Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = sesquioxides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1761 KB  
Article
Oxides for Pt Capture in the Ammonia Oxidation Process—A Screening Study
by Julie Hessevik, Cathinka S. Carlsen, Oskar K. Bestul, David Waller, Helmer Fjellvåg and Anja O. Sjåstad
Reactions 2025, 6(1), 13; https://doi.org/10.3390/reactions6010013 - 11 Feb 2025
Cited by 1 | Viewed by 1684
Abstract
Metallic Pd/Ni gauzes, located downstream of the Pt/Rh ammonia oxidation catalyst nets in the Ostwald process, is the current technology for capturing volatile gas phase platinum and rhodium species lost from the Pt/Rh combustion catalyst through evaporation. In this screening study, we explore [...] Read more.
Metallic Pd/Ni gauzes, located downstream of the Pt/Rh ammonia oxidation catalyst nets in the Ostwald process, is the current technology for capturing volatile gas phase platinum and rhodium species lost from the Pt/Rh combustion catalyst through evaporation. In this screening study, we explore four oxide families, ABO3 perovskites, (ABO3)n(AO) Ruddlesden–Popper (RP) phases, AO rock salt, and A2O3 sesquioxide type oxides, as alternative materials for platinum capture. It was found that all the tested nickelates, LaNiO3, NdNiO3, La2NiO4, and La4Ni3O10, captured platinum well and formed A2NiPtO6. In contrast, La0.85Sr0.15FeO3, LaFeO3, and LaCoO3 did not capture platinum. CaO, SrO, and Nd2O3 formed low-dimensional platinates such as CaxPt3O4, Sr4PtO6, and a newly discovered neodymium platinate, Nd10.67Pt4O24. Gd2O3 did not capture platinum in bench-scale experiments in dry air, but did, however, seem to capture platinum under pilot plant conditions, likely due to the co-capture of Co lost from the N2O abatement catalyst. The catalytic activity of both oxides and platinum-containing products were studied, toward NOx and N2O decomposition. None of the oxides showed significant activity toward NOx decomposition, and all showed activity toward N2O decomposition, but to different extents. An overall assessment of the screened oxides with respect to potential use in industrial Ostwald conditions is provided. All tested oxides except CaO and SrO withstood industrial conditions. From our assessments, the nickelates and A2O3 (A = Nd, Gd) stand out as superior oxides for platinum capture. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2024)
Show Figures

Figure 1

11 pages, 5935 KB  
Article
Dual-Emission Origins in Bi3+-Doped M2O3 Sesquioxides (M = Sc, Y, Gd and Lu): A First-Principles Study
by Haonian Bai, Bibo Lou, Mekhrdod S. Kurboniyon, Andrzej Suchocki, Mikhail G. Brik, Jing Wang and Chonggeng Ma
Materials 2024, 17(9), 2039; https://doi.org/10.3390/ma17092039 - 26 Apr 2024
Cited by 3 | Viewed by 1282
Abstract
Bi3+-doped sesquioxides exhibit dual emissions, marked by distinct Stokes shift and bandwidth, meaning unraveling their underlying origins is particularly intriguing. In this study, we employ first-principles calculations to investigate the luminescence mechanisms within the M2O3:Bi3+ ( [...] Read more.
Bi3+-doped sesquioxides exhibit dual emissions, marked by distinct Stokes shift and bandwidth, meaning unraveling their underlying origins is particularly intriguing. In this study, we employ first-principles calculations to investigate the luminescence mechanisms within the M2O3:Bi3+ (M = Sc, Y, Gd, Lu) series, with the goal of addressing the posed inquiry. Our investigation commences with the analysis of the site occupancy and charge state of bismuth ions in the two cationic sites through formation energy calculations. Additionally, we examine the local coordination environments for various excited states of Bi3+ dopants, including the 3P0,1 state and two types of charge transfer states, by evaluating their equilibrium geometric structures. The utilization of the hybrid functional enables us to obtain results of electronic structures and optical properties comparable with experiments. Importantly, the calculated energies for the 6s-6p transitions of Bi3+ dopants in the M2O3 series align well with the observed dual-emission energies. This alignment challenges the conventional spectroscopic sense that emission bands with large Stokes shifts can be exclusively ascribed to charge transfer transitions. Consequently, the integration of experimental and theoretical approaches emerges as the optimal strategy for designing novel Bi3+-doped phosphors. Full article
(This article belongs to the Special Issue Glasses and Ceramics for Luminescence Applications)
Show Figures

