Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (218)

Search Parameters:
Keywords = sediment–water interface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8290 KB  
Article
Experimental and Numerical Investigation of Fines Migration Mechanisms in Porous Media: Implications for Marine Gas Hydrate Production
by Shuang Cindy Cao, Mengzhen Cao, Yanli Yuan, Jongwon Jung and Xiaoshuang Li
J. Mar. Sci. Eng. 2025, 13(10), 2002; https://doi.org/10.3390/jmse13102002 - 18 Oct 2025
Viewed by 221
Abstract
Fines migration and clogging in porous media have significant implications for engineering applications. For example, during the extraction of marine gas hydrates, fines migration can lead to pore clogging and reduced permeability. This study combines micromodel experiments with DEM-CFD simulations to investigate the [...] Read more.
Fines migration and clogging in porous media have significant implications for engineering applications. For example, during the extraction of marine gas hydrates, fines migration can lead to pore clogging and reduced permeability. This study combines micromodel experiments with DEM-CFD simulations to investigate the effects of fine type (latex/mica), fine shape (spherical/flake), pore size (50 to 700 μm), and pore fluid composition (DW/brine) on fines migration, fine clogging behavior, and the evolution of host sediment porosity. Experiments demonstrate that clogging is geometrically influenced by the relationship between pore size and fines dimensions. Even when the size of fines (mica) is smaller than the pore throat size, their aggregates can still lead to clogging at very low concentrations (0.1–0.2%). The aggregate size of irregular mica is affected by changes in pore fluid properties, which may occur due to the freshening of pore water during hydrate dissociation. Furthermore, a moving gas/liquid interface concentrates fines, thereby increasing the risk of pore clogging. Simulations further reveal that fines migration causes dynamic changes in porosity, which requires a comprehensive consideration of the coupled effects of fine type, fluid velocity, pore size, and fluid chemistry. This study elucidates the microscopic mechanisms and quantifies the macroscopic effects of fines migration behavior in porous media, providing a theoretical foundation for further research. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

23 pages, 2040 KB  
Review
Soil Properties, Processes, Ecological Services and Management Practices of Mediterranean Riparian Systems
by Pasquale Napoletano, Noureddine Guezgouz, Lorenza Parato, Rosa Maisto, Imen Benradia, Sarra Benredjem, Teresa Rosaria Verde and Anna De Marco
Sustainability 2025, 17(19), 8843; https://doi.org/10.3390/su17198843 - 2 Oct 2025
Viewed by 512
Abstract
Riparian zones, located at the interface between terrestrial and aquatic systems, are among the most dynamic and ecologically valuable landscapes. These transitional areas play a pivotal role in maintaining environmental health by supporting biodiversity, regulating hydrological processes, filtering pollutants, and stabilizing streambanks. At [...] Read more.
Riparian zones, located at the interface between terrestrial and aquatic systems, are among the most dynamic and ecologically valuable landscapes. These transitional areas play a pivotal role in maintaining environmental health by supporting biodiversity, regulating hydrological processes, filtering pollutants, and stabilizing streambanks. At the core of these functions lie the unique characteristics of riparian soils, which result from complex interactions between water dynamics, sedimentation, vegetation, and microbial activity. This paper provides a comprehensive overview of the origin, structure, and functioning of riparian soils, with particular attention being paid to their physical, chemical, and biological properties and how these properties are shaped by periodic flooding and vegetation patterns. Special emphasis is placed on Mediterranean riparian environments, where marked seasonality, alternating wet–dry cycles, and increasing climate variability enhance both the importance and fragility of riparian systems. A bibliographic study, covering 25 years (2000–2025), was carried out through Scopus and Web of Science. The results highlight that riparian areas are key for carbon sequestration, nutrient retention, and ecosystem connectivity in water-limited regions, yet they are increasingly threatened by land use change, water abstraction, pollution, and biological invasions. Climate change exacerbates these pressures, altering hydrological regimes and reducing soil resilience. Conservation requires integrated strategies that maintain hydrological connectivity, promote native vegetation, and limit anthropogenic impacts. Preserving riparian soils is therefore fundamental to sustain ecosystem services, improve water quality, and enhance landscape resilience in vulnerable Mediterranean contexts. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

