molecules-logo

Journal Browser

Journal Browser

Molecular Spectroscopy in Applied Chemistry

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Physical Chemistry".

Deadline for manuscript submissions: closed (28 February 2025) | Viewed by 11362

Special Issue Editors


E-Mail Website
Guest Editor
Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia
Interests: computational chemistry; molecular spectroscopy

E-Mail Website
Guest Editor
Optical Sciences Centre, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia
Interests: biophysics; experimental optical spectroscopy
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Molecular spectroscopy in applied chemistry involves the use of various spectroscopic techniques to study and analyse the structure, composition and behaviour of molecules in practical applications. This interdisciplinary field combines the principles of chemistry, physics and spectroscopy to address real-world challenges and advance technological innovations. It has applications in diverse areas such as environmental monitoring, pharmaceuticals, energy, materials science and biochemistry. The application of molecular spectroscopy in these contexts provides valuable insights for developing new materials, understanding chemical processes and optimising the performance of various products and technologies. This specialised field plays a crucial role in bridging fundamental scientific knowledge with practical solutions to contribute to advancements in applied chemistry.

Prof. Dr. Feng Wang
Prof. Dr. Andrew Clayton
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • molecular spectroscopy
  • applied chemistry
  • interdisciplinary field
  • technological innovations
  • environmental monitoring

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (13 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 1533 KiB  
Article
Surface-Enhanced Raman Spectroscopy on Gold Nanoparticle for Sperm Quality Discrimination
by Yeira P. Lopez-Lora, Nataly J. Galán-Freyle, Natally Vidal-Figueroa, Antony A. Cardozo-Puello, Antonio J. Acosta-Hoyos, Guido Parra-Anaya, Elvin S. Lebrón-Ramírez, Fabián Espitia-Almeida, Samuel P. Hernández-Rivera, Maximiliano Méndez-López, Ornella Fiorillo-Moreno, Karin Rondon-Payare and Leonardo C. Pacheco-Londoño
Molecules 2025, 30(9), 1876; https://doi.org/10.3390/molecules30091876 - 23 Apr 2025
Abstract
Spermatozoa were isolated from the seminal fluid using washing (wash), post-capacitation (POS), and swim-up (SU) techniques, followed by analysis through Surface-Enhanced Raman Spectroscopy (SERS). Density gradient and swim-up methods were applied to 35 semen samples to validate sperm quality. The resulting spectra showed [...] Read more.
Spermatozoa were isolated from the seminal fluid using washing (wash), post-capacitation (POS), and swim-up (SU) techniques, followed by analysis through Surface-Enhanced Raman Spectroscopy (SERS). Density gradient and swim-up methods were applied to 35 semen samples to validate sperm quality. The resulting spectra showed notable variations at 408 cm−1 (S–S stretch attributed to lysozyme) and 728 cm−1 (associated with DNA alterations and methylation). These spectral markers were incorporated into partial least squares discriminant analysis (PLS-DA) models to distinguish among sperm populations prepared by different methods. One PLS-DA model differentiated wash from POS and SU, attaining 86% sensitivity and 91% accuracy. Another model distinguished between POS and SU, achieving 77% sensitivity and 74% accuracy. The combined use of SERS and multivariate analysis offers a promising alternative for assessing sperm quality, supported by motility assessments in 35 validated samples. This approach could enhance both the accuracy and efficiency of reproductive diagnostics. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Figure 1

