Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (625)

Search Parameters:
Keywords = seismic vulnerability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4832 KB  
Article
Real-Time Spatiotemporal Seismic Fragility Assessment of Structures Based on Site-Specific Seismic Response and Sensor-Integrated Modeling
by Han-Saem Kim, Taek-Kyu Chung and Mingi Kim
Sensors 2025, 25(16), 5171; https://doi.org/10.3390/s25165171 - 20 Aug 2025
Viewed by 335
Abstract
Earthquake hazards, such as strong ground motion, liquefaction, and landslides, pose significant threats to structures built on seismically vulnerable, loose, and saturated sandy soils. Therefore, a structural failure evaluation method that accounts for site-specific seismic responses is essential for developing effective and appropriate [...] Read more.
Earthquake hazards, such as strong ground motion, liquefaction, and landslides, pose significant threats to structures built on seismically vulnerable, loose, and saturated sandy soils. Therefore, a structural failure evaluation method that accounts for site-specific seismic responses is essential for developing effective and appropriate earthquake hazard mitigation strategies. In this study, a real-time assessment framework for structural seismic susceptibility is developed. To evaluate structural susceptibility to earthquakes, seismic fragility functions are employed as thresholds for structural failure and are linked to a geotechnical spatial grid that incorporates correlation equations for seismic load determination. The real-time assessment consists of the following procedures. First, the geotechnical spatial grid is constructed based on the geostatistical method to estimate the site-specific site response to be correlated with the earthquake hazard potential. Second, the peak ground accelerations are determined from seismic load correlation and assigned to the geotechnical spatial grid. Third, the damage grade of structure is determined by calculating the failure probabilities of defined damage levels and integrating the geotechnical spatial grids for the target structure in real time. The proposed assessment was simulated at Incheon Port, South Korea, using both an actual earthquake event (the 2017 Pohang Earthquake) and a hypothetical earthquake scenario. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

24 pages, 1024 KB  
Article
Seismic Disaster Risk Assessment of Oil and Gas Pipelines
by Hongyuan Jing, Sheng Zhang, Dengke Zhao, Zhaodong Wang, Ji’an Liao and Zhaoyan Li
Appl. Sci. 2025, 15(16), 9135; https://doi.org/10.3390/app15169135 - 19 Aug 2025
Viewed by 178
Abstract
Oil and gas pipelines represent critical infrastructure for energy transportation and are essential for ensurin g energy security. The seismic disaster risk assessment of these pipelines is of paramount importance for safeguarding energy supplies. Traditional assessment methodologies primarily focus on the structural integrity [...] Read more.
Oil and gas pipelines represent critical infrastructure for energy transportation and are essential for ensurin g energy security. The seismic disaster risk assessment of these pipelines is of paramount importance for safeguarding energy supplies. Traditional assessment methodologies primarily focus on the structural integrity of the pipeline body, often neglecting the impact of auxiliary structures and site-specific disaster effects. This study proposes an enhanced risk assessment methodology to address these gaps. This research systematically compiles seismic damage case studies of pipelines from major seismic zones in China. By considering the interactions between auxiliary structure types, site conditions, and forms of disasters, 15 typical operating conditions are identified, and a seismic damage case database is constructed. We develop a failure probability model that integrates geotechnical parameters, structural responses, and ground motion characteristics to assess the impact of liquefaction, site amplification, fault activity, and collapse/landslide phenomena. Utilizing Particle Swarm Optimization (PSO) and Fuzzy Analytic Hierarchy Process (Fuzzy AHP) algorithms, this model quantifies the influence weights and coefficients of these disasters on pipeline auxiliary structures, forming a vulnerability matrix centered around Peak Ground Acceleration (PGA). Additionally, a dual-vulnerability assessment framework is established, and a failure probability formula accounting for the superposition effects of multiple disasters is proposed. This study marks a significant advancement, transitioning from traditional single-pipeline evaluations to “structure-disaster-site” coupling analysis, and provides a scientific basis for pipeline seismic design, operation, and maintenance under specific environmental conditions. This work contributes to the development of quantitative and refined seismic risk assessments for oil and gas pipelines. Full article
Show Figures