16 pages, 2952 KB  
Review
Sediment–Phosphorus Dynamics in the Yellow River Estuary
by Yuan Gao, Kun Liu, Shengpin Li and Wenpeng Li
Water 2025, 17(19), 2794; https://doi.org/10.3390/w17192794 - 23 Sep 2025
Viewed by 715
Abstract
The Yellow River, with its extremely high sediment loads, and the Yellow River Estuary (YRE) serve as a vital conduit for material exchange between land and marine environments, where sediment–phosphorus interactions profoundly influence nutrient cycling, ecological health and eutrophication potential. This paper reviews [...] Read more.
The Yellow River, with its extremely high sediment loads, and the Yellow River Estuary (YRE) serve as a vital conduit for material exchange between land and marine environments, where sediment–phosphorus interactions profoundly influence nutrient cycling, ecological health and eutrophication potential. This paper reviews the distribution of phosphorus in overlying water and sediment, the characteristics of phosphorus migration and transformation across the sediment–water interface, and the effecting factors of phosphorus migrate, such as sediment properties and environmental factors in the YRE. Inorganic phosphorus was the dominant form in the overlying water and sediment. Suspended sediment acts as a dynamic reservoir for phosphorus transportation in the YRE. The dynamic estuarine environment promotes sediment deposition, which helps reduce phosphorus levels in the water. Upon entering the Bohai Sea, sediment is transformed into the source of phosphorus. The released phosphorus may increase the nutrient load in shallow Bohai Sea waters. Fine particles demonstrate strong adsorption capacity for reactive phosphorus, acting as the primary carriers for phosphorus migration at the sediment–water interface. The grain size of the suspended sediment in the Yellow River exhibited significant sorting characteristics with varying sediment content, consequently affecting the forms of phosphorus. Likewise, the influence of biogeochemical conditions on the transport and transformation of sediment and phosphorus was further analyzed and the partial least squares-path model of related variables on estuarine phosphorus is constructed to interpret the behavior of sediment and phosphorus in the YRE. Finally, the current situation and indeterminacy of water quality models in the estuary were appraised. The priority of analyzing and revealing the environmental behaviors of phosphorus in a sediment-laden river estuary in the future was further proposed against the present deficiencies. This review holds significant practical importance for enhancing the assessment of ecological environment quality and ecological restoration in the YRE. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

35 pages, 9322 KB  
Article
A Geochemical Study of Near-Shore Sediment Cores from Utah Lake, UT, USA
by Jacob B. Taggart, Lauren M. Woodland, Kaylee B. Tanner and Gustavious P. Williams
Geosciences 2025, 15(9), 363; https://doi.org/10.3390/geosciences15090363 - 15 Sep 2025
Viewed by 538
Abstract
Several sediment core studies have been performed on Utah Lake over the past century, with recent studies providing detailed depositional history based on shallow core samples. To offer additional coverage, we collected 10 deeper sediment cores that extended at least 140 cm below [...] Read more.
Several sediment core studies have been performed on Utah Lake over the past century, with recent studies providing detailed depositional history based on shallow core samples. To offer additional coverage, we collected 10 deeper sediment cores that extended at least 140 cm below the sediment–water interface from various locations across the lake and analyzed them for ICP-OES detectable elements, fractional calcium carbonate, and loss on ignition (as a proxy for fractional organic matter). Despite high water levels and equipment limitations restricting us to near-shore areas, our samples effectively represented the lake. Our findings revealed significant chemostratigraphic variability, indicating non-homogeneous lakebed sediment. Elements with higher min–max normalized mean concentrations showed strong correlations. Depth trends in the sediments indicated positive correlations for Mn, Al, Fe, K, and V, and negative correlations for Ba, Cu, Pb, Sr, and Zn, with P showing variable correlations. Some of our multidimensional scaling results exhibited geochemical shifts at 30–40 cm, supporting claims that this depth marks the onset of European settlement. Elevated Pb levels in the upper sediment layers are likely the result of mid-20th century leaded gasoline pollution. Sediment P is linked to Ca, Fe, and trace metal pollutants, suggesting both natural processes and human activities influence elemental distribution, though only a few cores showed P changes aligning with European settlement. Full article
Show Figures