17 pages, 3117 KiB  
Article
Explosives Analysis Using Thin-Layer Chromatography–Quantum Cascade Laser Spectroscopy
by John R. Castro-Suarez, Luis A. Pérez-Almodóvar, Doris M. Laguer-Martínez, José L. Ruiz-Caballero, José A. Centeno-Ortiz, Tamara Felix-Massa, Leonardo C. Pacheco-Londoño and Samuel P. Hernández-Rivera
Molecules 2025, 30(8), 1844; https://doi.org/10.3390/molecules30081844 - 19 Apr 2025
Viewed by 97
Abstract
A new hyphenated technique using thin-layer chromatography (TLC) to separate analytes in mixtures, coupled with mid-infrared (MIR) laser spectroscopy for identification and quantification, is presented. The method, which provides a means for rapid screening of analytes that is practical, low-cost, fast, robust, and [...] Read more.
A new hyphenated technique using thin-layer chromatography (TLC) to separate analytes in mixtures, coupled with mid-infrared (MIR) laser spectroscopy for identification and quantification, is presented. The method, which provides a means for rapid screening of analytes that is practical, low-cost, fast, robust, and reproducible, was tested using nitroaromatic and aliphatic nitro high explosives (HEs) as target analytes. HEs are anthropogenic contaminants containing an -NO2 group. For validation of the new technique, a direct comparison of the 2,4,6-trinitrotoluene (TNT) spectrum, obtained by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy coupled with TLC, was carried out. The MIR laser spectroscopy-based method was evaluated by calculating the analytical figures of merit regarding the calibration curves’ linearity and the method’s sensitivity and precision. The TNT spectrum obtained by the MIR laser method showed two prominent and characteristic bands of the explosive at approximately 1350 cm−1 and 1550 cm−1 compared to the spectrum acquired by ATR-FTIR. The detection limit calculated for TNT was 84 ng, while the quantification limit was 252 ng. Multivariate analysis was used to evaluate the spectroscopic data to identify sources of variation and determine their relation. Partial least squares (PLS) regression analysis and PLS combined with discriminant analysis (PLS-DA) were used for quantification and classification. The new technique, TLC-QCL, is amenable to a smaller footprint with further developments in MIR laser technology, making it portable for fieldwork. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Figure 1

11 pages, 967 KiB  
Article
Terahertz Spectroscopy and Density Functional Theory for Non-Destructive Analysis of Anticoagulant Warfarin
by Jiawei Li, Cong Zhang, Xiaohui Wang, Jinjing Zhang, Hanwen Liu and Xu Wu
Molecules 2025, 30(8), 1791; https://doi.org/10.3390/molecules30081791 - 16 Apr 2025
Viewed by 161
Abstract
Pharmaceutical quality control plays a critical role in safeguarding patient safety and ensuring therapeutic efficacy. However, conventional analytical methods are often hindered by laborious procedures and complex chemical preparation requirements. This study presents a rapid, non-destructive pharmaceutical analysis approach by introducing terahertz spectroscopy [...] Read more.
Pharmaceutical quality control plays a critical role in safeguarding patient safety and ensuring therapeutic efficacy. However, conventional analytical methods are often hindered by laborious procedures and complex chemical preparation requirements. This study presents a rapid, non-destructive pharmaceutical analysis approach by introducing terahertz spectroscopy for the dual-parametric detection of the anticoagulant warfarin. Characteristic absorption peaks of warfarin within the 4–10 THz range were experimentally identified and theoretically resolved through density functional theory calculations, employing both single-molecule and unit cell models. Furthermore, three strong absorption peaks were selected to construct multivariate regression models correlating spectral parameters (peak intensity and area) with warfarin weight, achieving a detection limit of 0.641 mg within a 5 min analytical workflow. This approach enables simultaneous molecular fingerprint identification and quantitative determination without chemical modification, meeting the requirements for the rapid screening of active pharmaceutical ingredients. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Figure 1

