Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (135)

Search Parameters:
Keywords = seminal fluid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 623 KB  
Review
Decoding Microbiome’s Role in Prostate Cancer Progression and Treatment Response
by Minas Sakellakis, Panagiota Resta, Evangelia Papagianni, Kassandra A. Procter, Irene Belouka, Katerina Gioti, Fragkiski Anthouli-Anagnostopoulou, Dimitrios Chaniotis and Apostolos Beloukas
Diseases 2025, 13(9), 294; https://doi.org/10.3390/diseases13090294 - 5 Sep 2025
Viewed by 550
Abstract
Prostate cancer (PCa) is the most common genitourinary malignancy in men, with a multifactorial etiology influenced by genetic, environmental, and microbial determinants. Although the prostate was traditionally considered sterile, advances in microbiome research have challenged this view, revealing potential links between microbial communities [...] Read more.
Prostate cancer (PCa) is the most common genitourinary malignancy in men, with a multifactorial etiology influenced by genetic, environmental, and microbial determinants. Although the prostate was traditionally considered sterile, advances in microbiome research have challenged this view, revealing potential links between microbial communities and PCa development, progression, and treatment response. This review synthesizes evidence on the gut, urinary, seminal fluid, and prostatic microbiomes, highlighting their potential contributions to PCa pathogenesis and therapeutic outcomes. Key studies utilizing next-generation sequencing (NGS), whole-genome sequencing (WGS), PCR, and metagenomic analyses have identified specific bacterial and fungal taxa associated with Pca; however, findings remain inconsistent across methodologies and cohorts. Microorganisms such as Propionibacterium acnes and Pseudomonas spp. may modulate inflammation, immune responses, and resistance to androgen-deprivation therapy. Further research is required to determine whether microbial signatures can serve as reliable biomarkers for early detection, prognosis, or novel therapeutic strategies in PCa management. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

17 pages, 2011 KB  
Review
A Narrative Review of Heavy Metals and Sperm Quality: The Interplay with Antioxidant Imbalance and Reactive Oxygen Species
by Soukaina Azil, Khaoula Errafii, Moncef Benkhalifa, Noureddine Louanjli, Bouchra Ghazi and Salsabil Hamdi
Curr. Issues Mol. Biol. 2025, 47(8), 650; https://doi.org/10.3390/cimb47080650 - 13 Aug 2025
Viewed by 1241
Abstract
Reproductive infertility is characterized by the inability to achieve pregnancy after a year or more of unprotected sexual intercourse. This review highlights the significant impact of exposure to both types of heavy metals (essential and non-essential) on the reproductive performance of various species, [...] Read more.
Reproductive infertility is characterized by the inability to achieve pregnancy after a year or more of unprotected sexual intercourse. This review highlights the significant impact of exposure to both types of heavy metals (essential and non-essential) on the reproductive performance of various species, particularly humans. Heavy metals present a high atomic density and weight, including lead, mercury, cadmium, nickel, chromium, and arsenic, and are delivered into the environment through natural and human activities, posing a threat to ecological systems and human reproductive health. These heavy metals have the potential for bioaccumulation and can adversely affect male fertility and sperm quality due to their role in disrupting endocrine functions, altering hormone levels responsible for sperm production, and inducing oxidative stress. The elevated production of reactive oxygen species (ROS) exceeds the capability of antioxidants and can lead to the alteration of sperm quality. Seminal fluid contains antioxidants like vitamin C, vitamin E, zinc, and selenium to counteract the impacts of ROS and also to preserve the sperm function. This review aims also to explore the impact of heavy metals on sperm quality and their relationship with antioxidant imbalance and ROS. The exposure to heavy metals whether through occupational or environmental means increases the production of ROS and therefore leads to an imbalance of antioxidants production. All these factors have no doubt an impact on male reproductive health. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Biology 2025)
Show Figures