Figure 1

18 pages, 3058 KB  
Article
The Impact of Biofilm-Induced Dynamic Layered Clogging on Hyporheic Exchange in Streambed
by Zhongtian Zhang, Qiang Xu, Xinyi Wu, Ren Tang, Wenhai Yang, Xingji Zhao and Yuansheng Wang
Water 2025, 17(18), 2717; https://doi.org/10.3390/w17182717 - 13 Sep 2025
Viewed by 572
Abstract
The hyporheic zone functions as a critical interface mediating hydrological and biogeochemical exchanges between stream water and streambed. Within shallow streambed layers, sediment transport and biofilm colonization can induce dynamic layered clogging, alter hydraulic conductivity, and foster physical stratification that significantly modulates hyporheic [...] Read more.
The hyporheic zone functions as a critical interface mediating hydrological and biogeochemical exchanges between stream water and streambed. Within shallow streambed layers, sediment transport and biofilm colonization can induce dynamic layered clogging, alter hydraulic conductivity, and foster physical stratification that significantly modulates hyporheic exchange patterns. This study develops a coupled hydrodynamic–mass transport model for a representative streambed bedform to examine the impacts of biofilm-driven dynamic clogging on hyporheic exchange dynamics. Results reveal that dynamic layered clogging reduces pore water velocity and total water flux, causing a 45.1% decline in the total inflow to the hyporheic zone. The transport of non-absorbable solutes exhibits a biphasic pattern: initial rapid penetration transitions to gradual deceleration over time, with dynamic clogging extending the penetration time of the solute center of mass distribution (CMD). Notably, when hydraulic conductivity falls below a threshold (K* < 0.25), CMD penetration time exhibits a positive correlation with hydraulic conductivity, attributed to porosity-induced changes in actual flow velocity. When considering the anaerobic growth in deeper layers, the penetration time become longer because of the clogging present there. This research clarifies the mechanistic connections between biofilm-induced clogging and hyporheic exchange, providing valuable insights for the management of hyporheic ecosystems and the modeling of biogeochemical processes. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

20 pages, 2084 KB  
Article
Unravelling the Effect of Sediment Properties on As(V) and As(III) Adsorption/Desorption Processes: Implications for Groundwater Geochemistry
by Sara Trotta, Gilberto Binda, Andrea Pozzi and Alessandro Maria Michetti
Water 2025, 17(17), 2616; https://doi.org/10.3390/w17172616 - 4 Sep 2025
Viewed by 964
Abstract
Arsenic (As) mobility in aquifer systems is mainly governed by its adsorption and desorption behaviour at the sediment-water interface, directly influencing its environmental availability and risks to water quality. This study explores the adsorption-desorption behaviour of inorganic As species through batch experiments on [...] Read more.
Arsenic (As) mobility in aquifer systems is mainly governed by its adsorption and desorption behaviour at the sediment-water interface, directly influencing its environmental availability and risks to water quality. This study explores the adsorption-desorption behaviour of inorganic As species through batch experiments on environmental sediments collected from three representative depths, selected to reflect local contrasting geochemical, mineralogical, and granulometric characteristics of the Como basin aquifer (Northern Italy). This setting was selected as a case study owing to its notable gradient in As concentration in groundwater: the shallow aquifers host concentrations typically below 10 µg/L, while the deep aquifer reaches concentrations of about 250 µg/L. Statistical analyses (ANOVA and simple linear regression) identified Mn- and Al-(hydr)oxide content, grain size, and mineralogy as strong predictors of As(V) retention, whereas As(III) showed no significant correlation with individual sediment properties within the tested conditions. Shallow, Mn- and Al-rich sediments exhibited higher adsorption capacity and corresponded to lower dissolved As in groundwater, while deeper, finer-grained sediments with lower oxide content coincided with elevated groundwater As concentrations. Desorption experiments indicated that As(III) dominated the released fraction, reflecting its greater mobility under variable pH and redox aquifer conditions. These results provide mechanistic insight into sediment-water interactions controlling As distribution in multilayer aquifers, supporting improved risk assessment and management of As in complex groundwater systems. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