Figure 1

10 pages, 2051 KB  
Article
Fabrication and Luminescence Properties of Highly Transparent Green-Emitting Ho:Y2O3 Ceramics for Laser Diode Lighting
by Yan Liu, Xianpeng Qin, Lin Gan, Guohong Zhou, Song Hu, Zhengjuan Wang, Juan Jiang, Tianjin Zhang and Hetuo Chen
Materials 2024, 17(2), 402; https://doi.org/10.3390/ma17020402 - 13 Jan 2024
Cited by 2 | Viewed by 1712
Abstract
Highly transparent Ho:Y2O3 ceramics for laser diode lighting were prepared using the vacuum sintering method with 0.3 at.% Nb2O5 as a sintering additive. The microstructures, transmittance, and luminescence properties of the Ho:Y2O3 ceramic samples [...] Read more.
Highly transparent Ho:Y2O3 ceramics for laser diode lighting were prepared using the vacuum sintering method with 0.3 at.% Nb2O5 as a sintering additive. The microstructures, transmittance, and luminescence properties of the Ho:Y2O3 ceramic samples were investigated in detail. The transmittance levels of all samples with various Ho3+ concentrations reached ~81.5% (2 mm thick) at 1100 nm. Under the excitation of 363 nm (ultraviolet) or 448 nm (blue) light, Ho:Y2O3 transparent ceramic samples showed that green emission peaked at 550 nm. The emission intensity was strongly affected by the concentration of Ho3+ ions, reaching its highest level in the sample doped with 1 at.% Ho3+. The CIE coordinates of the luminescence were in the green region (i.e., the CIE coordinates of the sample doped with 1 at.% Ho3+ were [0.27, 0.53] and [0.30, 0.69], under the excitation of 363 nm and 448 nm light, respectively). The possibility of its application as laser diode lighting was reported. Under the excitation of 450 nm blue laser, the sample doped with 0.5 at.% Ho3+ had the best performance: the saturated luminous flux, lumen efficiency, and the luminescence saturation power densities were 800 lm, 57.7 lm/W, and 17.6 W/mm2, respectively. Furthermore, the materials have high thermal conductivity and mechanical strength due to their host of rare-earth sesquioxide. Thus, Ho:Y2O3 transparent ceramics are expected to be a promising candidate for green-light-emitting devices for solid-state lighting, such as laser diode lighting. Full article
(This article belongs to the Special Issue Glasses and Ceramics for Luminescence Applications (2nd Edition))
Show Figures

Figure 1

18 pages, 2092 KB  
Article
The Different Roles of Mineralogy in Soil Organic Carbon Accumulation in Northern and Southern China
by Yuedong Liu, Yanan Huang, Batande Sinovuyo Ndzelu, Dongyu Xiao, Futao Zhang, Yueling Zhang and Jiguang Zhang
Forests 2023, 14(11), 2214; https://doi.org/10.3390/f14112214 - 9 Nov 2023
Cited by 1 | Viewed by 2487
Abstract
The sequestration of soil organic carbon (SOC) through mineral protection is an important approach to mitigating climate change. However, the effect of mineral composition on SOC stability is unclear at regional scales. In this study, we investigated the relationship between mineralogy and SOC [...] Read more.
The sequestration of soil organic carbon (SOC) through mineral protection is an important approach to mitigating climate change. However, the effect of mineral composition on SOC stability is unclear at regional scales. In this study, we investigated the relationship between mineralogy and SOC in Alfisol and Mollisol from southern and northern regions of China. We analyzed soil at two layers for its SOC fractions, mineralogical characteristics and functional groups. It was found that the majority of SOC was stored as mineral-associated organic C (MAOC), which had higher δ13C values and narrower C/N ratios compared to particulate organic C. In Mollisol, the proportion of MAOC and the abundance of aromatic C were higher than that in Alfisol, while polysaccharide C was lower. Compared to Alfisol, Mollisol was dominated by illite, and had significantly (p < 0.05) lower iron (Fe) and aluminum (Al) sesquioxides contents. The SOC content was positively correlated with illite in Mollisol, and with Fe and Al sesquioxides in Alfisol. The random forest model identified sesquioxides as the most important determinant of SOC accumulation (36%), followed by SOC fractions (18%) and functional groups (18%). In summary, our study suggests that SOC protection through mineralogy depends more on the composition of the host minerals, and not just on the clay content, and aromatic C is also important in the stabilization of SOC. Full article
(This article belongs to the Special Issue Agro-Ecosystems Resilience in View of Climate Change)
Show Figures

