Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = sensor module antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5357 KB  
Article
Capacitively Coupled CSRR and H-Slot UHF RFID Antenna for Wireless Glucose Concentration Monitoring
by Tauseef Hussain, Jamal Abounasr, Ignacio Gil and Raúl Fernández-García
Sensors 2025, 25(18), 5651; https://doi.org/10.3390/s25185651 - 10 Sep 2025
Viewed by 386
Abstract
This paper presents a fully passive and wireless glucose concentration sensor that integrates a capacitively coupled complementary split-ring resonator (CSRR) with an H-slot UHF RFID antenna. The CSRR serves as the primary sensing element, where changes in glucose concentration alter the effective permittivity [...] Read more.
This paper presents a fully passive and wireless glucose concentration sensor that integrates a capacitively coupled complementary split-ring resonator (CSRR) with an H-slot UHF RFID antenna. The CSRR serves as the primary sensing element, where changes in glucose concentration alter the effective permittivity of the surrounding solution, thereby modifying the resonator capacitance and shifting its resonance behavior. Through near-field capacitive coupling, these dielectric variations affect the antenna input impedance and backscatter response, enabling wireless sensing by modulating the maximum read range. The proposed sensor operates within the 902–928 MHz UHF RFID band and is interrogated using commercial RFID readers, eliminating the need for specialized laboratory equipment such as vector network analyzers. Full-wave electromagnetic simulations and experimental measurements validate the sensor performance, demonstrating a variation in the read range from 6.23 m to 4.67 m as glucose concentration increases from 50 to 200 mg/dL. Moreover, the sensor exhibits excellent linearity, with a high coefficient of determination (R2=0.986) based on the curve-fitted data. These results underscore the feasibility of the proposed sensor as a low-cost and fully portable platform for concentration monitoring, with potential applications in liquid characterization and chemical sensing. Full article
Show Figures

Graphical abstract

17 pages, 28737 KB  
Article
Implementation of a Dynamic LoRa Network for Real-Time Monitoring of Water Quality
by Kevin Joel Berrio Quintanilla, Pamela Lorena Huayta Cosi, Jorge Leonardo Huarca Quispe, Juan Carlos Cutipa Luque and Juan Pablo Julca Avila
Designs 2025, 9(4), 96; https://doi.org/10.3390/designs9040096 - 15 Aug 2025
Viewed by 835
Abstract
Water quality is a key factor in environmental and agronomic sustainability. Due to the influence of human activity and industrial development, the composition of rivers or lakes can experience significant variations both immediately and over time. In order to obtain a more accurate [...] Read more.
Water quality is a key factor in environmental and agronomic sustainability. Due to the influence of human activity and industrial development, the composition of rivers or lakes can experience significant variations both immediately and over time. In order to obtain a more accurate and documented assessment of these data, distributed monitoring with multiple sampling points is necessary. This paper presents the design and implementation of a scalable monitoring network based on long range (LoRa) and Message Queuing Telemetry Transport (MQTT), integrating a submersible sensor module (SSM) that works as a static measuring station or as a complement to sediment collectors, capable of measuring key water quality parameters such as TDS, turbidity, pH, temperature, and river kinematics with a gyroscope. The system includes a LoRa repeater (LRR) and a gateway, in addition to the SSM, which manages information transmission to a monitoring server (MS) using a tree topology. This configuration allows for dynamic antenna power adjustment based on the Received Signal Strength Indicator (RSSI) between the LRR and the gateway. Evaluations were performed on the Chil River in Arequipa, Peru, a rapid river that demonstrated ideal characteristics for validating the system’s efficacy. The results confirm the design’s efficacy and its capacity for real-time remote water quality monitoring. Full article
Show Figures