23 pages, 1922 KB  
Review
Phosphorus Cycling in Sediments of Deep and Large Reservoirs: Environmental Effects and Interface Processes
by Jue Wang, Jijun Gao, Qiwen Wang, Laisheng Liu, Huaidong Zhou, Shengjie Li, Hongcheng Shi and Siwei Wang
Sustainability 2025, 17(16), 7551; https://doi.org/10.3390/su17167551 - 21 Aug 2025
Viewed by 1262
Abstract
Although the sediment–water interface of deep and large reservoirs is recognized as a dominant source of internal phosphorus (P) loading, the quantitative hierarchy of environmental drivers and their interaction thresholds remains poorly resolved. Here, we integrate 512 studies to provide the first process-based [...] Read more.
Although the sediment–water interface of deep and large reservoirs is recognized as a dominant source of internal phosphorus (P) loading, the quantitative hierarchy of environmental drivers and their interaction thresholds remains poorly resolved. Here, we integrate 512 studies to provide the first process-based synthesis that partitions P release fluxes among temperature, pH, dissolved oxygen, salinity, sediment properties, and microbial activity across canyon, valley, and plain-type reservoirs. By deriving standardized effect sizes from 61 data-rich papers, we show that (i) a 1 °C rise in bottom-water temperature increases soluble reactive P (SRP) flux by 12.4% (95% CI: 10.8–14.0%), with sensitivity 28% lower in Alpine oligotrophic systems and 20% higher in warm monomictic basins; (ii) a single-unit pH shift—whether acid or alkaline—stimulates P release through distinct desorption pathways,; and (iii) each 1 mg L−1 drop in dissolved oxygen amplifies release by 31% (25–37%). Critically, we demonstrate that these drivers rarely act independently: multi-factor laboratory and in situ analyses reveal that simultaneous hypoxia and warming can triple the release rate predicted from single-factor models. We further identify that >75% of measurements originate from dam-proximal zones, creating spatial blind spots that currently limit global P-load forecasts to ±50% uncertainty. To close this gap, we advocate coupled metagenomic–geochemical observatories that link gene expression (phoD, ppk, pqqC) to real-time SRP fluxes. The review advances beyond the existing literature by (1) establishing the first quantitative, globally transferable framework for temperature-, DO-, and pH-based management levers; (2) exposing the overlooked role of regional climate in modulating temperature sensitivity; and (3) providing a research agenda that reduces forecasting uncertainty to <20% within two years. Full article
Show Figures

Figure 1

20 pages, 7334 KB  
Article
Trans-Dimensional Geoacoustic Inversion in Shallow Water Using a Range-Dependent Layered Geoacoustic Model
by Juan Kang, Zhaohui Peng, Li He, Wenyu Luo and Qianyu Wang
J. Mar. Sci. Eng. 2025, 13(8), 1563; https://doi.org/10.3390/jmse13081563 - 14 Aug 2025
Viewed by 409
Abstract
Generally, most inversion approaches model the seabed as a stack of range-independent homogeneous layers with unknown geoacoustic parameters and layer numbers. In our previous study, we established a layered geoacoustic seabed model based on sub-bottom profiler data to characterize low-frequency (100–500 Hz) airgun [...] Read more.
Generally, most inversion approaches model the seabed as a stack of range-independent homogeneous layers with unknown geoacoustic parameters and layer numbers. In our previous study, we established a layered geoacoustic seabed model based on sub-bottom profiler data to characterize low-frequency (100–500 Hz) airgun signal propagation at short ranges (0–20 km). However, when applying the same model to simulate high-frequency (500–1000 Hz) explosive sound signal propagation, it failed to adequately reproduce the observed significant transmission loss phenomenon. Through systematic analysis of transmission loss (including water column sound speed profiles, seabed topography, and sediment properties), this study proposes a range-dependent layered geoacoustic model using the Range-dependent Acoustic Model–Parabolic Equation (RAM-PE). Stepwise inversion implementation has successfully explained the observed experimental phenomena. To generalize the proposed model, this study further introduces a trans-dimensional inversion framework that automatically resolves sediment property interfaces along propagation paths. The method effectively combines prior information with trans-dimensional inversion techniques, providing improved characterization of range-dependent seabed environments. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