18 pages, 7329 KiB  
Article
Visible-Light Photocatalytic Activity of a ZnO-Loaded Isoreticular Metal-Organic Framework
by Ana Y. Rojas-Forero, Laura Y. Hernández-Benítez, María L. Ospina-Castro, Nataly J. Galán-Freyle, John R. Castro-Suarez, Maximiliano Méndez-López, Samuel P. Hernández-Rivera, José A. Centeno-Ortiz, Sandra P. Romero-Nieto and Leonardo C. Pacheco-Londoño
Molecules 2025, 30(6), 1375; https://doi.org/10.3390/molecules30061375 - 19 Mar 2025
Viewed by 336
Abstract
A hybrid material composed of IRMOF-3 and ZnO (IRMOF-3/ZnO) was synthesized to enhance photocatalytic methylene blue (MB) degradation under visible-light irradiation. Scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and diffuse-reflectance UV-Vis analyses confirmed the successful integration of ZnO into the IRMOF-3 framework. [...] Read more.
A hybrid material composed of IRMOF-3 and ZnO (IRMOF-3/ZnO) was synthesized to enhance photocatalytic methylene blue (MB) degradation under visible-light irradiation. Scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and diffuse-reflectance UV-Vis analyses confirmed the successful integration of ZnO into the IRMOF-3 framework. Compared with unmodified IRMOF-3, the hybrid demonstrated superior MB decomposition, as evidenced by faster reaction rate constants and shorter half-lives. Monitoring the MB absorbance at 670 nm (λmax) revealed more pronounced colorant removal when IRMOF-3/ZnO was exposed to a visible-light source. Diffuse-reflectance UV-Vis spectroscopy showed that IRMOF-3 has a band gap of 2.7 eV, whereas IRMOF-3/ZnO exhibits a slightly higher band gap of 2.8 eV. This modest shift, coupled with the strong interaction between the ZnO semiconductor and the MOF’s amine functionalities, enabled two distinct energy-transfer pathways: intermolecular transfer from IRMOF-3 linkers (acting as visible-light antennas) to ZnO, and intramolecular transfer from Zn to IRMOF-3. Together, these pathways generated abundant free radicals for efficient dye degradation. Despite the necessity for careful synthesis protocols and control of operating conditions to preserve the MOF structure and optimize ZnO loading, the IRMOF-3/ZnO hybrid shows promise as a robust, cost-effective photocatalyst for water-pollutant remediation, taking advantage of the more abundant visible region of solar light. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Figure 1

29 pages, 10108 KiB  
Article
Unveiling the Role of Fractionated Graphene Oxide in Nitric Oxide Scavenging
by Grigoriy R. Chermashentsev, Ivan V. Mikheev, Daria-Mariia V. Ratova, Elena V. Proskurnina and Mikhail A. Proskurnin
Molecules 2025, 30(5), 1069; https://doi.org/10.3390/molecules30051069 - 26 Feb 2025
Cited by 1 | Viewed by 435
Abstract
The feasibility of saturating aqueous anoxic solutions with in situ-generated high-purity nitric oxide (NO) is shown herein. A methemoglobin assay estimated the average nitric oxide concentration to be ca. 20 ± 3 µM. Graphene oxide aqueous dispersions were prepared by ultrasound-assisted extra exfoliation. [...] Read more.
The feasibility of saturating aqueous anoxic solutions with in situ-generated high-purity nitric oxide (NO) is shown herein. A methemoglobin assay estimated the average nitric oxide concentration to be ca. 20 ± 3 µM. Graphene oxide aqueous dispersions were prepared by ultrasound-assisted extra exfoliation. These dispersions, including unpurified (pristine) samples and samples purified from transition metal impurities (bulk) fractions (bulkGO) and (nano) separated fractions (nanoGO) in a range of 0.5 to 14 kDa were prepared with ppm level concentrations. A robust and reproducible chemiluminescence (CL) assay validated the interaction between graphene oxide and NO in a luminol-based system. The results showed a significant increase in NO scavenging activity within the bulkGO fractions to nanofractions ranging from 14 to 3.5 kDa. The different reaction pathways underlying the transformation of nitric oxide are being evaluated, focusing on understanding how its presence or absence affects these processes. Our kinetic model suggests a significant difference in nitric oxide regulation; nanoGO demonstrates an interception rate seventy-times higher than that achieved through CL quenching. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Graphical abstract