Graphical abstract

13 pages, 1201 KB  
Article
Relationship Between Prostaglandin and Interleukin Concentrations in Seminal Fluid and Their Influence on the Rate of Fertilization in Men Undergoing ICSI
by Houda Amor, Fatina W. Dahadhah, Peter Michael Jankowski, Rami Al Nasser, Lisa Jung, Ingolf Juhasz-Böss, Erich Franz Solomayer and Mohamad Eid Hammadeh
Int. J. Mol. Sci. 2025, 26(15), 7627; https://doi.org/10.3390/ijms26157627 - 6 Aug 2025
Viewed by 1009
Abstract
Sperm count, motility, and morphology are semen parameters that directly affect male fertility. The presence of cytokines in seminal plasma negatively or positively influences these parameters. Interleukins and prostaglandins are proinflammatory cytokines present in human seminal plasma and play crucial roles in fertilization, [...] Read more.
Sperm count, motility, and morphology are semen parameters that directly affect male fertility. The presence of cytokines in seminal plasma negatively or positively influences these parameters. Interleukins and prostaglandins are proinflammatory cytokines present in human seminal plasma and play crucial roles in fertilization, in general and after intracytoplasmic sperm injection (ICSI) procedures. This study aimed to investigate the possible influence of interleukins IL-17 and IL-18, and prostaglandins PGE2 and PGF2α on male infertility. Semen samples were collected from 58 males who underwent the ICSI procedure. An enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of IL-17, IL-18, PGE2, and PGF2α, and these concentrations were then correlated with semen parameters and the rate of fertilization. Furthermore, the chromatin integrity of the sperm was evaluated with an Acridine Orange (AO) assay. The results showed an inversely proportional relationship between the AO binding intensity and fertilization rate (r = −0.394; p ≤ 0.002). Furthermore, a negative correlation was observed between the IL-18 concentration and positive AO (p ≤ 0.021). Moreover, the IL-18 concentration was positively correlated with the fertilization rate (p ≤ 0.05). In contrast, IL-17 did not significantly correlate with any semen parameters or with the fertilization rate. Seminal PGE2 levels were significantly correlated with embryo cleavage at 72 h (p ≤ 0.05). To conclude, this study revealed that denaturation of sperm nuclear deoxyribonucleic acid (DNA) contributes to low fertilization rates. In addition, this study proposed a potential role for IL-18 in fertilization. PGE2 likely influences embryo development, but further studies are needed to examine the impact of seminal PGE2 on the oocyte to fully elucidate its contribution to this complex biological process. Full article
(This article belongs to the Special Issue Advances in Spermatogenesis and Male Infertility)
Show Figures

Figure 1

17 pages, 3907 KB  
Article
Safety Validation of Plant-Derived Materials for Skin Application
by Euihyun Kim, Hyo Hyun Seo, Dong Sun Shin, Jihyeok Song, Seon Kyu Yun, Jeong Hun Lee and Sang Hyun Moh
Cosmetics 2025, 12(4), 153; https://doi.org/10.3390/cosmetics12040153 - 21 Jul 2025
Viewed by 2395
Abstract
The cosmetic industry faces a critical need to balance commercial innovation with scientific validation, especially regarding the safety and efficacy of raw materials. Plant-derived materials (PDMs) offer a promising alternative to animal-derived ingredients in cosmetics, particularly due to their safety and compliance with [...] Read more.
The cosmetic industry faces a critical need to balance commercial innovation with scientific validation, especially regarding the safety and efficacy of raw materials. Plant-derived materials (PDMs) offer a promising alternative to animal-derived ingredients in cosmetics, particularly due to their safety and compliance with vegan and ethical standards. Unlike compounds such as polydeoxyribonucleotide (PDRN), which is derived from the testis or seminal fluid of Salmonidae species and raises concerns regarding its origin, sustainability, and consumer acceptability, PDMs provide a cleaner, ethically preferable profile. In this study, we evaluated 50 PDM candidates using in vitro cell viability, wound healing, and immunocytochemistry assays, along with primary skin irritation tests in human participants. None of the samples showed harmful effects. Notably, sample Nos. 38 and 42 demonstrated significant wound-healing capacity and upregulated filaggrin expression without causing notable irritation in clinical testing. These findings support the biological activity and safety of specific PDMs as functional cosmetic ingredients. This study presents scientifically validated evidence for plant-based alternatives to animal-derived materials and offers a new milestone in the shift toward sustainable and ethical cosmetic development. By bridging the gap between consumer demand and scientific rigor, this study provides a robust platform for future innovations in vegan cosmetics. Full article
Show Figures