22 pages, 7171 KB  
Article
Distribution Characteristics, Mobility, and Influencing Factors of Heavy Metals at the Sediment–Water Interface in South Dongting Lake
by Xiaohong Fang, Xiangyu Han, Chuanyong Tang, Bo Peng, Qing Peng, Linjie Hu, Yuru Zhong and Shana Shi
Water 2025, 17(15), 2331; https://doi.org/10.3390/w17152331 - 5 Aug 2025
Viewed by 764
Abstract
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments [...] Read more.
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments with heavy metals (HMs). This study investigated the distribution, mobility, and influencing factors of HMs at the sediment–water interface. To this end, sediment samples were analyzed from three key regions (Xiangjiang River estuary, Zishui River estuary, and northeastern South Dongting Lake) using traditional sampling methods and Diffusive Gradients in Thin Films (DGT) technology. Analysis of fifteen HMs (Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, V, Cr, Cu, Tl, Co, and Fe) revealed significant spatial heterogeneity. The results showed that Cr, Cu, Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, and Fe exhibited high variability (CV > 0.20), whereas V, Tl, and Co demonstrated stable concentrations (CV < 0.20). Concentrations were found to exceed background values of the upper continental crust of eastern China (UCC), Yangtze River sediments (YZ), and Dongting Lake sediments (DT), particularly at the Xiangjiang estuary (XE) and in the northeastern regions. Speciation analysis revealed that V, Cr, Cu, Ni, and As were predominantly found in the residual fraction (F4), while Pb and Co were concentrated in the oxidizable fraction (F3), Mn and Zn appeared primarily in the exchangeable fractions (F1 and F2), and Cd was notably dominant in the exchangeable fraction (F1), suggesting a high potential for mobility. Additionally, DGT results confirmed a significant potential for the release of Pb, Zn, and Cd. Contamination assessment using the Pollution Load Index (PLI) and Geoaccumulation Index (Igeo) identified Pb, Bi, Ni, As, Se, Cd, and Sb as major pollutants. Among these, Bi and Cd were found to pose the highest risks. Furthermore, the Risk Assessment Code (RAC) and the Potential Ecological Risk Index (PERI) highlighted Cd as the primary ecological risk contributor, especially in the XE. The study identified sediment grain size, pH, electrical conductivity, and nutrient levels as the primary influencing factors. The PMF modeling revealed HM sources as mixed smelting/natural inputs, agricultural activities, natural weathering, and mining/smelting operations, suggesting that remediation should prioritize Cd control in the XE with emphasis on external inputs. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