Figure 1

18 pages, 3440 KB  
Article
Ambient Electromagnetic Wave Energy Harvesting Using Human Body Antenna for Wearable Sensors
by Dairoku Muramatsu and Kazuki Amano
Sensors 2025, 25(15), 4689; https://doi.org/10.3390/s25154689 - 29 Jul 2025
Viewed by 1365
Abstract
Wearable sensors are central to health-monitoring systems, but the limited capacity of compact batteries poses a challenge for long-term and maintenance-free operation. In this study, we investigated ambient electromagnetic wave (AEMW) energy harvesting using a human body antenna (HBA) as a means to [...] Read more.
Wearable sensors are central to health-monitoring systems, but the limited capacity of compact batteries poses a challenge for long-term and maintenance-free operation. In this study, we investigated ambient electromagnetic wave (AEMW) energy harvesting using a human body antenna (HBA) as a means to supply power to wearable sensors. The power density and frequency distribution of AEMWs were measured in diverse indoor, outdoor, and basement environments. We designed and fabricated a flexible HBA–circuit interface electrode, optimized for broadband impedance matching when worn on the body. Experimental comparisons using a simulated AEMW source demonstrated that the HBA outperformed a conventional small whip antenna, particularly at frequencies below 300 MHz. Furthermore, the outdoor measurements indicated that the power harvested by the HBA was estimated to be −31.9 dBm (0.64 μW), which is sufficient for the intermittent operation of low-power wearable sensors and Bluetooth Low Energy modules. The electromagnetic safety was also evaluated through numerical analysis, and the specific absorption rate was confirmed to be well below the international safety limits. These findings indicate that HBA-based AEMW energy harvesting provides a practical and promising approach to achieving battery-maintenance-free wearable devices. Full article
(This article belongs to the Special Issue Energy Harvesting Technologies for Wireless Sensors)
Show Figures

Figure 1

15 pages, 2854 KB  
Article
Development of a Hydrogen-Sensing Antenna Operating in the Microwave Region for Applications in Safety-Critical Systems
by Antonio Jefferson Mangueira Sales, Stephen Rathinaraj Benjamin, João Paulo Costa do Nascimento, Felipe Felix do Carmo, Juscelino Chaves Sales, Roterdan Fernandes Abreu, Francisco Enilton Alves Nogueira, Paulo Maria de Oliveira Silva, Marcelo Antonio Santos da Silva, José Adauto da Cruz, Enio Pontes de Deus and Antonio Sergio Bezerra Sombra
Chemosensors 2025, 13(7), 233; https://doi.org/10.3390/chemosensors13070233 - 25 Jun 2025
Viewed by 819
Abstract
Hydrogen is gaining prominence as a clean energy vector, yet its extreme flammability demands robust detection solutions for industrial safety. In this study, we present the development and experimental validation of a microwave hydrogen gas sensor based on a patch-type microstrip antenna with [...] Read more.
Hydrogen is gaining prominence as a clean energy vector, yet its extreme flammability demands robust detection solutions for industrial safety. In this study, we present the development and experimental validation of a microwave hydrogen gas sensor based on a patch-type microstrip antenna with a silver sensing element. The device operates at 5.99 GHz and was tested under controlled environmental conditions (humidity: 20 ± 0.4%, temperature: 27 ± 0.2 °C). Hydrogen exposure induces measurable shifts in the antenna’s resonant frequency due to dielectric modulation of the silver layer. The sensor exhibited a linear sensitivity of 3 kHz/ppm in the 310–600 ppm concentration range, with a residual standard deviation of 31.1 kHz and a calculated limit of detection (LOD) of approximately 31 ppm. The reflection coefficient remained below −10 dB throughout, confirming that the antenna maintains functional RF performance during sensing. These results demonstrate the sensor’s dual functionality for gas detection and communication, offering a compact and scalable platform for hydrogen safety monitoring. Full article
(This article belongs to the Special Issue Novel Materials for Gas Sensing)
Show Figures

Graphical abstract

24 pages, 8269 KB  
Article
Compact Multi-Channel Long-Wave Wideband Direction-Finding System and Direction-Finding Analysis for Different Modulation Signals
by Hangyu Lu, Shun Wang, Xin Xu, Yicai Ji and Xiaojun Liu
Appl. Sci. 2025, 15(5), 2570; https://doi.org/10.3390/app15052570 - 27 Feb 2025
Cited by 1 | Viewed by 722
Abstract
This paper presents an optimized long-wave (10–300 kHz) wideband direction-finding system for scientific research. The antenna unit of the system comprises one vertical electric field sensor and two horizontal magnetic field sensors oriented in the north–south and east–west directions, respectively. The overall design [...] Read more.
This paper presents an optimized long-wave (10–300 kHz) wideband direction-finding system for scientific research. The antenna unit of the system comprises one vertical electric field sensor and two horizontal magnetic field sensors oriented in the north–south and east–west directions, respectively. The overall design prioritizes compactness, engineering feasibility, and ease of deployment, enabling the effective reception of long-wave radio signals within the 10–300 kHz range. The magnetic field sensitivity reaches 8fT/Hz@10kHz, while the electric field sensitivity achieves 3.2μV/m/Hz@10kHz. The overall sensitivity of the receiver is 1μV (300 Hz bandwidth, 10 dB signal-to-noise ratio). The synchronization accuracy of the system is within 10 ns. Theoretically, with a baseline length of 5 km and a signal incidence angle ranging from 9.9° to 170.1°, the direction finding error is less than 2°. Additionally, direction-finding methods for MSK and ASK modulated signals are analyzed. To evaluate the system’s actual performance, initial measurements were conducted in Qingdao, Shandong. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