Graphical abstract

16 pages, 11306 KB  
Article
Unusual Occurrence of Syncytial Epithelia in the Male Accessory Glands of Shore Bugs (Leptopodomorpha in Hemiptera)
by Koji Takeda, Jun Yamauchi, Riku Naoi, Tadashi Ishikawa and Takashi Adachi-Yamada
Diversity 2025, 17(7), 481; https://doi.org/10.3390/d17070481 - 11 Jul 2025
Viewed by 577
Abstract
(1) Background: The insect male accessory gland (MAG) produces seminal fluid components crucial for male reproduction, analogous to the mammalian prostate. While some insect MAGs exhibit binucleate epithelial cells for luminal volume plasticity, the diversity of cellular arrangements and their functional implications across [...] Read more.
(1) Background: The insect male accessory gland (MAG) produces seminal fluid components crucial for male reproduction, analogous to the mammalian prostate. While some insect MAGs exhibit binucleate epithelial cells for luminal volume plasticity, the diversity of cellular arrangements and their functional implications across insects remain largely unknown. (2) Methods: We investigated the cellular architecture of MAG epithelia in various shore bug species (infraorder Leptopodomorpha, Hemiptera) and their mechanisms of multinucleation and potential MAG volume regulation. (3) Results: The MAG epithelia of shore bugs comprise a small number of large, plastic syncytial cells with varying nuclear numbers. We hypothesize that these syncytia facilitate effective MAG volume expansion post-eclosion. Uniquely, MAG shrinkage involves the localized contraction of limited muscle fibers, unlike the systematic contraction of circular muscles in most other insects. We further describe sequential cell fusion during the nymphal stage as the mechanism of multinucleation. (4) Conclusions: The unique syncytial organization of Leptopodomorpha MAG epithelia represents an evolutionary divergence from typical binucleate or mononucleate structures in other insects; it is likely that this enables distinct mechanisms for reproductive fluid storage and evacuation. This study highlights the evolutionary diversity of male reproductive organ morphology and function within insects. Full article
(This article belongs to the Special Issue Diversity and Evolution of Hemiptera)
Show Figures

Figure 1

13 pages, 7369 KB  
Article
Characterization of microRNA and Metabolite Profiles of Seminal Extracellular Vesicles in Boars
by Jianfeng Ma, Shuang Liang, Siyu Chen, Yuqian Shi, Yu Zou, Lei Chen, Lili Niu, Ye Zhao, Yan Wang, Linyuan Shen, Li Zhu and Mailin Gan
Animals 2025, 15(11), 1631; https://doi.org/10.3390/ani15111631 - 1 Jun 2025
Viewed by 859
Abstract
Extracellular vesicles (EVs) contain bioactive substances and mediate a multitude of physiological functions. EVs can be found in most body fluids and are particularly abundant in semen. EVs have the potential to become a biomarker for the quality of boar semen. In this [...] Read more.
Extracellular vesicles (EVs) contain bioactive substances and mediate a multitude of physiological functions. EVs can be found in most body fluids and are particularly abundant in semen. EVs have the potential to become a biomarker for the quality of boar semen. In this study, EVs were isolated from the semen of relatively young (10 months of age, Y-EVs) and old (30 months of age, O-EVs) duroc boars using ultracentrifugation. The isolated EVs were characterized using a transmission electron microscope, nanoparticle tracking analysis, and Western blotting. MicroRNA (miRNA) profiles and metabolomes were analyzed using high-throughput sequencing and liquid chromatography–mass spectrometry, respectively. The median particle sizes of Y-EVs and O-EVs were 151.3 nm and 162.1 nm, respectively. miR-148a-3p, miR-10b, miR-21-5p, miR-10a-5p, let-7a, etc., were identified as highly enriched miRNAs in seminal EVs of boars. Comparative analysis revealed 41 differentially expressed miRNAs and 132 differential metabolites between Y-EVs and O-EVs. Notably, 18 miRNAs were upregulated in O-EVs, such as miR-339-5p, miR-125a, miR-423-3p, and miR-29c, which were mainly enriched in endocytosis, focal adhesion, and adherens junction. KEGG pathway analysis further indicated that differential metabolites were enriched in glycerophospholipid metabolism. These results provide an insight into the functional roles of seminal EVs. Full article
(This article belongs to the Special Issue Polygene and Polyprotein Research on Reproductive Traits of Livestock)
Show Figures