Figure 1

30 pages, 12270 KB  
Article
Cross-Border Cascading Hazard Scenarios and Vulnerability Assessment of Levees and Bridges in the Sava River Basin
by Gašper Rak, Gorazd Novak, Matjaž Četina, Mirko Kosič, Andrej Anžlin, Nicola Rossi, Meho Saša Kovačević and Mario Bačić
Infrastructures 2025, 10(8), 214; https://doi.org/10.3390/infrastructures10080214 - 14 Aug 2025
Viewed by 201
Abstract
This study investigates cross-border cascading hazards and infrastructure vulnerabilities in the Sava River Basin, a seismically active and flood-prone region spanning the Slovenia–Croatia border. Conducted within the CROSScade project, the research focuses on assessing cross-border hazards and the vulnerabilities of levees and bridges. [...] Read more.
This study investigates cross-border cascading hazards and infrastructure vulnerabilities in the Sava River Basin, a seismically active and flood-prone region spanning the Slovenia–Croatia border. Conducted within the CROSScade project, the research focuses on assessing cross-border hazards and the vulnerabilities of levees and bridges. Key earthquake and flood scenarios were identified using advanced hydraulic and seismic modelling, forming the basis for evaluating the cascading effects of these events, including the potential failure of hydropower plants and associated flood protection systems. The analysis reveals that levees are particularly vulnerable to failure during the recession phase of flooding that follows an earthquake. At the same time, bridges are primarily affected by seismic loading, with minimal structural impact from flood forces. These findings underscore the pressing need for enhanced cross-border collaboration, updated design standards, and the reinforcement of critical infrastructure. The study provides essential insights for multi-hazard resilience planning and emphasises the importance of integrated risk assessments in managing cascading disaster impacts across national boundaries. Full article
Show Figures

Figure 1

28 pages, 3987 KB  
Review
Towards Harmonized Reduction of Seismic Vulnerability: Analyzing Regulatory and Incentive Frameworks in the Adriatic—Ionian Region
by Petra Triller, Angela Santangelo, Giulia Marzani and Maja Kreslin
Urban Sci. 2025, 9(8), 319; https://doi.org/10.3390/urbansci9080319 - 14 Aug 2025
Viewed by 417
Abstract
The Adriatic–Ionian region is seismically very active and poses a major challenge for risk mitigation. Each country has developed laws, standards, and techniques to reduce seismic vulnerability. The ADRISEISMIC project created a database of existing regulatory and incentive frameworks, based on a comprehensive [...] Read more.
The Adriatic–Ionian region is seismically very active and poses a major challenge for risk mitigation. Each country has developed laws, standards, and techniques to reduce seismic vulnerability. The ADRISEISMIC project created a database of existing regulatory and incentive frameworks, based on a comprehensive study conducted in six countries. The study covered seismic norms, building regulations, urban planning regulations, incentive frameworks, and post-earthquake planning. A comparative matrix was developed in which key parameters, such as year of issuance, references to EU regulations, level of enforcement, mandatory status, target groups, reference period in relation to earthquake occurrence, and consideration of cultural heritage, were analyzed. The database aims to support a harmonized strategy to reduce seismic vulnerability by promoting measures based on common reference standards. This increases safety, improves the built environment, and minimizes risks to people and nature. Particular attention will be paid to historic urban areas that are both vulnerable and rich in cultural heritage. The collected regulatory and incentive framework will serve as a basis for future research to support the identification of good practices and the formulation of customized roadmaps to apply them to reduce seismic vulnerability. Full article
Show Figures