22 pages, 17029 KB  
Article
Cross-Line Fusion of Ground Penetrating Radar for Full-Space Localization of External Defects in Drainage Pipelines
by Yuanjin Fang, Feng Yang, Xu Qiao, Maoxuan Xu, Liang Fang, Jialin Liu and Fanruo Li
Remote Sens. 2025, 17(2), 194; https://doi.org/10.3390/rs17020194 - 8 Jan 2025
Cited by 1 | Viewed by 1695
Abstract
Drainage pipelines face significant threats to underground safety due to external defects. Ground Penetrating Radar (GPR) is a primary tool for detecting such defects from within the pipeline. However, existing methods are limited to single or multiple axial scan lines, which cannot provide [...] Read more.
Drainage pipelines face significant threats to underground safety due to external defects. Ground Penetrating Radar (GPR) is a primary tool for detecting such defects from within the pipeline. However, existing methods are limited to single or multiple axial scan lines, which cannot provide the precise spatial coordinates of the defects. To address this limitation, this study introduces a novel GPR-based drainage pipeline inspection robot system integrated with multiple sensors. The system incorporates MEMS-IMU, encoder modules, and ultrasonic ranging modules to control the GPR antenna for axial and circumferential scanning. A novel Cross-Line Fusion of GPR (CLF-GPR) method is introduced to integrate axial and circumferential scan data for the precise localization of external pipeline defects. Laboratory simulations were performed to assess the effectiveness of the proposed technology and method, while its practical applicability was further validated through real-world drainage pipeline inspections. The results demonstrate that the proposed approach achieves axial positioning errors of less than 2.0 cm, spatial angular positioning errors below 2°, and depth coordinate errors within 2.3 cm. These findings indicate that the proposed approach is reliable and has the potential to support the transparency and digitalization of urban underground drainage networks. Full article
(This article belongs to the Special Issue Advanced Ground-Penetrating Radar (GPR) Technologies and Applications)
Show Figures

Figure 1

14 pages, 7441 KB  
Article
Construction of a Wi-Fi System with a Tethered Balloon in a Mountainous Region for the Teleoperation of Vehicular Forestry Machines
by Gyun-Hyung Kim, Hyeon-Seung Lee, Ho-Seong Mun, Jae-Heun Oh and Beom-Soo Shin
Forests 2024, 15(11), 1994; https://doi.org/10.3390/f15111994 - 12 Nov 2024
Viewed by 1571
Abstract
In this study, a Wi-Fi system with a tethered balloon is proposed for the teleoperation of vehicular forestry machines. This system was developed to establish a Wi-Fi communication for stable teleoperation in a timber harvesting site. This system consisted of a helium balloon, [...] Read more.
In this study, a Wi-Fi system with a tethered balloon is proposed for the teleoperation of vehicular forestry machines. This system was developed to establish a Wi-Fi communication for stable teleoperation in a timber harvesting site. This system consisted of a helium balloon, Wi-Fi nodes, a measurement system, a global navigation satellite system (GNSS) antenna, and a wind speed sensor. The measurement system included a GNSS module, an inertial measurement unit (IMU), a data logger, and an altitude sensor. While the helium balloon with the Wi-Fi system was 60 m in the air, the received signal strength indicator (RSSI) was measured by moving a Wi-Fi receiver on the ground. Another GNSS set was also utilized to collect the latitude and longitude data from the Wi-Fi receiver as it traveled. The developed Wi-Fi system with a tethered balloon can create a Wi-Fi zone of up to 1.9 ha within an average wind speed range of 2.2 m/s. It is also capable of performing the teleoperation of vehicular forestry machines with a maximum latency of 185.7 ms. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