Figure 1

20 pages, 3392 KB  
Article
Comparative Analysis of Proteomic Characteristics in Seminal Plasma Between Horses and Donkeys
by Xin Wen, Hong Ren, Qianqian He, Minna Yi, Tseweendolmaa Ulaangerel and Gerelchimeg Bou
Animals 2025, 15(11), 1532; https://doi.org/10.3390/ani15111532 - 23 May 2025
Cited by 1 | Viewed by 838
Abstract
Horses and donkeys, as integral members of the equine family, exhibit distinct reproductive capabilities and characteristics. Seminal plasma, the fluid component of semen, contains a variety of proteins that play critical roles in sperm function and fertility. This study aimed to systematically compare [...] Read more.
Horses and donkeys, as integral members of the equine family, exhibit distinct reproductive capabilities and characteristics. Seminal plasma, the fluid component of semen, contains a variety of proteins that play critical roles in sperm function and fertility. This study aimed to systematically compare the protein profiles in the seminal plasma of horses and donkeys, thereby elucidating the molecular differences between these two species. The study utilized 4D-DIA proteomics technology to analyze seminal plasma from horses and donkeys and further validated key proteins through Western blot. Our findings revealed significant variations in seminal plasma protein composition between horses and donkeys. We identified 2380 and 2385 proteins in the seminal plasma of horses and donkeys. Among these proteins, 59 are solely present in the seminal plasma of horses, and 64 uniquely exsit in that of donkeys, respectively. These insights enhance our understanding of the biological mechanisms underlying the reproductive distinctions between these equine species. Moreover, the identified species specific proteins may be essential for thier sperm quality and function, which holds practical value for breeding programs and investigations. Full article
(This article belongs to the Section Equids)
Show Figures

Figure 1

18 pages, 4817 KB  
Article
Prenatal Bisphenol B Exposure Induces Adult Male Offspring Reproductive Dysfunction via ERα Inhibition-Triggered MHC I-Mediated Testicular Immunological Responses
by Nannan Chen, Xiaotian Li, Shenrui Zhou, Xin Peng, Senlin Xue, Yuetong Liu, Tingwang Jiang and Wei Yan
Toxics 2025, 13(6), 423; https://doi.org/10.3390/toxics13060423 - 22 May 2025
Cited by 1 | Viewed by 1251
Abstract
As an emerging endocrine-disrupting agent and structural analog of bisphenol A (BPA), bisphenol B (BPB) raises significant concerns due to its potential to induce male reproductive toxicity. Despite its presence in maternal bodily fluids, the effects of BPB exposure on the reproductive system [...] Read more.
As an emerging endocrine-disrupting agent and structural analog of bisphenol A (BPA), bisphenol B (BPB) raises significant concerns due to its potential to induce male reproductive toxicity. Despite its presence in maternal bodily fluids, the effects of BPB exposure on the reproductive system and its mechanisms in adult male offspring are poorly understood. By establishing a maternal BPB exposure model in mice, we found that the exposure reduced the relative weights of seminal vesicles and preputial glands, decreased the thickness of the seminiferous epithelium, enlarged the lumen area of seminiferous tubules, and lowered testosterone concentration and synthesis, as well as sperm count in 10-week-old male offspring. Bioinformatic analyses revealed that the differentially expressed genes were significantly associated with major histocompatibility complex I (MHC I)-mediated immunological processes, including immune system processes, antigen processing and presentation of exogenous peptide antigens via MHC class I, and interleukin-2 production. Importantly, molecular docking proposed a potential mechanistic model wherein BPB bound to estrogen receptor α (ERα) suppressed its testicular expression and triggered MHC class I gene overexpression, potentially promoting macrophage infiltration, CD4+/CD8+ T cell activation, and pro-inflammatory cytokine production. Our findings provide critical insights into the adverse effects of maternal BPB exposure on male reproductive development, suggesting that impairments in testicular morphology and spermatogenesis may be attributed to MHC I-mediated immunological responses and hormonal imbalances resulting from inhibited ERα signaling. These results underscore not only the toxicological risks associated with BPB but also potential therapeutic targets for mitigating male reproductive dysfunction. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