Figure 1

16 pages, 2230 KB  
Article
Seismic Performance Assessment of Gravity Dams for Urban Flood Risk Mitigation Using the Scaled Boundary Finite Element Method (SBFEM)
by Min-koan Kim and Dai Xu
Hydrology 2025, 12(8), 209; https://doi.org/10.3390/hydrology12080209 - 10 Aug 2025
Viewed by 338
Abstract
Rapid urbanization and climate change have intensified urban flood risks, necessitating resilient upstream infrastructure to ensure metropolitan water security and effective flood mitigation. Gravity dams, as critical components of urban flood protection systems, regulate discharge to downstream urban areas. Gravity dams are critical [...] Read more.
Rapid urbanization and climate change have intensified urban flood risks, necessitating resilient upstream infrastructure to ensure metropolitan water security and effective flood mitigation. Gravity dams, as critical components of urban flood protection systems, regulate discharge to downstream urban areas. Gravity dams are critical for regulating flood discharge, yet their seismic vulnerability poses significant challenges, particularly under compound effects involving concurrent seismic loading and climate-induced elevated reservoir levels. This study introduces a novel seismic analysis framework for gravity dams using the scaled boundary finite element method (SBFEM), which efficiently models dam–water and dam–foundation interactions in infinite domains. A two-dimensional numerical model of a concrete gravity dam, subjected to realistic seismic loading, was developed and validated against analytical solutions and conventional finite element method (FEM) results, achieving discrepancies as low as 0.95% for static displacements and 0.21% for natural frequencies. The SBFEM approach accurately captures hydrodynamic pressures and radiation damping, revealing peak pressures at the dam heel during resonance and demonstrating computational efficiency with significantly reduced nodal requirements compared to FEM. These findings enhance understanding of dam behavior under extreme loading. The proposed framework supports climate-adaptive design standards and integrated hydrological–structural modeling. By addressing the seismic safety of flood-control dams, this research contributes to the development of resilient urban water management systems capable of protecting metropolitan areas from compound climatic and seismic extremes. Full article
(This article belongs to the Special Issue Advances in Urban Hydrology and Stormwater Management)
Show Figures

Figure 1

21 pages, 4968 KB  
Article
EQResNet: Real-Time Simulation and Resilience Assessment of Post-Earthquake Emergency Highway Transportation Networks
by Zhenliang Liu and Chuxuan Guo
Computation 2025, 13(8), 188; https://doi.org/10.3390/computation13080188 - 6 Aug 2025
Viewed by 296
Abstract
Multiple uncertainties in traffic demand fluctuations and infrastructure vulnerability during seismic events pose significant challenges for the resilience assessment of highway transportation networks (HTNs). While Monte Carlo simulation remains the dominant approach for uncertainty propagation, its high computational cost limits its scalability, particularly [...] Read more.
Multiple uncertainties in traffic demand fluctuations and infrastructure vulnerability during seismic events pose significant challenges for the resilience assessment of highway transportation networks (HTNs). While Monte Carlo simulation remains the dominant approach for uncertainty propagation, its high computational cost limits its scalability, particularly in metropolitan-scale networks. This study proposes an EQResNet framework for accelerated post-earthquake resilience assessment of HTNs. The model integrates network topology, interregional traffic demand, and roadway characteristics into a streamlined deep neural network architecture. A comprehensive surrogate modeling strategy is developed to replace conventional traffic simulation modules, including highway status realization, shortest path computation, and traffic flow assignment. Combined with seismic fragility models and recovery functions for regional bridges, the framework captures the dynamic evolution of HTN functionality following seismic events. A multi-dimensional resilience evaluation system is also established to quantify network performance from emergency response and recovery perspectives. A case study on the Sioux Falls network under probabilistic earthquake scenarios demonstrates the effectiveness of the proposed method, achieving 95% prediction accuracy while reducing computational time by 90% compared to traditional numerical simulations. The results highlight the framework’s potential as a scalable, efficient, and reliable tool for large-scale post-disaster transportation system analysis. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