Figure 1

13 pages, 5960 KB  
Article
Centrifugal Microfluidic Synthesis of Nickel Sesquioxide Nanoparticles
by Jiayou Mou, Chenxi Wang, Hongyi Zhao, Chuwei Xiong, Yong Ren, Jing Wang, Dan Jiang and Zansheng Zheng
Micromachines 2023, 14(9), 1741; https://doi.org/10.3390/mi14091741 - 6 Sep 2023
Cited by 3 | Viewed by 2142
Abstract
Nickel sesquioxide (Ni2O3) nanoparticles were synthesized using centrifugal microfluidics in the present study. The obtained nanoparticles were characterized using SEM to investigate their morphology and microstructure, and XRD was employed to analyze their purity. The nanoparticle size data were [...] Read more.
Nickel sesquioxide (Ni2O3) nanoparticles were synthesized using centrifugal microfluidics in the present study. The obtained nanoparticles were characterized using SEM to investigate their morphology and microstructure, and XRD was employed to analyze their purity. The nanoparticle size data were measured and analyzed using ImageJ (v1.8.0) software. The flow process and mixing procedure were monitored through computational fluid dynamics simulation. Among the synthesized Ni2O3 nanoparticles, those obtained at the rotation speed of 1000 rpm for 10 min with angular acceleration of 4.2 rad/s2 showed the best performance in terms of high purity, complete shape and microstructure, small diameter, and narrow diameter distribution. The experimental results demonstrate that the rotation speed of the microfluidic chip and reaction time contribute to a decrease in particle diameter and a narrower diameter distribution range. In contrast, an increase in acceleration of the rotation speed leads to an expanded nanoparticle size range and, thus, a wider distribution. These findings contribute to a comprehensive understanding of the effects exerted by various factors in centrifugal microfluidics and will provide new insights into nanoparticle synthesis using centrifugal microfluidic technology. Full article
(This article belongs to the Special Issue Recent Development of Micro/Nanofluidic Devices)
Show Figures

Figure 1

22 pages, 7401 KB  
Article
Evaluation of Construction and Demolition Waste and Other Alternative Fills for Strip-Reinforced Soil Walls
by Luis Alonso González Corrales, Rodrigo Cesar Pierozan, Gregório Luís Silva Araújo and Ennio Marques Palmeira
Sustainability 2023, 15(12), 9705; https://doi.org/10.3390/su15129705 - 17 Jun 2023
Cited by 3 | Viewed by 2367
Abstract
This article assesses the pullout performance of ribbed metallic strips embedded in fill soils that do not conform to conventional design criteria for mechanically stabilized earth (MSE) walls. These alternative fill soils include gravelly and sandy recycled aggregates from construction and demolition waste, [...] Read more.
This article assesses the pullout performance of ribbed metallic strips embedded in fill soils that do not conform to conventional design criteria for mechanically stabilized earth (MSE) walls. These alternative fill soils include gravelly and sandy recycled aggregates from construction and demolition waste, artificial and natural sands, and fine-grained lateritic soil. The research included soil characterization tests and large-scale pullout tests, conducted as part of this study. The results showed that the reinforcement pullout behavior was similar for recycled, artificial, and natural sands, indicating that soil particle size played a crucial role in mobilizing the interface pullout resistance. However, in the case of recycled sand, stress concentration at the reinforcement level led to particle crushing during pullout conditions, causing this material to exhibit less efficient performance compared to other sands. The fine-grained lateritic soil demonstrated inferior behavior compared to sandy soils, despite the interparticle bonding provided by the sesquioxide coating characteristic of intensely weathered tropical soils. Finally, an analytical prediction tool based on experimental results was developed, providing an alternative method to make conjectures about the performance of different soils during the pre-design stages, particularly based on particle size attributes. Full article
(This article belongs to the Special Issue Sustainability and Innovation in Transport Infrastructure Geotechnics)
Show Figures