13 pages, 1533 KB  
Article
Surface-Enhanced Raman Spectroscopy on Gold Nanoparticle for Sperm Quality Discrimination
by Yeira P. Lopez-Lora, Nataly J. Galán-Freyle, Natally Vidal-Figueroa, Antony A. Cardozo-Puello, Antonio J. Acosta-Hoyos, Guido Parra-Anaya, Elvin S. Lebrón-Ramírez, Fabián Espitia-Almeida, Samuel P. Hernández-Rivera, Maximiliano Méndez-López, Ornella Fiorillo-Moreno, Karin Rondon-Payare and Leonardo C. Pacheco-Londoño
Molecules 2025, 30(9), 1876; https://doi.org/10.3390/molecules30091876 - 23 Apr 2025
Viewed by 968
Abstract
Spermatozoa were isolated from the seminal fluid using washing (wash), post-capacitation (POS), and swim-up (SU) techniques, followed by analysis through Surface-Enhanced Raman Spectroscopy (SERS). Density gradient and swim-up methods were applied to 35 semen samples to validate sperm quality. The resulting spectra showed [...] Read more.
Spermatozoa were isolated from the seminal fluid using washing (wash), post-capacitation (POS), and swim-up (SU) techniques, followed by analysis through Surface-Enhanced Raman Spectroscopy (SERS). Density gradient and swim-up methods were applied to 35 semen samples to validate sperm quality. The resulting spectra showed notable variations at 408 cm−1 (S–S stretch attributed to lysozyme) and 728 cm−1 (associated with DNA alterations and methylation). These spectral markers were incorporated into partial least squares discriminant analysis (PLS-DA) models to distinguish among sperm populations prepared by different methods. One PLS-DA model differentiated wash from POS and SU, attaining 86% sensitivity and 91% accuracy. Another model distinguished between POS and SU, achieving 77% sensitivity and 74% accuracy. The combined use of SERS and multivariate analysis offers a promising alternative for assessing sperm quality, supported by motility assessments in 35 validated samples. This approach could enhance both the accuracy and efficiency of reproductive diagnostics. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Figure 1