16 pages, 2641 KB  
Article
Seismic Assessment of Informally Designed 2-Floor RC Houses: Lessons from the 2020 Southern Puerto Rico Earthquake Sequence
by Lautaro Peralta and Luis A. Montejo
Eng 2025, 6(8), 176; https://doi.org/10.3390/eng6080176 - 1 Aug 2025
Viewed by 1705
Abstract
The 2020 southern Puerto Rico earthquake sequence highlighted the severe seismic vulnerability of informally constructed two-story reinforced concrete (RC) houses. This study examines the failure mechanisms of these structures and assesses the effectiveness of first-floor RC shear-wall retrofitting. Nonlinear pushover and dynamic time–history [...] Read more.
The 2020 southern Puerto Rico earthquake sequence highlighted the severe seismic vulnerability of informally constructed two-story reinforced concrete (RC) houses. This study examines the failure mechanisms of these structures and assesses the effectiveness of first-floor RC shear-wall retrofitting. Nonlinear pushover and dynamic time–history analyses were performed using fiber-based distributed plasticity models for RC frames and nonlinear macro-elements for second-floor masonry infills, which introduced a significant inter-story stiffness imbalance. A bi-directional seismic input was applied using spectrally matched, near-fault pulse-like ground motions. The findings for the as-built structures showed that stiffness mismatches between stories, along with substantial strength and stiffness differences between orthogonal axes, resulted in concentrated plastic deformations and displacement-driven failures in the first story—consistent with damage observed during the 2020 earthquakes. Retrofitting the first floor with RC shear walls notably improved the performance, doubling the lateral load capacity and enhancing the overall stiffness. However, the retrofitted structures still exhibited a concentration of inelastic action—albeit with lower demands—shifted to the second floor, indicating potential for further optimization. Full article
Show Figures

Figure 1

23 pages, 5436 KB  
Article
Flexural Testing of Steel-, GFRP-, BFRP-, and Hybrid Reinforced Beams
by Yazeed Elbawab, Youssef Elbawab, Zeina El Zoughby, Omar ElKadi, Mohamed AbouZeid and Ezzeldin Sayed-Ahmed
Polymers 2025, 17(15), 2027; https://doi.org/10.3390/polym17152027 - 25 Jul 2025
Viewed by 549
Abstract
The construction industry is exploring alternatives to traditional steel reinforcement in concrete due to steel’s corrosion vulnerability. Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP), known for their high tensile strength and corrosion resistance, are viable options. This study evaluates [...] Read more.
The construction industry is exploring alternatives to traditional steel reinforcement in concrete due to steel’s corrosion vulnerability. Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP), known for their high tensile strength and corrosion resistance, are viable options. This study evaluates the flexural performance of concrete beams reinforced with GFRP, BFRP, and hybrid systems combining these materials with steel, following ACI 440.1R-15 guidelines. Twelve beams were assessed under three-point bending to compare their flexural strength, ductility, and failure modes against steel reinforcement. The results indicate that GFRP and BFRP beams achieve 8% and 12% higher ultimate load capacities but 38% and 58% lower deflections at failure than steel, respectively. Hybrid reinforcements enhance both load capacity and deflection performance (7% to 17% higher load with 11% to 58% lower deflection). However, GFRP and BFRP beams show reduced energy absorption, suggesting that hybrid systems could better support critical applications like seismic and impact-prone structures by improving ductility and load handling. In addition, BFRP beams predominantly failed due to debonding and concrete crushing, while GFRP beams failed due to bar rupture, reflecting key differences in their flexural failure mechanisms. Full article
(This article belongs to the Special Issue Fibre-Reinforced Polymer Laminates: Structure and Properties)
Show Figures