25 pages, 13404 KB  
Article
Drone SAR Imaging for Monitoring an Active Landslide Adjacent to the M25 at Flint Hall Farm
by Anthony Carpenter, James A. Lawrence, Philippa J. Mason, Richard Ghail and Stewart Agar
Remote Sens. 2024, 16(20), 3874; https://doi.org/10.3390/rs16203874 - 18 Oct 2024
Cited by 3 | Viewed by 3745
Abstract
Flint Hall Farm in Godstone, Surrey, UK, is situated adjacent to the London Orbital Motorway, or M25, and contains several landslide systems which pose a significant geohazard risk to this critical infrastructure. The site has been routinely monitored by geotechnical engineers following a [...] Read more.
Flint Hall Farm in Godstone, Surrey, UK, is situated adjacent to the London Orbital Motorway, or M25, and contains several landslide systems which pose a significant geohazard risk to this critical infrastructure. The site has been routinely monitored by geotechnical engineers following a landslide that encroached onto the hard shoulder in December 2000; current in situ instrumentation includes inclinometers and piezoelectric sensors. Interferometric Synthetic Aperture Radar (InSAR) is an active remote sensing technique that can quantify millimetric rates of Earth surface and structural deformation, typically utilising satellite data, and is ideal for monitoring landslide movements. We have developed the hardware and software for an Unmanned Aerial Vehicle (UAV), or drone radar system, for improved operational flexibility and spatial–temporal resolutions in the InSAR data. The hardware payload includes an industrial-grade DJI drone, a high-performance Ettus Software Defined Radar (SDR), and custom Copper Clad Laminate (CCL) radar horn antennas. The software utilises Frequency Modulated Continuous Wave (FMCW) radar at 5.4 GHz for raw data collection and a Range Migration Algorithm (RMA) for focusing the data into a Single Look Complex (SLC) Synthetic Aperture Radar (SAR) image. We present the first SAR image acquired using the drone radar system at Flint Hall Farm, which provides an improved spatial resolution compared to satellite SAR. Discrete targets on the landslide slope, such as corner reflectors and the in situ instrumentation, are visible as bright pixels, with their size and positioning as expected; the surrounding grass and vegetation appear as natural speckles. Drone SAR imaging is an emerging field of research, given the necessary and recent technological advancements in drones and SDR processing power; as such, this is a novel achievement, with few authors demonstrating similar systems. Ongoing and future work includes repeat-pass SAR data collection and developing the InSAR processing chain for drone SAR data to provide meaningful deformation outputs for the landslides and other geotechnical hazards and infrastructure. Full article
Show Figures

Figure 1

21 pages, 8606 KB  
Article
Design of a High-Power Nanosecond Electromagnetic Pulse Radiation System for Verifying Spaceborne Detectors
by Tianchi Zhang, Zongxiang Li, Changjiao Duan, Lihua Wang, Yongli Wei, Kejie Li, Xin Li and Baofeng Cao
Sensors 2024, 24(19), 6406; https://doi.org/10.3390/s24196406 - 2 Oct 2024
Cited by 2 | Viewed by 1812
Abstract
The Spaceborne Global Lightning Location Network (SGLLN) serves the purpose of identifying transient lightning events occurring beneath the ionosphere, playing a significant role in detecting and warning of disaster weather events. To ensure the effective functioning of the wideband electromagnetic pulse detector, which [...] Read more.
The Spaceborne Global Lightning Location Network (SGLLN) serves the purpose of identifying transient lightning events occurring beneath the ionosphere, playing a significant role in detecting and warning of disaster weather events. To ensure the effective functioning of the wideband electromagnetic pulse detector, which is a crucial component of the SGLLN, it must be tested and verified with specific signals. However, the inherent randomness and unpredictability of lightning occurrences pose challenges to this requirement. Consequently, a high-power electromagnetic pulse radiation system with a 20 m aperture reflector is designed. This system is capable of emitting nanosecond electromagnetic pulse signals under pre-set spatial and temporal conditions, providing a controlled environment for assessing the detection capabilities of SGLLN. In the design phase, an exponentially TEM feed antenna has been designed firstly based on the principle of high-gain radiation. The feed antenna adopts a pulser-integrated design to mitigate insulation risks, and it is equipped with an asymmetric protective loading to reduce reflected energy by 85.7%. Moreover, an innovative assessment method for gain loss, based on the principle of Love’s equivalence, is proposed to quantify the impact of feed antenna on the radiation field. During the experimental phase, a specialized E-field sensor is used in the far-field experiment at a distance of 400 m. The measurements indicate that at this distance, the signal has a peak field strength of 2.2 kV/m, a rise time of 1.9 ns, and a pulse half-width of 2.5 ns. Additionally, the beamwidth in the time domain is less than 10°. At an altitude of 500 km, the spaceborne detector records a signal with a peak field strength of approximately 10 mV/m. Particularly, this signal transformed into a nonlinear frequency-modulated signal in the microsecond range across its frequency spectrum, which is consistent with the law of radio wave propagation in the ionosphere. This study offers a stable and robust radiation source for verifying spaceborne detectors and establishes an empirical foundation for investigating the impact of the ionosphere on signal propagation characteristics. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