26 pages, 8897 KB  
Article
Numerical Study of Wave-Induced Longshore Current Generation Zones on a Circular Sandy Sloping Topography
by Mohammad Shaiful Islam, Tomoaki Nakamura, Yong-Hwan Cho and Norimi Mizutani
Water 2025, 17(15), 2263; https://doi.org/10.3390/w17152263 - 29 Jul 2025
Viewed by 569
Abstract
Wave deformation and sediment transport nearest the shoreside are among the main reasons for sand erosion and beach profile changes. In particular, identifying the areas of incident-wave breaking and longshore current generation parallel to the shoreline is important for understanding the morphological changes [...] Read more.
Wave deformation and sediment transport nearest the shoreside are among the main reasons for sand erosion and beach profile changes. In particular, identifying the areas of incident-wave breaking and longshore current generation parallel to the shoreline is important for understanding the morphological changes of coastal beaches. In this study, a two-phase incompressible flow model along with a sandy sloping topography was employed to investigate the wave deformation and longshore current generation areas in a circular wave basin model. The finite volume method (FVM) was implemented to discretize the governing equations in cylindrical coordinates, the volume-of-fluid method (VOF) was adopted to differentiate the air–water interfaces in the control cells, and the zonal embedded grid technique was employed for grid generation in the cylindrical computational domain. The water surface elevations and velocity profiles were measured in different wave conditions, and the measurements showed that the maximum water levels per wave were high and varied between cases, as well as between cross-sections in a single case. Additionally, the mean water levels were lower in the adjacent positions of the approximated wave-breaking zones. The wave-breaking positions varied between cross-sections in a single case, with the incident-wave height, mean water level, and wave-breaking position measurements indicating the influence of downstream flow variation in each cross-section on the sloping topography. The cross-shore velocity profiles became relatively stable over time, while the longshore velocity profiles predominantly moved in the alongshore direction, with smaller fluctuations, particularly during the same time period and in measurement positions near the wave-breaking zone. The computed velocity profiles also varied between cross-sections, and for the velocity profiles along the cross-shore and longshore directions nearest the wave-breaking areas where the downstream flow had minimal influence, it was presumed that there was longshore-current generation in the sloping topography nearest the shoreside. The computed results were compared with the experimental results and we observed similar characteristics for wave profiles in the same wave period case in both models. In the future, further investigations can be conducted using the presented circular wave basin model to investigate the oblique wave deformation and longshore current generation in different sloping and wave conditions. Full article
(This article belongs to the Special Issue Numerical Modeling of Hydrodynamics and Sediment Transport)
Show Figures

Figure 1

41 pages, 4553 KB  
Review
Global Distribution, Ecotoxicity, and Treatment Technologies of Emerging Contaminants in Aquatic Environments: A Recent Five-Year Review
by Yue Li, Yihui Li, Siyuan Zhang, Tianyi Gao, Zhaoyi Gao, Chin Wei Lai, Ping Xiang and Fengqi Yang
Toxics 2025, 13(8), 616; https://doi.org/10.3390/toxics13080616 - 24 Jul 2025
Viewed by 4404
Abstract
With the rapid progression of global industrialization and urbanization, emerging contaminants (ECs) have become pervasive in environmental media, posing considerable risks to ecosystems and human health. While multidisciplinary evidence continues to accumulate regarding their environmental persistence and bioaccumulative hazards, critical knowledge gaps persist [...] Read more.
With the rapid progression of global industrialization and urbanization, emerging contaminants (ECs) have become pervasive in environmental media, posing considerable risks to ecosystems and human health. While multidisciplinary evidence continues to accumulate regarding their environmental persistence and bioaccumulative hazards, critical knowledge gaps persist in understanding their spatiotemporal distribution, cross-media migration mechanisms, and cascading ecotoxicological consequences. This review systematically investigates the global distribution patterns of ECs in aquatic environments over the past five years and evaluates their potential ecological risks. Furthermore, it examines the performance of various treatment technologies, focusing on economic cost, efficiency, and environmental sustainability. Methodologically aligned with PRISMA 2020 guidelines, this study implements dual independent screening protocols, stringent inclusion–exclusion criteria (n = 327 studies). Key findings reveal the following: (1) Occurrences of ECs show geographical clustering in highly industrialized river basins, particularly in Asia (37.05%), Europe (24.31%), and North America (14.01%), where agricultural pharmaceuticals and fluorinated compounds contribute disproportionately to environmental loading. (2) Complex transboundary pollutant transport through atmospheric deposition and oceanic currents, coupled with compound-specific partitioning behaviors across water–sediment–air interfaces. (3) Emerging hybrid treatment systems (e.g., catalytic membrane bioreactors, plasma-assisted advanced oxidation) achieve > 90% removal for recalcitrant ECs, though requiring 15–40% cost reductions for scalable implementation. This work provides actionable insights for developing adaptive regulatory frameworks and advancing green chemistry principles in environmental engineering practice. Full article
Show Figures