Figure 1

4 pages, 145 KB  
Editorial
Editorial on the Structural Reliability, Resilience, and Design of Buildings Against Multi-Hazards
by Xiaowei Zheng, Qinglin Wang and Yao Li
Buildings 2025, 15(15), 2586; https://doi.org/10.3390/buildings15152586 - 22 Jul 2025
Viewed by 235
Abstract
Against the backdrop of increasing seismic threats to cultural heritage globally, the vulnerability of historical masonry structures demands urgent attention [...] Full article
20 pages, 1461 KB  
Article
Vulnerability-Based Economic Loss Rate Assessment of a Frame Structure Under Stochastic Sequence Ground Motions
by Zheng Zhang, Yunmu Jiang and Zixin Liu
Buildings 2025, 15(15), 2584; https://doi.org/10.3390/buildings15152584 - 22 Jul 2025
Viewed by 298
Abstract
Modeling mainshock–aftershock ground motions is essential for seismic risk assessment, especially in regions experiencing frequent earthquakes. Recent studies have often employed Copula-based joint distributions or machine learning techniques to simulate the statistical dependency between mainshock and aftershock parameters. While effective at capturing nonlinear [...] Read more.
Modeling mainshock–aftershock ground motions is essential for seismic risk assessment, especially in regions experiencing frequent earthquakes. Recent studies have often employed Copula-based joint distributions or machine learning techniques to simulate the statistical dependency between mainshock and aftershock parameters. While effective at capturing nonlinear correlations, these methods are typically black box in nature, data-dependent, and difficult to generalize across tectonic settings. More importantly, they tend to focus solely on marginal or joint parameter correlations, which implicitly treat mainshocks and aftershocks as independent stochastic processes, thereby overlooking their inherent spectral interaction. To address these limitations, this study proposes an explicit and parameterized modeling framework based on the evolutionary power spectral density (EPSD) of random ground motions. Using the magnitude difference between a mainshock and an aftershock as the control variable, we derive attenuation relationships for the amplitude, frequency content, and duration. A coherence function model is further developed from real seismic records, treating the mainshock–aftershock pair as a vector-valued stochastic process and thus enabling a more accurate representation of their spectral dependence. Coherence analysis shows that the function remains relatively stable between 0.3 and 0.6 across the 0–30 Rad/s frequency range. Validation results indicate that the simulated response spectra align closely with recorded spectra, achieving R2 values exceeding 0.90 and 0.91. To demonstrate the model’s applicability, a case study is conducted on a representative frame structure to evaluate seismic vulnerability and economic loss. As the mainshock PGA increases from 0.2 g to 1.2 g, the structure progresses from slight damage to complete collapse, with loss rates saturating near 1.0 g. These findings underscore the engineering importance of incorporating mainshock–aftershock spectral interaction in seismic damage and risk modeling, offering a transparent and transferable tool for future seismic resilience assessments. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

25 pages, 4994 KB  
Article
Dynamic Slope Stability Assessment Under Blast-Induced Ground Vibrations in Open-Pit Mines: A Pseudo-Static Limit Equilibrium Approach
by Sami Ullah, Gaofeng Ren, Yongxiang Ge, Muhammad Burhan Memon, Eric Munene Kinyua and Theoneste Ndayiragije
Sustainability 2025, 17(14), 6642; https://doi.org/10.3390/su17146642 - 21 Jul 2025
Viewed by 694
Abstract
Blasting is one of the most widely used and cost-effective techniques for rock excavation and fragmentation in open-pit mining, particularly for large-scale operations. However, repeated or poorly controlled blasting can generate excessive ground vibrations that threaten slope stability by causing structural damage, fracturing [...] Read more.
Blasting is one of the most widely used and cost-effective techniques for rock excavation and fragmentation in open-pit mining, particularly for large-scale operations. However, repeated or poorly controlled blasting can generate excessive ground vibrations that threaten slope stability by causing structural damage, fracturing of the rock mass, and potential failure. Evaluating the effects of blast-induced vibrations is essential to ensure safe and sustainable mining operations. This study investigates the impact of blasting-induced vibrations on slope stability at the Saindak Copper-Gold Open-Pit Mine in Pakistan. A comprehensive dataset was compiled, including field-monitored ground vibration measurements—specifically peak particle velocity (PPV) and key blast design parameters such as spacing (S), burden (B), stemming length (SL), maximum charge per delay (MCPD), and distance from the blast point (D). Geomechanical properties of slope-forming rock units were validated through laboratory testing. Slope stability was analyzed using pseudo-static limit equilibrium methods (LEMs) based on the Mohr–Coulomb failure criterion, employing four approaches: Fellenius, Janbu, Bishop, and Spencer. Pearson and Spearman correlation analyses quantified the influence of blasting parameters on slope behavior, and sensitivity analysis determined the cumulative distribution of slope failure and dynamic response under increasing seismic loads. FoS values were calculated for both east and west pit slopes under static and dynamic conditions. Among all methods, Spencer consistently yielded the highest FoS values. Under static conditions, FoS was 1.502 for the east slope and 1.254 for the west. Under dynamic loading, FoS declined to 1.308 and 1.102, reductions of 12.9% and 11.3%, respectively, as calculated using the Spencer method. The east slope exhibited greater stability due to its gentler angle. Correlation analysis revealed that burden had a significant negative impact (r = −0.81) on stability. Sensitivity analysis showed that stability deteriorates notably when PPV exceeds 10.9 mm/s. Although daily blasting did not critically compromise stability, the west slope showed greater vulnerability, underscoring the need for stricter control of blasting energy to mitigate vibration-induced instability and promote long-term operational sustainability. Full article
Show Figures