12 pages, 612 KB  
Review
Recent Advances in the Diagnosis and Management of Retrograde Ejaculation: A Narrative Review
by Charalampos Konstantinidis, Athanasios Zachariou, Evangelini Evgeni, Selahittin Çayan, Luca Boeri and Ashok Agarwal
Diagnostics 2025, 15(6), 726; https://doi.org/10.3390/diagnostics15060726 - 14 Mar 2025
Cited by 4 | Viewed by 6262
Abstract
Retrograde ejaculation (RE) is a condition where the forward expulsion of seminal fluid is impaired, leading to infertility and psychological distress in affected individuals. This narrative review examines the etiology, pathophysiology, diagnosis, and management of RE, emphasizing its impact on male fertility. RE [...] Read more.
Retrograde ejaculation (RE) is a condition where the forward expulsion of seminal fluid is impaired, leading to infertility and psychological distress in affected individuals. This narrative review examines the etiology, pathophysiology, diagnosis, and management of RE, emphasizing its impact on male fertility. RE may result in the partial or complete absence of the ejaculate. Causes of RE include anatomical, neurological, pharmacological, and endocrine factors, with common triggers such as diabetes, spinal cord injury, and prostate surgery. Diagnosis primarily involves the patient history, a laboratory analysis of post-ejaculatory urine samples, and advanced imaging techniques. Management strategies for RE include pharmacological interventions, surgical approaches, and assisted reproductive technologies (ARTs). Sympathomimetic and parasympatholytic agents have demonstrated some success but are limited by side effects and variability in outcomes. ARTs, particularly with sperm retrieved from post-ejaculatory urine, offer a viable alternative for conception, with techniques such as urine alkalization and advanced sperm processing showing promising results. Despite these advancements, treatment efficacy remains inconsistent, with many studies relying on small sample sizes and lacking robust clinical trials. Future research should focus on refining diagnostic tools, optimizing ART protocols, and developing minimally invasive treatments. By addressing these gaps, healthcare providers can improve fertility outcomes and the quality of life for patients with RE. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Figure 1

21 pages, 1761 KB  
Review
Unlocking Gamete Quality Through Extracellular Vesicles: Emerging Perspectives
by Notsile H. Dlamini, Alessandra Bridi, Juliano Coelho da Silveira and Jean M. Feugang
Biology 2025, 14(2), 198; https://doi.org/10.3390/biology14020198 - 13 Feb 2025
Cited by 1 | Viewed by 2348
Abstract
Extracellular vesicles (EVs) are gaining recognition for their essential role in enhancing gamete quality and improving outcomes in assisted reproductive technologies. These nanosized particles, released by cells, carry proteins, lipids, and RNAs, facilitating critical cell communication and offering the potential to enhance gamete [...] Read more.
Extracellular vesicles (EVs) are gaining recognition for their essential role in enhancing gamete quality and improving outcomes in assisted reproductive technologies. These nanosized particles, released by cells, carry proteins, lipids, and RNAs, facilitating critical cell communication and offering the potential to enhance gamete maturation and improve fertilization rates. Most research on males has concentrated on seminal plasma, a complex fluid produced by the testes and accessory glands vital in modulating sperm fertility potential. The components of seminal plasma significantly affect sperm functionality, embryo survival, and placental development, making this a prominent area of interest in reproductive biology. The EVs within seminal plasma contribute to maintaining sperm membrane stability, enhancing motility, and promoting capacitation, which may influence the female reproductive tract following mating. In females, EVs have been identified in both the follicular and uterine environments, where effective embryo–maternal communication is crucial. The oviduct epithelium supports gamete transport and early embryonic development, with EVs found in oviductal fluid playing a key role in reproductive processes. These EVs support the embryo’s growth in the nutrient-rich uterine environment. These important studies underscore the significant role of EVs in transporting essential molecular compounds to gametes and embryos, leading to an enhanced understanding and potential manipulation of reproductive processes. This review aims to summarize the current research on the benefits of EVs in gamete manipulation and embryo development, highlighting their promising implications for reproductive health. Full article
(This article belongs to the Special Issue Feature Papers on Developmental and Reproductive Biology)
Show Figures