Figure 1

17 pages, 6769 KB  
Article
Reactivity of Rare-Earth Oxides in Anhydrous Imidazolium Acetate Ionic Liquids
by Sameera Shah, Tobias Pietsch, Maria Annette Herz, Franziska Jach and Michael Ruck
Chemistry 2023, 5(2), 1378-1394; https://doi.org/10.3390/chemistry5020094 - 2 Jun 2023
Cited by 3 | Viewed by 2757
Abstract
Rare-earth metal sesquioxides (RE2O3) are stable compounds that require high activation energies in solid-state reactions or strong acids for dissolution in aqueous media. Alternatively, dissolution and downstream chemistry of RE2O3 have been achieved with ionic [...] Read more.
Rare-earth metal sesquioxides (RE2O3) are stable compounds that require high activation energies in solid-state reactions or strong acids for dissolution in aqueous media. Alternatively, dissolution and downstream chemistry of RE2O3 have been achieved with ionic liquids (ILs), but typically with additional water. In contrast, the anhydrous IL 1-butyl-3-methylimidazolium acetate [BMIm][OAc] dissolves RE2O3 for RE = La–Ho and forms homoleptic dinuclear metal complexes that crystallize as [BMIm]2[RE2(OAc)8] salts. Chloride ions promote the dissolution without being included in the compounds. Since the lattice energy of RE2O3 increases with decreasing size of the RE3+ cation, Ho2O3 dissolves very slowly, while the sesquioxides with even smaller cations appear to be inert under the applied conditions. The Sm and Eu complex salts show blue and red photoluminescence and Van Vleck paramagnetism. The proton source for the dissolution is the imidazolium cation. Abstraction of the acidic proton at the C2-atom yields an N-heterocyclic carbene (imidazole-2-ylidene). The IL can be regenerated by subsequent reaction with acetic acid. In the overall process, RE2O3 is dissolved by anhydrous acetic acid, a reaction that does not proceed directly. Full article
(This article belongs to the Special Issue Commemorating 150 Years of Justus von Liebig’s Legacy)
Show Figures

Figure 1

11 pages, 5821 KB  
Article
Growth of Sesquioxide Crystals from Tungsten Crucibles by Vertical Gradient Freezing Method
by Evgeny Galenin, Viktoriia Galenina, Iaroslav Gerasymov, Daniil Kurtsev, Serhii Tkachenko, Pavlo Arhipov, Sofiia Sadivnycha, Vadim Alekseev, Anna Shaposhnyk, Ianina Boiaryntseva, Vira Niestierkina, Sandra Witkiewicz-Łukaszek, Yuriy Zorenko and Oleg Sidletskiy
Crystals 2023, 13(4), 591; https://doi.org/10.3390/cryst13040591 - 31 Mar 2023
Cited by 2 | Viewed by 2121
Abstract
Sesquioxides of lanthanides, yttrium, and scandium are promising hosts for laser and scintillation materials; however, the crystallization of such compounds is complicated by very high melting temperatures, as well as polymorph transitions. This work reports for the first time the growth of Y [...] Read more.
Sesquioxides of lanthanides, yttrium, and scandium are promising hosts for laser and scintillation materials; however, the crystallization of such compounds is complicated by very high melting temperatures, as well as polymorph transitions. This work reports for the first time the growth of Y2O3 and Y2−xScxO3 crystals by the Vertical Gradient Freezing method from tungsten crucibles, proposing an alternative to extremely expensive rhenium and iridium crucibles. Translucent Y2O3 samples are obtained, and their luminescent and scintillation parameters are evaluated. The main issues of Y2O3 crystallization under the proposed conditions are discussed, as well as ways of enhancing the crystal quality. Finally, polymorph transitions are avoided by decreasing the average radius of the rare earth cation by Y3+/Sc3+ substitution, providing transparent Y2−xScxO3 crystals with a cubic structure. Full article
(This article belongs to the Special Issue Structural and Spectroscopic Studies of Rare Earth Doped Crystals)
Show Figures