12 pages, 19545 KiB  
Article
Label-Free Surface-Enhanced Raman Scattering for Genomic DNA Cytosine Methylation Reading
by Kazi Morshed Alom, Anastasiia Tukova, Nana Lyu, Alison Rodger and Yuling Wang
Molecules 2025, 30(2), 403; https://doi.org/10.3390/molecules30020403 - 18 Jan 2025
Viewed by 919
Abstract
DNA methylation has been widely studied with the goal of correlating the genome profiles of various diseases with epigenetic mechanisms. Multiple approaches have been developed that employ extensive steps, such as bisulfite treatments, polymerase chain reactions (PCR), restriction digestion, sequencing, mass analysis, etc., [...] Read more.
DNA methylation has been widely studied with the goal of correlating the genome profiles of various diseases with epigenetic mechanisms. Multiple approaches have been developed that employ extensive steps, such as bisulfite treatments, polymerase chain reactions (PCR), restriction digestion, sequencing, mass analysis, etc., to identify DNA methylation. In this article, we report a facile label-free surface-enhanced Raman scattering (SERS) spectroscopy system that utilizes gold nanoparticles (AuNPs) for signal enhancement of methylated DNA. The key innovation of this work is to use anionic nanoparticles at a high ionic strength to introduce the aggregation of AuNPs with anionic DNA. When target methylated DNA is present, the presence of a methyl group in the cytosine C5 position of CpG sites induces a Raman peak at 1350 cm−1. Our amplification-free system has a limit of detection (LOD) of 5% and a limit of quantification (LOQ) of 16% with good specificity. The method was applied to determine the hypermethylated levels of the germline of colorectal cancer cell lines SW48 and SW480. Our simple label-free method holds the potential to read the disease-associated methylation of genomic DNA. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Figure 1

15 pages, 4411 KiB  
Article
Spectroscopic and Quantum Chemical Evidence of Amine–CO2 and Alcohol–CO2 Interactions: Confirming an Intriguing Affinity of CO2 to Monoethanolamine (MEA)
by Sahar Hafizi Yazdabadi, Dmytro Mihrin, Karen Louise Feilberg and René Wugt Larsen
Molecules 2024, 29(23), 5521; https://doi.org/10.3390/molecules29235521 - 22 Nov 2024
Viewed by 862
Abstract
A recent broadband rotational spectroscopic investigation of the cross-association mechanisms of CO2 with monoethanolamine (MEA) in molecular beams [F. Xie et al., Angew. Chem. Int. Ed., 2023, 62, e202218539] revealed an intriguing affinity of CO2 to the hydroxy [...] Read more.
A recent broadband rotational spectroscopic investigation of the cross-association mechanisms of CO2 with monoethanolamine (MEA) in molecular beams [F. Xie et al., Angew. Chem. Int. Ed., 2023, 62, e202218539] revealed an intriguing affinity of CO2 to the hydroxy group. These findings have triggered the present systematic vibrational spectroscopic exploration of weakly bound amine··CO2 and alcohol··CO2 van der Waals cluster molecules embedded in inert “quantum” matrices of neon at 4.2 K complemented by high-level quantum chemical conformational analyses. The non-covalent interactions formed between the amino and hydroxy groups and the electron-deficient carbon atom of CO2 are demonstrated to lift the degeneracy of the doubly degenerate intramolecular CO2-bending fundamental significantly with characteristic observed spectral splittings for the amine··CO2 (≈35–45 cm−1) and alcohol··CO2 (≈20–25 cm−1) interactions, respectively, despite the almost identically predicted total association energies (≈12–14 kJ·mol−1) for these van der Waals contacts, as revealed by benchmark Domain-based Local Pair Natural Orbital Coupled Cluster DLPNO-CCSD(T) theory. These high-level theoretical predictions reveal significantly higher “geometry preparation energies” for the amine··CO2 systems leading to a more severe distortion of the CO2 linearity upon complexation in agreement with the infrared spectroscopic findings. The systematic combined spectroscopic and quantum chemical evidences for cross-association between CO2 and amines/alcohols in the present work unambiguously confirm an intriguing binding preference of CO2 to the hydroxy group of the important carbon capture agent MEA, with an accurate vibrational zero-point energy corrected association energy (D0) of 13.5 kJ·mol−1 at the benchmark DLPNO-CCSD(T)/aug-cc-pV5Z level of theory. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Figure 1