Figure 1

18 pages, 854 KB  
Review
Applications of Computational Fluid Dynamics in Congenital Heart Disease: A Review
by Amartya Dave, Raquel dos Santos, Usmaan Siddiqi, Aashi Dharia, Willa Li, Umar Siddiqi, Nhung Nguyen, Luka Pocivavsek and Narutoshi Hibino
J. Cardiovasc. Dev. Dis. 2025, 12(2), 70; https://doi.org/10.3390/jcdd12020070 - 13 Feb 2025
Cited by 2 | Viewed by 2000
Abstract
Computational fluid dynamics (CFD) is a tool that allows for the analysis of otherwise unobservable blood flow patterns. In the context of medicine, CFD enables researchers to better understand acute and chronic pathophysiology as well as utilize modeling tools to predict blood flow [...] Read more.
Computational fluid dynamics (CFD) is a tool that allows for the analysis of otherwise unobservable blood flow patterns. In the context of medicine, CFD enables researchers to better understand acute and chronic pathophysiology as well as utilize modeling tools to predict blood flow patterns in response to surgical intervention. Such a tool is particularly useful in the field of congenital heart disease (CHD), where complex geometries and patient-specific pathology are common. Research applying CFD to study CHDs has significantly grown in the last twenty years, with new methodologies and recommendations being published at an even faster pace in the last decade. Many currently available reviews are focused on a particular area of progress or on the technical approaches to CFD geared toward the clinician. This review focuses on CFD application within the major domains of CHD research, specifically single ventricle defects and aortic coarctation, reviewing consensus seminal work while highlighting more recent avenues of study. Balancing discussion of CFD parameters with potential clinical implications of study results, this review not only aims to provide cardiovascular professionals context for the technical advancements being made in the field but also a sense of contemporary CFD’s utility in clinical practice. Full article
Show Figures

Figure 1

17 pages, 1877 KB  
Article
A Comparative Analysis of the Antioxidant Profiles Generated by the RoXstaTM System for Diverse Biological Fluids Highlights the Powerful Protective Role of Human Seminal Plasma
by Robert J. Aitken, Alexandra Wilkins, Natasha Harrison, Mohammad Bahrami, Zamira Gibb, Kaitlin McIntosh, Quan Vuong and Sarah Lambourne
Antioxidants 2025, 14(1), 90; https://doi.org/10.3390/antiox14010090 - 14 Jan 2025
Cited by 2 | Viewed by 1599
Abstract
(1) Background: The RoXstaTM system has been developed as a rapid, effective means of profiling different types of antioxidant activity. The purpose of this study was to examine its performance utilizing a diverse array of biological fluids including semen, blood plasma, serum, [...] Read more.
(1) Background: The RoXstaTM system has been developed as a rapid, effective means of profiling different types of antioxidant activity. The purpose of this study was to examine its performance utilizing a diverse array of biological fluids including semen, blood plasma, serum, urine, saliva, follicular fluid and plant extracts. (2) Methods: The RoXstaTM system was used to assess the ability of different fluids to suppress free radical formation as well as scavenge a variety of toxic oxygen metabolites including free radicals and both hydrogen and organic peroxides. (3) Results: Human semen was shown to have significantly (p < 0.001) more peroxide scavenging power than any other fluid tested (10–14 mM vitamin C equivalent compared with 1–2 mM for blood serum or plasma), while urine was particularly effective in scavenging free radicals and preventing free radical formation (p < 0.001). The powerful antioxidant properties of human semen were shown to reside within the seminal plasma (SP) fraction, rather than the spermatozoa, and to be resistant to snap freezing in liquid nitrogen. Moreover, comparative studies demonstrated that human SP exhibited significantly (p < 0.001) higher levels of antioxidant potential than any other species examined (stallion, bull, dog) and that this intense activity reflected the relative vulnerability of human spermatozoa to peroxide attack. (4) Conclusions: The RoXstaTM system provides valuable information on the antioxidant profile of complex biological fluids, supporting its diagnostic role in conditions associated with oxidative stress. Based on the results secured in this study, human semen is identified as a particularly rich source of antioxidants capable of scavenging both hydrogen and organic peroxides, in keeping with the high susceptibility of human spermatozoa to peroxide-mediated damage. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