16 pages, 1457 KB  
Article
A Deep Learning Method for Human Sleeping Pose Estimation with Millimeter Wave Radar
by Zisheng Li, Ken Chen and Yaoqin Xie
Sensors 2024, 24(18), 5900; https://doi.org/10.3390/s24185900 - 11 Sep 2024
Cited by 2 | Viewed by 2655
Abstract
Recognizing sleep posture is crucial for the monitoring of people with sleeping disorders. Existing contact-based systems might interfere with sleeping, while camera-based systems may raise privacy concerns. In contrast, radar-based sensors offer a promising solution with high penetration ability and the capability to [...] Read more.
Recognizing sleep posture is crucial for the monitoring of people with sleeping disorders. Existing contact-based systems might interfere with sleeping, while camera-based systems may raise privacy concerns. In contrast, radar-based sensors offer a promising solution with high penetration ability and the capability to detect vital bio-signals. This study propose a deep learning method for human sleep pose recognition from signals acquired from single-antenna Frequency-Modulated Continuous Wave (FMCW) radar device. To capture both frequency features and sequential features, we introduce ResTCN, an effective architecture combining Residual blocks and Temporal Convolution Network (TCN) to recognize different sleeping postures, from augmented statistical motion features of the radar time series. We rigorously evaluated our method with an experimentally acquired data set which contains sleeping radar sequences from 16 volunteers. We report a classification accuracy of 82.74% on average, which outperforms the state-of-the-art methods. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

26 pages, 6242 KB  
Article
Wireless Sensor Node for Chemical Agent Detection
by Zabdiel Brito-Brito, Jesús Salvador Velázquez-González, Fermín Mira, Antonio Román-Villarroel, Xavier Artiga, Satyendra Kumar Mishra, Francisco Vázquez-Gallego, Jung-Mu Kim, Eduardo Fontana, Marcos Tavares de Melo and Ignacio Llamas-Garro
Chemosensors 2024, 12(9), 185; https://doi.org/10.3390/chemosensors12090185 - 11 Sep 2024
Viewed by 2117
Abstract
In this manuscript, we present in detail the design and implementation of the hardware and software to produce a standalone wireless sensor node, called SensorQ system, for the detection of a toxic chemical agent. The proposed wireless sensor node prototype is composed of [...] Read more.
In this manuscript, we present in detail the design and implementation of the hardware and software to produce a standalone wireless sensor node, called SensorQ system, for the detection of a toxic chemical agent. The proposed wireless sensor node prototype is composed of a micro-controller unit (MCU), a radio frequency (RF) transceiver, a dual-band antenna, a rechargeable battery, a voltage regulator, and four integrated sensing devices, all of them integrated in a package with final dimensions and weight of 200 × 80 × 60 mm and 0.422 kg, respectively. The proposed SensorQ prototype operates using the Long-Range (LoRa) wireless communication protocol at 2.4 GHz, with a sensor head implemented on a hetero-core fiber optic structure supporting the surface plasmon resonance (SPR) phenomenon with a sensing section (L = 10 mm) coated with titanium/gold/titanium and a chemically sensitive material (zinc oxide) for the detection of Di-Methyl Methyl Phosphonate (DMMP) vapor in the air, a simulant of the toxic nerve agent Sarin. The transmitted spectra with respect to different concentrations of DMMP vapor in the air were recorded, and then the transmitted power for these concentrations was calculated at a wavelength of 750 nm. The experimental results indicate the feasibility of detecting DMMP vapor in air using the proposed optical sensor head, with DMMP concentrations in the air of 10, 150, and 150 ppm in this proof of concept. We expect that the sensor and wireless sensor node presented herein are promising candidates for integration into a wireless sensor network (WSN) for chemical warfare agent (CWA) detection and contaminated site monitoring without exposure of armed forces. Full article
Show Figures