15 pages, 2523 KiB  
Article
Spectral Properties of Marennine-like Pigments Reveal Minor Differences Between Blue Haslea Species and Strains
by Amina Latigui, Boris Jacquette, Jens Dittmer, Jean-François Bardeau, Edouard Boivin, Lucie Beaulieu, Pamela Pasetto and Jean-Luc Mouget
Molecules 2024, 29(22), 5248; https://doi.org/10.3390/molecules29225248 - 6 Nov 2024
Viewed by 905
Abstract
Marennine is the specific bluish pigment produced by the marine diatom Haslea ostrearia Gaillon (Simonsen), responsible for the greening of oysters in France’s Atlantic coast. For decades, H. ostrearia was considered the only blue diatom and described as such. However, new blue Haslea [...] Read more.
Marennine is the specific bluish pigment produced by the marine diatom Haslea ostrearia Gaillon (Simonsen), responsible for the greening of oysters in France’s Atlantic coast. For decades, H. ostrearia was considered the only blue diatom and described as such. However, new blue Haslea species have been described recently, among which Haslea karadagensis Davidovich, Gastineau, and Mouget (Black Sea, Crimea, Ukraine); Haslea provincialis Gastineau, Hansen, and Mouget (Mediterranean Sea, southern France); Haslea silbo Gastineau, Hansen, and Mouget (West Atlantic Ocean, USA); and one not characterized yet, Haslea sp. nov., isolated in Tenerife (Spain). These species produce marennine-like pigments, for which little information is available yet. The present work aims at studying spectral characteristics of these pigments by UV–visible spectrometry, Raman spectrometry, infrared spectrometry, nuclear magnetic resonance, energy-dispersive X-ray spectroscopy, and cyclic voltammetry, and comparing them to those of marennine produced by H. ostrearia strains originating from the north Atlantic Ocean (western France and Macaronesia), and north Pacific Ocean (southwestern USA). Results show that marennine produced by H. ostrearia strains and marennine-like pigments produced by H. provincialis, H. silbo, and Haslea sp. nov. are quite similar regarding their polysaccharide skeleton, and absorption in the UV–visible, infrared, and Raman regions. The most different marennine-like pigment is produced by H. karadagensis, but all Haslea blue pigments studied so far belong to the same family of organic molecules. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Graphical abstract

26 pages, 3162 KiB  
Article
Ab Initio Manganese Kα and Kβ Energy Eigenvalues, Shake-Off Probabilities, Auger Rates, with Convergence Tests
by Jonathan William Dean, Scott Neil Thompson and Christopher Thomas Chantler
Molecules 2024, 29(17), 4199; https://doi.org/10.3390/molecules29174199 - 4 Sep 2024
Viewed by 962
Abstract
This work presents ab initio calculations for the Kα spectrum of manganese (Z = 25, [Ar]3d54s2), a highly complex system due to the five open orbitals in the 3d shell. The spectrum is composed [...] Read more.
This work presents ab initio calculations for the Kα spectrum of manganese (Z = 25, [Ar]3d54s2), a highly complex system due to the five open orbitals in the 3d shell. The spectrum is composed of the canonical diagram line [1s][2p] and shake-off satellite lines [1snl][2pnl] (nl{2s,2p,3s,3p,3d,4s}), where square brackets denote a hole state. The multiconfiguration Dirac–Hartree–Fock method with the active set approach provides the initial and final atomic wavefunctions. Results are presented as energy eigenvalue spectra for the diagram and satellite transitions. The calculated wavefunctions include over one hundred million configuration state functions and over 280,000 independent transition energies for the seven sets of spectra considered. Shake-off probabilities and Auger transition rates determine satellite intensities. The number of configuration state functions ensures highly-converged wavefunctions. Several measures of convergence demonstrate convergence in the calculated parameters. We obtain convergence of the transition energies in all eight transitions to within 0.06 eV and shake-off probabilities to within 4.5%. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Figure 1