Graphical abstract

29 pages, 3759 KB  
Article
Enhancing Asset Management: Rapid Seismic Assessment of Heterogeneous Portfolios
by Marco Gaspari, Margherita Fabris, Elisa Saler, Marco Donà and Francesca da Porto
Buildings 2025, 15(14), 2560; https://doi.org/10.3390/buildings15142560 - 20 Jul 2025
Viewed by 310
Abstract
The seismic risk assessment of large building stocks is crucial for informed asset management in earthquake-prone regions, providing decision-support for retrofit intervention planning. Many existing methodologies focus on a single structural typology or asset class (e.g., ordinary buildings or industrial facilities), thus limiting [...] Read more.
The seismic risk assessment of large building stocks is crucial for informed asset management in earthquake-prone regions, providing decision-support for retrofit intervention planning. Many existing methodologies focus on a single structural typology or asset class (e.g., ordinary buildings or industrial facilities), thus limiting their applicability to mixed portfolios. This study proposes a comprehensive and adaptable methodology for the seismic assessment of diverse building stocks—a cross-typology approach encompassing masonry, reinforced concrete (r.c.), precast r.c., and steel structures. The approach integrates deficiency-based qualitative evaluations with simplified mechanical models tailored for each building class. Where validated methodologies were unavailable, new assessment tools were developed. The proposed framework was applied to an industrial-oriented building stock comprising 79 structural units at regional scale, demonstrating its capability to identify priority structures for retrofitting interventions. By overcoming the constraints of typology- or asset-specific approaches, this methodology enables a more comprehensive and scalable assessment. This ultimately contributes to effective risk mitigation planning and seismic resilience enhancing. Full article
Show Figures