Figure 1

20 pages, 17980 KB  
Article
Integrated Optical Waveguide Electric Field Sensors Based on Bismuth Germanate
by Jin Wang, Yilin Song, Xuefei Song, Wei Zhang, Junqi Yang and Zhi Xuan
Sensors 2024, 24(17), 5570; https://doi.org/10.3390/s24175570 - 28 Aug 2024
Cited by 4 | Viewed by 1778
Abstract
Bismuth germanate (Bi4Ge3O12, BGO) is a widely used optical sensing material with a high electro-optic coefficient, ideal for optical electric field sensors. Achieving high precision in electric field sensing requires fabricating optical waveguides on BGO. Traditional waveguide [...] Read more.
Bismuth germanate (Bi4Ge3O12, BGO) is a widely used optical sensing material with a high electro-optic coefficient, ideal for optical electric field sensors. Achieving high precision in electric field sensing requires fabricating optical waveguides on BGO. Traditional waveguide writing methods face challenges with this material. This study explores using femtosecond laser writing technology for preparing waveguides on BGO, leveraging ultrafast optical fields for superior material modification. Our experimental analysis shows that a cladding-type waveguide, written with a femtosecond laser at 200 kHz repetition frequency and 10.15 mW average power (pulse energy of 50.8 nJ), exhibits excellent light-guiding characteristics. Simulations of near-field optical intensity distribution and refractive index variations using the refractive index reconstruction method demonstrate that the refractive index modulation ensures single-mode transmission and effectively confines light to the core layer. In situ refractive index characterization confirms the feasibility of fabricating a waveguide with a refractive index reduction on BGO. The resulting waveguide has a loss per unit length of approximately 1.2 dB/cm, marking a successful fabrication. Additionally, we design an antenna electrode, analyze sensor performance indicators, and integrate a preparation process plan for the antenna electrode. This achievement establishes a solid experimental foundation for future studies on BGO crystal waveguides in electric field measurement applications. Full article
(This article belongs to the Special Issue Recent Advances of Optoelectronic Devices and Semiconductor Sensors)
Show Figures

Figure 1

18 pages, 10650 KB  
Article
Textronic Capacitive Sensor with an RFID Interface
by Patryk Pyt, Kacper Skrobacz, Piotr Jankowski-Mihułowicz and Mariusz Węglarski
Sensors 2024, 24(12), 3706; https://doi.org/10.3390/s24123706 - 7 Jun 2024
Viewed by 2031
Abstract
This article presents an innovative combination of textile electrical circuits with advanced capabilities of electronic RFID sensors, indicating the revolutionary nature of the development of textronics, which is used in various areas of life, from fashion to medicine. A review of the literature [...] Read more.
This article presents an innovative combination of textile electrical circuits with advanced capabilities of electronic RFID sensors, indicating the revolutionary nature of the development of textronics, which is used in various areas of life, from fashion to medicine. A review of the literature relating to the construction of textronic RFID identifiers and capacitive textronic sensors is performed. Various approaches to measuring capacity using RFID tags are discussed. This article focuses on presenting the concept of a capacitive sensor with an RFID interface, consisting of a microelectronic part and a textile part. The textile part is based on the WL4007 material, where antennas and capacitive sensors are embroidered using SPARKFUN DEV 11791 conductive thread. The antenna is a half-wave dipole designed to operate at a frequency of 860 MHZ. The microelectronic part is sewn to the textile part and consists of a microcontroller, an RFID-integrated circuit and a coupling loop, placed on the PCB. The embroidered antenna is coupled with a loop on the microelectronic module. This article focuses on presenting various designs of textronic electrodes, enabling various types of measurements. Article presents capacitance measurements of individual sensor electrodes, made using a measuring bridge and a built RFID tag. The sensors’ capacity measurement results are shown. Full article
(This article belongs to the Special Issue Sensors and Sensing Technology: RFID Devices)
Show Figures