Graphical abstract

18 pages, 9518 KB  
Article
CFD-Based Parameter Calibration and Design of Subwater In Situ Cultivation Chambers Toward Well-Mixing Status but No Sediment Resuspension
by Liwen Zhang, Min Luo, Shanggui Gong, Zhiyang Han, Weihan Liu and Binbin Pan
J. Mar. Sci. Eng. 2025, 13(7), 1290; https://doi.org/10.3390/jmse13071290 - 30 Jun 2025
Viewed by 399
Abstract
The elemental exchange fluxes at the sediment–water interface play a crucial role in Earth’s climate regulation, environmental change, and ecosystem dynamics. Accurate in situ measurements of these fluxes depend heavily on the performance of marine incubation devices, particularly their ability to achieve full [...] Read more.
The elemental exchange fluxes at the sediment–water interface play a crucial role in Earth’s climate regulation, environmental change, and ecosystem dynamics. Accurate in situ measurements of these fluxes depend heavily on the performance of marine incubation devices, particularly their ability to achieve full mixing without causing sediment resuspension. This study presents a novel parameter calibration method for a marine in situ incubation device using a combination of computational fluid dynamics (CFD) simulations and laboratory experiments. The influence of the stirring paddle’s rotational speed on flow field distribution, complete mixing time, and sediment resus-pension was systematically analyzed. The CFD simulation results were validated against existing device data and actual experimental measurements. The deviation in complete mixing time between simulation and experiment was within −9.23% to 9.25% for 20 cm of sediment and −9.4% to 9.1% for 15 cm. The resuspension tests determined that optimal mixing without sediment disturbance occurs at rotational speeds of 25 r/min and 35 r/min for the two sediment depths, respectively. Further analysis showed that the stirring paddle effectively creates a uniform flow field within the chamber. This CFD-based calibration method provides a reliable approach to parameter tuning for various in situ devices by adjusting boundary conditions, offering a scientific foundation for device design and deployment, and introducing a new framework for future calibration efforts. Full article
Show Figures

Figure 1

17 pages, 1753 KB  
Article
Demulsification Kinetics of Water-in-Oil Emulsions of Ecuadorian Crude Oil: Influence of Temperature and Salinity
by Jordy Sarmas-Farfan, Antonio Diaz-Barrios, Teresa E. Lehmann and Vladimir Alvarado
Energies 2025, 18(12), 3115; https://doi.org/10.3390/en18123115 - 13 Jun 2025
Viewed by 638
Abstract
This work focuses on the stability analysis of water-in-oil macroemulsions with a crude oil from the Sacha Field in Ecuador. This field is an important hydrocarbon resource in Ecuador with a typical bottom freshwater drive. The comprehensive stability analysis includes coalescence, water resolution [...] Read more.
This work focuses on the stability analysis of water-in-oil macroemulsions with a crude oil from the Sacha Field in Ecuador. This field is an important hydrocarbon resource in Ecuador with a typical bottom freshwater drive. The comprehensive stability analysis includes coalescence, water resolution or phase separation, and water–oil interfacial tension and interfacial dilatational viscoelastic modulus measurements over time. Two main parameters, due to their relevance, were controlled in these experiments: water salinity and temperature. The analysis reported here is the first focused on this important resource in Ecuador. Findings shed light on which mechanisms more likely control the stability of these water-in-oil macroemulsions. Results herein suggest that regardless of temperature, low-salinity water favors emulsion stability, likely due to the tendency of a stiffer interface formation at low-ionic strength, as interfacial viscoelasticity measurements show. This implies that the low-ionic strength water from the aquifer can enable the formation of stable emulsions. In contrast, water resolution depends significantly on temperature, possibly due to higher sedimentation rates. The implication is that if emulsions do not break up before cooling off, the emulsion can become more stable. Finally, analysis of the interface buildup rates could explain the observed increase in emulsion stability over time. Full article
Show Figures