Figure 1

13 pages, 11706 KB  
Article
Effect of Nano Nd2O3 on the Microstructure and High-Temperature Resistance of G@Ni Laser Alloying Coatings on Ti-6Al-4V Alloy
by Zifan Wang, Xiaoxi Meng, Zhihuan Zhao, Chuanzhong Chen and Huijun Yu
Nanomaterials 2023, 13(6), 1112; https://doi.org/10.3390/nano13061112 - 20 Mar 2023
Cited by 2 | Viewed by 1941
Abstract
Titanium and its alloys are widely used in high-end manufacturing fields. However, their low high-temperature oxidation resistance has limited their further application. Recently, laser alloying processing has attracted researchers to improve the surface properties of Ti, for which Ni coated graphite system is [...] Read more.
Titanium and its alloys are widely used in high-end manufacturing fields. However, their low high-temperature oxidation resistance has limited their further application. Recently, laser alloying processing has attracted researchers to improve the surface properties of Ti, for which Ni coated graphite system is an excellent prospect due to its outstanding properties and metallurgical bonding between coating and substrate. In this paper, nanoscaled rare earth oxide Nd2O3 addition was added to Ni coated graphite laser alloying materials to research its influence on the microstructure and high-temperature oxidation resistance of the coating. The results proved that nano-Nd2O3 has an outstanding effect on refining coating microstructures, thus the high-temperature oxidation resistance was improved. Furthermore, with the addition of 1. 5 wt.% nano-Nd2O3, more NiO formed in the oxide film, which effectively strengthened the protective effect of the film. After 100 h of 800 °C oxidation, the oxidation weight gain per unit area of the normal coating was 14.571 mg/cm2, while that of the coating with nano-Nd2O3 addition was 6.244 mg/cm2, further proving that the addition of nano-Nd2O3 substantially improved the high-temperature oxidation properties of the coating. Full article
(This article belongs to the Special Issue Processing, Surfaces and Interfaces of Nanomaterials)
Show Figures

Figure 1

15 pages, 3889 KB  
Article
Phosphorus Sorption following the Application of Charcoal and Sago (Metroxylon sagu) Bark Ash to Acid Soils
by Prisca Divra Johan, Osumanu Haruna Ahmed, Nur Aainaa Hasbullah, Latifah Omar, Puvan Paramisparam, Nur Hidayah Hamidi, Mohamadu Boyie Jalloh and Adiza Alhassan Musah
Agronomy 2022, 12(12), 3020; https://doi.org/10.3390/agronomy12123020 - 29 Nov 2022
Cited by 12 | Viewed by 2769
Abstract
Acidic cations such as Al, Fe, and Mn tend to fix P in soils, and this reaction make P unavailable for plant uptake. Several conventional strategies for farmers had been proposed to ameliorate Al toxicity either via liming or continuous P fertilization. However, [...] Read more.
Acidic cations such as Al, Fe, and Mn tend to fix P in soils, and this reaction make P unavailable for plant uptake. Several conventional strategies for farmers had been proposed to ameliorate Al toxicity either via liming or continuous P fertilization. However, these approaches are not only expensive but are also environmental unfriendly. Thus, a sorption study was carried out using charcoal and sago bark ash as soil amendments to determine their effects on P sorption characteristics of low pH soils. Phosphorus sorption determination was based on standard procedures and the P adsorption data for the samples tested in this study were fitted to the Langmuir equation. The results suggest that the combined use of charcoal and sago bark ash decreased P adsorption and increased P desorption relative to the untreated soils. Organic matter in the charcoal reduced P sorption by providing more negatively charged surfaces, thus increasing anion repulsion. Apart from increasing the amount of P adsorbed in the soil, the use of the sago bark ash increased the amount of P desorbed because the primary reaction between the sago bark ash and soils is an acid neutralization reaction. These improvements do not only reduce P fixation in acid soils but they also promote the effective utilization of nutrients via the timely release of nutrients for maximum crop production. In conclusion, the incorporation of charcoal and sago bark ash to the soil had a positive effect on replenishing the soil solution’s P. The organic matter of the charcoal reduces P sorption capacity by blocking P binding sites, increasing the negative electric potential in the plane of adsorption, causing steric hindrance on the mineral surfaces and decreasing goethite and hematite-specific surface areas. However, there is a need for the inclusion of more soil chemical, physical, and mineralogical properties in predicting soil P sorption to enhance the reliability of the findings. Full article
Show Figures

