), with its capability for seamless global coverage, is a key solution for connecting IoT devices in areas beyond terrestrial network reach, playing a vital role in building a future ubiquitous IoT system. Inspired by the IEEE 802.15.4 Improved [...] Read more.
Low-Earth-Orbit Satellite Internet (LEO SI), with its capability for seamless global coverage, is a key solution for connecting IoT devices in areas beyond terrestrial network reach, playing a vital role in building a future ubiquitous IoT system. Inspired by the IEEE 802.15.4 Improved Adaptive Backoff Algorithm (I-ABA), this paper proposes an Attack-Aware Adaptive Backoff Indicator (AA-BI) mechanism to enhance the security and robustness of the two-step random access process in LEO SI. The mechanism constructs a composite threat intensity indicator that incorporates collision probability, Denial-of-Service (DoS) attack strength, and replay attack intensity. This quantified threat level is smoothly mapped to a dynamic backoff window to achieve adaptive backoff adjustment. Simulation results demonstrate that, with 200 pieces of user equipment (UE), the AA-BI mechanism significantly improves the access success rate (ASR) and jamming resistance rate (JRR) under various attack scenarios compared to the I-ABA and Binary Exponential Backoff (BEB) algorithms. Notably, under high-attack conditions, AA-BI improves ASR by up to 25.1% and 56.6% over I-ABA and BEB, respectively. Moreover, under high-load conditions with 800 users, AA-BI still maintains superior performance, achieving an ASR of 0.42 and a JRR of 0.68, thereby effectively ensuring the access performance and reliability of satellite Internet in malicious environments. Full article
Show Figures

Figure 1

20 pages, 14055 KB  
Article
TL-Efficient-SE: A Transfer Learning-Based Attention-Enhanced Model for Fingerprint Liveness Detection Across Multi-Sensor Spoof Attacks
by Archana Pallakonda, Rayappa David Amar Raj, Rama Muni Reddy Yanamala, Christian Napoli and Cristian Randieri
Mach. Learn. Knowl. Extr. 2025, 7(4), 113; https://doi.org/10.3390/make7040113 - 1 Oct 2025
Abstract
Fingerprint authentication systems encounter growing threats from presentation attacks, making strong liveness detection crucial. This work presents a deep learning-based framework integrating EfficientNetB0 with a Squeeze-and-Excitation (SE) attention approach, using transfer learning to enhance feature extraction. The LivDet 2015 dataset, composed of both [...] Read more.
Fingerprint authentication systems encounter growing threats from presentation attacks, making strong liveness detection crucial. This work presents a deep learning-based framework integrating EfficientNetB0 with a Squeeze-and-Excitation (SE) attention approach, using transfer learning to enhance feature extraction. The LivDet 2015 dataset, composed of both real and fake fingerprints taken using four optical sensors and spoofs made using PlayDoh, Ecoflex, and Gelatine, is used to train and test the model architecture. Stratified splitting is performed once the images being input have been scaled and normalized to conform to EfficientNetB0’s format. The SE module adaptively improves appropriate features to competently differentiate live from fake inputs. The classification head comprises fully connected layers, dropout, batch normalization, and a sigmoid output. Empirical results exhibit accuracy between 98.50% and 99.50%, with an AUC varying from 0.978 to 0.9995, providing high precision and recall for genuine users, and robust generalization across unseen spoof types. Compared to existing methods like Slim-ResCNN and HyiPAD, the novelty of our model lies in the Squeeze-and-Excitation mechanism, which enhances feature discrimination by adaptively recalibrating the channels of the feature maps, thereby improving the model’s ability to differentiate between live and spoofed fingerprints. This model has practical implications for deployment in real-time biometric systems, including mobile authentication and secure access control, presenting an efficient solution for protecting against sophisticated spoofing methods. Future research will focus on sensor-invariant learning and adaptive thresholds to further enhance resilience against varying spoofing attacks. Full article
(This article belongs to the Special Issue Advances in Machine and Deep Learning)
Show Figures

Figure 1

21 pages, 3759 KB  
Article
Forensics System for Internet of Vehicles Based on Post-Quantum Blockchain
by Zheng Zhang, Zehao Cao and Yongshun Wang
Sensors 2025, 25(19), 6038; https://doi.org/10.3390/s25196038 - 1 Oct 2025
Abstract
Internet of Vehicles (IoV) serves as the data support for intelligent transportation systems, and the information security of the IoV is of paramount importance. In view of the problems of centralized processing, easy information leakage, and weak anti-interference ability in traditional vehicle networking [...] Read more.
Internet of Vehicles (IoV) serves as the data support for intelligent transportation systems, and the information security of the IoV is of paramount importance. In view of the problems of centralized processing, easy information leakage, and weak anti-interference ability in traditional vehicle networking systems, this paper proposes a blockchain architecture suitable for IoV forensics scenario. By leveraging the decentralized, distributed storage and tamper-proof capabilities of blockchain, it solves the privacy protection and data security issues of the system. Considering the threat of quantum computing to the encryption technology in traditional blockchain, this paper integrates lattice cryptography and ring signatures into digital signature technology, achieving privacy protection and traceability of the signer’s identity. To enhance the efficiency of lattice-based cryptographic algorithms, the DualRing technology is introduced, which reduces the computational time and storage consumption of ring signatures. Theoretical analysis has proved the correctness, anonymity, unlinkability, and traceability of the proposed scheme, which is applicable to the IoV forensics system. Simulation comparisons demonstrated that the proposed scheme significantly improves computational efficiency and reduces storage overhead. When the number of ring members is 256, the signature and verification times require only 65.76 ms and 21.46 ms, respectively. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

21 pages, 527 KB  
Article
Block-CITE: A Blockchain-Based Crowdsourcing Interactive Trust Evaluation
by Jiaxing Li, Lin Jiang, Haoxian Liang, Tao Peng, Shaowei Wang and Huanchun Wei
AI 2025, 6(10), 245; https://doi.org/10.3390/ai6100245 - 1 Oct 2025
Abstract
Industrial trademark examination enables users to apply for and manage their trademarks efficiently, promoting industrial and commercial economic development. However, there still exist many challenges, e.g., how to customize a blockchain-based crowdsourcing method for interactive trust evaluation, how to decentralize the functionalities of [...] Read more.
Industrial trademark examination enables users to apply for and manage their trademarks efficiently, promoting industrial and commercial economic development. However, there still exist many challenges, e.g., how to customize a blockchain-based crowdsourcing method for interactive trust evaluation, how to decentralize the functionalities of a centralized entity to nodes in a blockchain network instead of removing the entity directly, how to design a protocol for the method and prove its security, etc. In order to overcome these challenges, in this paper, we propose the Blockchain-based Crowdsourcing Interactive Trust Evaluation (Block-CITE for short) method to improve the efficiency and security of the current industrial trademark management schemes. Specifically, Block-CITE adopts a dual-blockchain structure and a crowdsourcing technique to record operations and store relevant data in a decentralized way. Furthermore, Block-CITE customizes a protocol for blockchain-based crowdsourced industrial trademark examination and algorithms of smart contracts to run the protocol automatically. In addition, Block-CITE analyzes the threat model and proves the security of the protocol. Security analysis shows that Block-CITE is able to defend against the malicious entities and attacks in the blockchain network. Experimental analysis shows that Block-CITE has a higher transaction throughput and lower network latency and storage overhead than the baseline methods. Full article
Show Figures

Figure 1

Back to TopTop