Figure 1

24 pages, 4791 KB  
Article
SeismicV: A Mobile Tool for Assessing the Seismic Vulnerability of Buildings
by Philipe Q. Rodrigues, João C. Pantoja and Humberto Varum
Buildings 2025, 15(14), 2541; https://doi.org/10.3390/buildings15142541 - 19 Jul 2025
Viewed by 394
Abstract
Rapid visual screening has been used worldwide as the first approach to evaluate the seismic vulnerability of civil structures in a specific area, in order to prioritize buildings based on the need for upgrading or retrofitting. In this work, a novel mobile application [...] Read more.
Rapid visual screening has been used worldwide as the first approach to evaluate the seismic vulnerability of civil structures in a specific area, in order to prioritize buildings based on the need for upgrading or retrofitting. In this work, a novel mobile application tool for the rapid visual screening of reinforced concrete buildings is presented and discussed. The herein suggested “SeismicV” tool performs a pre-seismic visual screening based on the Japanese guidelines for the seismic evaluation of existing RC buildings. A preliminary seismic vulnerability assessment of a complex modern building situated in the capital of Brazil, Brasilia, was carried out using this mobile app. The data were collected from in situ and based on some data from plants and documents. The SeismicV tool consists of an effective, user-friendly, and straightforward mobile application. Since the methodology is based on a performance score that is compared to the seismic demand, this application design allows for the knowledge of intermediate indices at each step of the evaluation, including dominant variables such as structural irregularity, building age, ground index, and usage index. Although the application was conceived and applied to heritage buildings in the early stages, it can be employed for other complex structures. The findings highlight that utilizing SeismicV to assess the seismic vulnerability of complex buildings through the rapid visual screening method offers significant benefits, including faster evaluations, increased accuracy, and improved accessibility for field assessments. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 4059 KB  
Article
Robustness of Steel Moment-Resisting Frames Under Column Loss Scenarios with and without Prior Seismic Damage
by Silvia Costanzo, David Cassiano and Mario D’Aniello
Buildings 2025, 15(14), 2490; https://doi.org/10.3390/buildings15142490 - 16 Jul 2025
Viewed by 357
Abstract
This study investigates the robustness of steel moment-resisting frames (MRFs) under column loss scenarios, both in undamaged and post-seismic conditions. In this context, robustness is defined as the ability of a damaged structure to prevent progressive collapse following an earthquake. A parametric investigation [...] Read more.
This study investigates the robustness of steel moment-resisting frames (MRFs) under column loss scenarios, both in undamaged and post-seismic conditions. In this context, robustness is defined as the ability of a damaged structure to prevent progressive collapse following an earthquake. A parametric investigation was conducted on 48 three-dimensional MRF configurations, varying key design and geometric parameters such as the number of storeys, span length, and design load combinations. Nonlinear dynamic analyses were performed using realistic ground motions and column loss scenarios defined by UFC guidelines. The effects of pre-existing seismic damage, façade claddings, and joint typologies were explicitly accounted for using validated component-based modelling approaches. The results indicate that long-span, low-rise frames are more vulnerable to collapse initiation due to higher plastic demands, while higher-rise frames benefit from load redistribution through their increased redundancy. In detail, long-span, low-rise frames experience roughly ten times higher displacement demands than their short-span counterparts, and post-seismic damage has limited influence, yielding rotational demands within 5–10% of the undamaged case. The Reserve Displacement Ductility (RDR) ranges from approximately 6.3 for low-rise, long-span frames to 21.5 for high-rise frames, highlighting the significant role of geometry in post-seismic robustness. The post-seismic damage was found to have a limited influence on the dynamic displacement and rotational demands, suggesting that the robustness of steel MRFs after a moderate earthquake is largely comparable to that of the initially undamaged structure. These findings support the development of more accurate design and retrofit provisions for seismic and multi-hazard scenarios. Full article
(This article belongs to the Special Issue Advanced Research on Seismic Performance of Steel Structures)
Show Figures

Figure 1

27 pages, 6356 KB  
Article
A Fast Fragility Analysis Method for Seismically Isolated RC Structures
by Cholap Chong, Mufeng Chen, Mingming Wang and Lushun Wei
Buildings 2025, 15(14), 2449; https://doi.org/10.3390/buildings15142449 - 12 Jul 2025
Viewed by 382
Abstract
This paper presents an advanced seismic performance evaluation of reinforced concrete (RC) seismically isolated frame structures under the conditions of rare earthquakes. By employing an elastic–plastic analysis in conjunction with a nonlinear multi-degree-of-freedom model, this study innovatively assesses the incremental dynamic vulnerability of [...] Read more.
This paper presents an advanced seismic performance evaluation of reinforced concrete (RC) seismically isolated frame structures under the conditions of rare earthquakes. By employing an elastic–plastic analysis in conjunction with a nonlinear multi-degree-of-freedom model, this study innovatively assesses the incremental dynamic vulnerability of isolated structures. A novel equivalent linearization method is introduced for both single- and two-degree-of-freedom isolation structures, providing a simplified yet accurate means of predicting seismic responses. The reliability of the modified Takeda hysteretic model is verified through comparative analysis with experimental data, providing a solid foundation for the research. Furthermore, a multi-degree-of-freedom shear model is employed for rapid elastic–plastic analysis, validated against finite element software, resulting in an impressive 85% reduction in computation time while maintaining high accuracy. The fragility analysis reveals the staggered upward trend in the vulnerability of the upper structure and isolation layer, highlighting the importance of comprehensive damage control to enhance overall seismic performance. Full article
Show Figures

Figure 1

Back to TopTop