Figure 1

17 pages, 26825 KB  
Article
Efficient Target Classification Based on Vehicle Volume Estimation in High-Resolution Radar Systems
by Sanghyeok Hwangbo, Seonmin Cho, Junho Kim and Seongwook Lee
Remote Sens. 2024, 16(9), 1522; https://doi.org/10.3390/rs16091522 - 25 Apr 2024
Cited by 1 | Viewed by 1897
Abstract
In this paper, we propose a method for efficient target classification based on the spatial features of the point cloud generated by using a high-resolution radar sensor. The frequency-modulated continuous wave radar sensor can estimate the distance and velocity of a target. In [...] Read more.
In this paper, we propose a method for efficient target classification based on the spatial features of the point cloud generated by using a high-resolution radar sensor. The frequency-modulated continuous wave radar sensor can estimate the distance and velocity of a target. In addition, the azimuth and elevation angle of the target can be estimated by using a multiple-input and multiple-output antenna system. Using the estimated distance, velocity, and angle, the 3D point cloud of target can be generated. From the generated point cloud, we extract the point cloud for each individual target using the density-based spatial clustering of application with noise method and a camera mounted on the radar sensor. Then, we define the convex hull boundaries that enclose these point clouds in both 3D and 2D spaces obtained by orthogonally projecting onto the xy, yz, and zx planes. Using the vertices of convex hull, we calculate the volume of the targets and the areas in 2D spaces. Several feature points, including the calculated spatial information, are numerized and configured into feature vectors. We design an uncomplicated deep neural network classifier based on minimal input information to achieve fast and efficient classification performance. As a result, the proposed method achieved an average accuracy of 97.1%, and the time required for training was reduced compared to the method using only point cloud data and the convolutional neural network-based method. Full article
Show Figures

Graphical abstract

27 pages, 20554 KB  
Article
Novel Meta-Fractal Wearable Sensors and Antennas for Medical, Communication, 5G, and IoT Applications
by Albert Sabban
Fractal Fract. 2024, 8(2), 100; https://doi.org/10.3390/fractalfract8020100 - 6 Feb 2024
Cited by 11 | Viewed by 3809
Abstract
Future communication, 5G, medical, and IoT systems need compact, green, efficient wideband sensors, and antennas. Novel linear and dual-polarized antennas for 5G, 6G, medical devices, Internet of Things (IoT) systems, and healthcare monitoring sensors are presented in this paper. One of the major [...] Read more.
Future communication, 5G, medical, and IoT systems need compact, green, efficient wideband sensors, and antennas. Novel linear and dual-polarized antennas for 5G, 6G, medical devices, Internet of Things (IoT) systems, and healthcare monitoring sensors are presented in this paper. One of the major goals in the evaluation of medical, 5G, and smart wireless communication devices is the development of efficient, compact, low-cost antennas and sensors. Moreover, passive and active sensors may be self-powered by connecting an energy-harvesting unit to the antenna to collect electromagnetic radiation and charge the wearable sensor battery. Wearable sensors and antennas can be employed in smart grid applications that provide communication between neighbors, localized management, bidirectional power transfer, and effective demand response. A low-cost wearable antenna may be developed by etching the printed feed and matching the network on the same substrate in the printed antenna. Active modules may be placed on the same dielectric board. The antenna design parameters and a comparison between the computation and measured electrical performance of the antennas are presented in this paper. The electrical characteristics of the new compact antennas in the vicinity of the patient’s body were simulated by using electromagnetic simulation techniques. Fractal and metamaterial efficient antennas and sensors were evaluated to maximize the electrical characteristics of smart communication and medical devices. The dual- and circularly polarized antennas developed in this paper are crucial to the evaluation of wideband and multiband compact 5G, 6G, and IoT advanced systems. The new efficient sensors and antennas maximize the system’s dynamic range and electrical characteristics. The new efficient wearable antennas and sensors are compact, wideband, and low-cost. The operating resonant frequency of the metamaterial antennas with circular split-ring resonators (CSRRs) may be 5% to 9% lower than the resonant frequency of the sensor without CSRRs. The directivity and gain of the metamaterial fractal antennas with CSRRs may be up to 3 dB higher than the antennas without CSRRs. The directivity and gain of the metamaterial fractal passive sensors with CSRRs may be up to 8.5 dBi. This study presents new wideband active meta-fractal antennas and sensors. The bandwidth of the new sensors is around 9% to 20%. At 2.83 GHz, the receiving active sensor gain is 13.5 dB and drops to 8 dB at 3.2 GHz. The receiving module noise figure with TAV541 LNA is around 1dB. Full article
(This article belongs to the Special Issue Advances in Fractal Antennas: Design, Modeling and Applications)
Show Figures

Figure 1

Back to TopTop