8 pages, 438 KB  
Review
Impact of Human Papillomavirus (HPV) on Male and Female Fertility
by Sara Chenafi-Adham, Oulfa Boussetta-Charfi, Sylvie Pillet and Thomas Bourlet
Pathogens 2024, 13(12), 1076; https://doi.org/10.3390/pathogens13121076 - 7 Dec 2024
Cited by 6 | Viewed by 3913
Abstract
Human papillomaviruses (HPVs) are responsible for the majority of sexually transmitted infections (STIs), some of which are oncogenic and can cause oropharyngeal or genital cancers. The HPV prevalence at the genital level varies according to the population studied but is higher in the [...] Read more.
Human papillomaviruses (HPVs) are responsible for the majority of sexually transmitted infections (STIs), some of which are oncogenic and can cause oropharyngeal or genital cancers. The HPV prevalence at the genital level varies according to the population studied but is higher in the seminal fluid of men suffering from idiopathic infertility than in the general population. The involvement of HPV in male infertility is supported by several studies suggesting that this virus can affect sperm quality by altering sperm DNA integrity, motility, number, viability, and morphology, and by inducing the production of anti-sperm antibodies (ASAs). HPVs may also have an impact on female fertility, mainly by increasing the risk of miscarriage and premature delivery and by altering the implantation of endometrial trophoblastic cells. In addition, an association with vaginal bacterial dysbiosis, notably involving Gardnerella vaginalis, or co-infection with an STI agent, serves as an aggravating factor. The aim of this review is to present current data on the potential role of HPVs in male and female infertility, along with data on infertility prevention and treatment strategies and the impact of vaccination in this context. Full article
Show Figures

Figure 1

22 pages, 8149 KB  
Article
Towards the Development of Novel, Point-of-Care Assays for Monitoring Different Forms of Antioxidant Activity: The RoXstaTM System
by Robert J. Aitken, Alexandra Wilkins, Natasha Harrison, Kimia Kobarfard and Sarah Lambourne
Antioxidants 2024, 13(11), 1379; https://doi.org/10.3390/antiox13111379 - 11 Nov 2024
Cited by 4 | Viewed by 1848
Abstract
(1) Background: This study set out to develop a series of simple, novel, rapid methods for assessing different forms of antioxidant activity. (2) Methods: An ABTS platform was used to engineer: (i) an electrochemical post-activation assay to assess free radical scavenging activity; (ii) [...] Read more.
(1) Background: This study set out to develop a series of simple, novel, rapid methods for assessing different forms of antioxidant activity. (2) Methods: An ABTS platform was used to engineer: (i) an electrochemical post-activation assay to assess free radical scavenging activity; (ii) an electrochemical pre-activation strategy to assesses the suppression of free radical formation; (iii) a horseradish peroxidase-mediated oxidation system to monitor hydrogen peroxide scavenging activity and (iv) a cumene peroxide-hematin system to determine the ability of samples to scavenge the mixture of organic peroxides and peroxyl and alkoxyl radicals generated in the presence of these reagents. Each assay was assessed against a panel of candidate antioxidant compounds to determine their relative activities and specificities. In addition, human semen samples were analyzed to determine how the results of these antioxidant assays correlated with semen quality. (3) Results: All 4 assays revealed dose-dependent antioxidant activity on the part of vitamin C, N-acetyl cysteine, hypotaurine, BSA, melatonin, glutathione, resveratrol and epigallocatechin gallate. The other compounds tested either completely lacked antioxidant activity or were only active in one of the assays. Using unfractionated human semen as an exemplar of biological fluids rich in antioxidants, the outputs from the individual assays were found to reflect different aspects of semen quality. When the data from all 4 assays were combined, accurate predictions were generated reflecting the importance of oxidative stress in defining semen quality as reflected by sperm count, seminal lipid aldehyde content, sperm DNA damage and free radical generation by the sperm mitochondria. (4) Conclusions: The methodologies described in this paper constitute the basis for rapid, point-of-care assessments of oxidative stress. Full article
(This article belongs to the Special Issue Oxidative Stress and Male Reproductive Health)
Show Figures

Figure 1

Back to TopTop