16 pages, 6315 KiB  
Article
A Theoretical Exploration of the Photoinduced Breaking Mechanism of the Glycosidic Bond in Thymine Nucleotide
by Xiao Huang, Yuuichi Orimoto and Yuriko Aoki
Molecules 2024, 29(16), 3789; https://doi.org/10.3390/molecules29163789 - 10 Aug 2024
Viewed by 1298
Abstract
DNA glycosidic bond cleavage may induce cancer under the ultraviolet (UV) effect. Yet, the mechanism of glycosidic bond cleavage remains unclear and requires more detailed clarification. Herein, quantum chemical studies on its photoinduced mechanism are performed using a 5′-thymidine monophosphate (5′-dTMPH) model. In [...] Read more.
DNA glycosidic bond cleavage may induce cancer under the ultraviolet (UV) effect. Yet, the mechanism of glycosidic bond cleavage remains unclear and requires more detailed clarification. Herein, quantum chemical studies on its photoinduced mechanism are performed using a 5′-thymidine monophosphate (5′-dTMPH) model. In this study, four possible paths were examined to study the glycosidic bond cleavage. The results showed that, upon excitation, the electronic transition from the π bonding to π antibonding orbitals of the thymine ring leads to the damage of the thymine ring. Afterwards, the glycosidic bond is cleaved. At first, the doublet ground state (GS) path of glycosidic bond cleavage widely studied by other groups is caused by free electron generated by photoirradiation, with a kinetically feasible energy barrier of ~23 kcal/mol. Additionally, then, the other three paths were proposed that also might cause the glycosidic bond cleavage. The first one is the doublet excited state (ES) path, triggered by free electron along with UV excitation, which can result in a very-high-energy barrier ~49 kcal/mol that is kinetically unfavorable. The second one is the singlet ES path, induced by direct UV excitation, which assumes DNA is directly excited by UV light, which features a very low-energy barrier ~16 kcal/mol that is favored in kinetics. The third one is the triplet ES path, from the singlet state via intersystem crossing (ISC), which refers to a feasible ~27 kcal/mol energy barrier. This study emphasizes the pivotal role of the DNA glycosidic bond cleavage by our proposed direct UV excitation (especially singlet ES path) in addition to the authorized indirect free-electron-induced path, which should provide essential insights to future mechanistic comprehension and novel anti-cancer drug design. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Figure 1

16 pages, 2863 KiB  
Article
QCL Infrared Spectroscopy Combined with Machine Learning as a Useful Tool for Classifying Acetaminophen Tablets by Brand
by José A. Martínez-Trespalacios, Daniel E. Polo-Herrera, Tamara Y. Félix-Massa, Samuel P. Hernandez-Rivera, Joaquín Hernandez-Fernandez, Fredy Colpas-Castillo and John R. Castro-Suarez
Molecules 2024, 29(15), 3562; https://doi.org/10.3390/molecules29153562 - 28 Jul 2024
Viewed by 1880
Abstract
The development of new methods of identification of active pharmaceutical ingredients (API) is a subject of paramount importance for research centers, the pharmaceutical industry, and law enforcement agencies. Here, a system for identifying and classifying pharmaceutical tablets containing acetaminophen (AAP) by brand has [...] Read more.
The development of new methods of identification of active pharmaceutical ingredients (API) is a subject of paramount importance for research centers, the pharmaceutical industry, and law enforcement agencies. Here, a system for identifying and classifying pharmaceutical tablets containing acetaminophen (AAP) by brand has been developed. In total, 15 tablets of 11 brands for a total of 165 samples were analyzed. Mid-infrared vibrational spectroscopy with multivariate analysis was employed. Quantum cascade lasers (QCLs) were used as mid-infrared sources. IR spectra in the spectral range 980–1600 cm−1 were recorded. Five different classification methods were used. First, a spectral search through correlation indices. Second, machine learning algorithms such as principal component analysis (PCA), support vector classification (SVC), decision tree classifier (DTC), and artificial neural network (ANN) were employed to classify tablets by brands. SNV and first derivative were used as preprocessing to improve the spectral information. Precision, recall, specificity, F1-score, and accuracy were used as criteria to evaluate the best SVC, DEE, and ANN classification models obtained. The IR spectra of the tablets show characteristic vibrational signals of AAP and other APIs present. Spectral classification by spectral search and PCA showed limitations in differentiating between brands, particularly for tablets containing AAP as the only API. Machine learning models, specifically SVC, achieved high accuracy in classifying AAP tablets according to their brand, even for brands containing only AAP. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Figure 1