Figure 1

19 pages, 2087 KB  
Review
Research Progress on the Occurrence, Adsorption, and Release of Phosphorus in the Sediments of Dianchi Lake and Prospects for Its Control
by Xue Wu, Yancai Wang, Yirong Chang, Zhengzheng Hao, Lixin Jiao and Rui Zhang
Water 2025, 17(11), 1652; https://doi.org/10.3390/w17111652 - 29 May 2025
Cited by 1 | Viewed by 686
Abstract
Phosphorus plays a key role in water eutrophication. The release of endogenous phosphorus from sediments maintains eutrophication in Dianchi Lake. This study aimed to summarize and analyze the research trends, occurrence characteristics, adsorption and release characteristics, influencing factors, and prospects of internal phosphorus [...] Read more.
Phosphorus plays a key role in water eutrophication. The release of endogenous phosphorus from sediments maintains eutrophication in Dianchi Lake. This study aimed to summarize and analyze the research trends, occurrence characteristics, adsorption and release characteristics, influencing factors, and prospects of internal phosphorus pollution control in Dianchi Lake based on a literature search and data integration. The results revealed that sediment phosphorus in Dianchi Lake has been widely studied. From previous studies, the total phosphorus (TP) content and various forms of phosphorus in the Dianchi Lake sediments have decreased since 2010. The TP contents measured in Dianchi Lake in previous research were considerably different owing to the influence of sampling depth and dredging projects. The TP content in the sediments of Dianchi Lake was higher but its release risk was lower than those in other lakes in China. The risk of release was higher in Caohai and North Waihai than that in Central Waihai and South Waihai. In addition to environmental factors at the sediment–water interface, sediment characteristics, and ecosystem degradation are important factors that affect phosphorus migration and transformation. Over the past 30 years, sediment dredging has been the primary measure for reducing the internal pollution load in Dianchi Lake. However, more accurate sediment dredging and systematic vegetation–algae–sediment co-management measures are needed for water ecosystem restoration in Dianchi Lake. This study provides new insights into the study of internal phosphorus pollution. Full article
(This article belongs to the Special Issue Water Environment Pollution and Control, 4th Edition)
Show Figures

Figure 1

29 pages, 13402 KB  
Article
Modeling Microplastic Dispersion in the Salado Estuary Using Computational Fluid Dynamics
by Luis Velazquez-Araque, José Flor, Alfredo Méndez and Maritza Cárdenas-Calle
Fluids 2025, 10(5), 118; https://doi.org/10.3390/fluids10050118 - 6 May 2025
Viewed by 1397
Abstract
Microplastics (MPs) have emerged as a major pollutant in aquatic ecosystems, primarily originating from industrial activities and plastic waste degradation. Understanding their transport dynamics is crucial for assessing environmental risks and developing mitigation strategies. This study employs Computational Fluid Dynamics (CFD) simulations to [...] Read more.
Microplastics (MPs) have emerged as a major pollutant in aquatic ecosystems, primarily originating from industrial activities and plastic waste degradation. Understanding their transport dynamics is crucial for assessing environmental risks and developing mitigation strategies. This study employs Computational Fluid Dynamics (CFD) simulations to model the trajectory of MPs in section B of the Salado Estuary in the city of Guayaquil, Ecuador, using ANSYS FLUENT 2024 R2. The transient behavior of Polyethylene Terephthalate (PET) particles was analyzed using the Volume of Fluid (VOF) multiphase model, k-omega SST turbulence model, and Discrete Phase Model (DPM) under a continuous flow regime. Spherical PET particles (5 mm diameter, 1340 kg/m3 density) were used to establish a simplified baseline scenario. Two water velocities, 0.5 m/s and 1.25 m/s, were selected based on typical flow rates reported in similar estuarine systems. Density contour analysis facilitated the modeling of the air-water interface, while particle trajectory analysis revealed that at 0.5 m/s, particles traveled 18–22.5 m before sedimentation, whereas at 1.25 m/s, they traveled 50–60 m before reaching the bottom. These findings demonstrate that higher flow velocities enhance MP transport distances before deposition, emphasizing the role of hydrodynamics in microplastic dispersion. While limited to one particle type and idealized conditions, this study underscores the potential of CFD as a predictive tool for assessing MP behavior in aquatic environments, contributing to improved pollution control and remediation efforts. Full article
(This article belongs to the Section Flow of Multi-Phase Fluids and Granular Materials)
Show Figures

Figure 1

Back to TopTop