14 pages, 2295 KiB  
Article
The Role of Ovalbumin in Manganese Homeostasis during Chick Embryogenesis: An EPR Spectroscopic Study
by Ana Vesković, Aleksandra M. Bondžić and Ana Popović Bijelić
Molecules 2024, 29(13), 3221; https://doi.org/10.3390/molecules29133221 - 7 Jul 2024
Viewed by 1389
Abstract
Ovalbumin (OVA), a protein vital for chick embryo nutrition, hydration, and antimicrobial protection, together with other egg-white proteins, migrates to the amniotic fluid and is orally absorbed by the embryo during embryogenesis. Recently, it has been shown that for optimal eggshell quality, the [...] Read more.
Ovalbumin (OVA), a protein vital for chick embryo nutrition, hydration, and antimicrobial protection, together with other egg-white proteins, migrates to the amniotic fluid and is orally absorbed by the embryo during embryogenesis. Recently, it has been shown that for optimal eggshell quality, the hen diet can be supplemented with manganese. Although essential for embryonic development, manganese in excess causes neurotoxicity. This study investigates whether OVA may be involved in the regulation of manganese levels. The binding of Mn(II) to OVA was investigated using electron paramagnetic resonance (EPR) spectroscopy. The results show that OVA binds a maximum of two Mn(II) ions, one with slightly weaker affinity, even in a 10-fold excess, suggesting it may have a protective role from Mn(II) overload. It seems that the binding of Mn(II), or the presence of excess Mn(II), does not affect OVA’s tertiary structure, as evidenced from fluorescence and UV/vis measurements. Comparative analysis with bovine and human serum albumins revealed that they exhibit higher affinities for Mn(II) than OVA, most likely due to their essentially different physiological roles. These findings suggest that OVA does not play a role in the transport and storage of manganese; however, it may be involved in embryo protection from manganese-induced toxicity. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Graphical abstract

14 pages, 3258 KiB  
Article
Insights into Halogen-Induced Changes in 4-Anilinoquinazoline EGFR Inhibitors: A Computational Spectroscopic Study
by Sallam Alagawani, Vladislav Vasilyev, Andrew H. A. Clayton and Feng Wang
Molecules 2024, 29(12), 2800; https://doi.org/10.3390/molecules29122800 - 12 Jun 2024
Cited by 1 | Viewed by 1251
Abstract
The epidermal growth factor receptor (EGFR) is a pivotal target in cancer therapy due to its significance within the tyrosine kinase family. EGFR inhibitors like AG-1478 and PD153035, featuring a 4-anilinoquinazoline moiety, have garnered global attention for their potent therapeutic activities. While pre-clinical [...] Read more.
The epidermal growth factor receptor (EGFR) is a pivotal target in cancer therapy due to its significance within the tyrosine kinase family. EGFR inhibitors like AG-1478 and PD153035, featuring a 4-anilinoquinazoline moiety, have garnered global attention for their potent therapeutic activities. While pre-clinical studies have highlighted the significant impact of halogen substitution at the C3’-anilino position on drug potency, the underlying mechanism remains unclear. This study investigates the influence of halogen substitution (X = H, F, Cl, Br, I) on the structure, properties, and spectroscopy of halogen-substituted 4-anilinoquinazoline tyrosine kinase inhibitors (TKIs) using time-dependent density functional methods (TD-DFT) with the B3LYP functional. Our calculations revealed that halogen substitution did not induce significant changes in the three-dimensional conformation of the TKIs but led to noticeable alterations in electronic properties, such as dipole moment and spatial extent, impacting interactions at the EGFR binding site. The UV–visible spectra show that more potent TKI-X compounds typically have shorter wavelengths, with bromine’s peak wavelength at 326.71 nm and hydrogen, with the lowest IC50 nM, shifting its lambda max to 333.17 nm, indicating a correlation between potency and spectral characteristics. Further analysis of the four lowest-lying conformers of each TKI-X, along with their crystal structures from the EGFR database, confirms that the most potent conformer is often not the global minimum structure but one of the low-lying conformers. The more potent TKI-Cl and TKI-Br exhibit larger deviations (RMSD > 0.65 Å) from their global minimum structures compared to other TKI-X (RMSD < 0.15 Å), indicating that potency is associated with greater flexibility. Dipole moments of TKI-X correlate with drug potency (ln(IC50 nM)), with TKI-Cl and TKI-Br showing significantly higher dipole moments (>8.0 Debye) in both their global minimum and crystal structures. Additionally, optical spectral shifts correlate with potency, as TKI-Cl and TKI-Br exhibit blue shifts from their global minimum structures, in contrast to other TKI-X. This suggests that optical reporting can effectively probe drug potency and conformation changes. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Figure 1

Back to TopTop