Figure 1

19 pages, 6802 KB  
Article
Toxicity Assessment of [177Lu]Lu−iFAP/iPSMA Nanoparticles Prepared under GMP-Compliant Radiopharmaceutical Processes
by Tania Hernández-Jiménez, Pedro Cruz-Nova, Alejandra Ancira-Cortez, Brenda Gibbens-Bandala, Nancy Lara-Almazán, Blanca Ocampo-García, Clara Santos-Cuevas, Enrique Morales-Avila and Guillermina Ferro-Flores
Nanomaterials 2022, 12(23), 4181; https://doi.org/10.3390/nano12234181 - 25 Nov 2022
Cited by 17 | Viewed by 2596
Abstract
The fibroblast activation protein (FAP) is heavily expressed in fibroblasts associated with the tumor microenvironment, while the prostate-specific membrane antigen (PSMA) is expressed in the neovasculature of malignant angiogenic processes. Previously, we reported that [177Lu]lutetium sesquioxide-iFAP/iPSMA nanoparticles ([177Lu]Lu−iFAP/iPSMA) inhibit [...] Read more.
The fibroblast activation protein (FAP) is heavily expressed in fibroblasts associated with the tumor microenvironment, while the prostate-specific membrane antigen (PSMA) is expressed in the neovasculature of malignant angiogenic processes. Previously, we reported that [177Lu]lutetium sesquioxide-iFAP/iPSMA nanoparticles ([177Lu]Lu−iFAP/iPSMA) inhibit HCT116 tumor progression in mice. Understanding the toxicity of [177Lu]Lu−iFAP/iPSMA in healthy tissues, as well as at the tissue and cellular level in pathological settings, is essential to demonstrate the nanosystem safety for treating patients. It is equally important to demonstrate that [177Lu]Lu−iFAP/iPSMA can be prepared under good manufacturing practices (GMP) with reproducible pharmaceutical-grade quality characteristics. This research aimed to prepare [177Lu]Lu−iFAP/iPSMA under GMP-compliant radiopharmaceutical processes and evaluate its toxicity in cell cultures and murine biological systems under pathological environments. [177Lu]Lu2O3 nanoparticles were formulated as radiocolloidal solutions with FAP and PSMA inhibitor ligands (iFAP and iPSMA), sodium citrate, and gelatin, followed by heating at 121 °C (103-kPa pressure) for 15 min. Three consecutive batches were manufactured. The final product was analyzed according to conventional pharmacopeial methods. The Lu content in the formulations was determined by X-ray fluorescence. [177Lu]Lu−iFAP/iPSMA performance in cancer cells was evaluated in vitro by immunofluorescence. Histopathological toxicity in healthy and tumor tissues was assessed in HCT116 tumor-bearing mice. Immunohistochemical assays were performed to corroborate FAP and PSMA tumor expression. Acute genotoxicity was evaluated using the micronuclei assay. The results showed that the batches manufactured under GMP conditions were reproducible. Radiocolloidal solutions were sterile and free of bacterial endotoxins, with radionuclidic and radiochemical purity greater than 99%. The lutetium content was 0.10 ± 0.02 mg/mL (0.9 GBq/mg). Significant inhibition of cell proliferation in vitro and in tumors was observed due to the accumulation of nanoparticles in the fibroblasts (FAP+) and neovasculature (PSMA+) of the tumor microenvironment. No histopathological damage was detected in healthy tissues. The data obtained in this research provide new evidence on the selective toxicity to malignant tumors and the absence of histological changes in healthy tissues after intravenous injection of [177Lu]Lu−iFAP/iPSMA in mammalian hosts. The easy preparation under GMP conditions and the toxicity features provide the added value needed for [177Lu]Lu−iFAP/iPSMA clinical translation. Full article
Show Figures

Figure 1

16 pages, 10736 KB  
Article
Mechanism of Surface Defects in Ultra-Precision Machining of Sesquioxide Laser Crystal Tm: GdScO3
by Yuanyuan Fang, Hongbo He, Aihuan Dun and Long Zhang
Micromachines 2022, 13(8), 1250; https://doi.org/10.3390/mi13081250 - 3 Aug 2022
Cited by 1 | Viewed by 1912
Abstract
It is well-known that the surface quality of laser gain crystal elements is very high in order to ensure the stability of laser system and laser output quality. In the ultra-precision machining process of a new sesquioxide laser crystal Tm: GdScO3, [...] Read more.
It is well-known that the surface quality of laser gain crystal elements is very high in order to ensure the stability of laser system and laser output quality. In the ultra-precision machining process of a new sesquioxide laser crystal Tm: GdScO3, it is required to achieve very high surface shape and very low surface defects. In this paper, the molecular dynamics simulation model of single particle grinding was established. It was found that the normal load and tangential friction imposed by abrasive particles on the surface of components cause the spalling of atoms on the substrate surface, which constitutes the removal of materials at the macro-level. At the same time, it causes the displacement of the sub surface atoms, which constitutes the microscopic defects in the structure. Through the structural characterization of macro defects, it was confirmed that the essence of micro defects is the amorphous and distortion of surface structure, and the depth can reach 100 nm. The results of lapping and polishing experiments show that the adjustment of pressure has a limited effect on the improvement of surface defects in the process of machining crystal elements with granular abrasive. Full article
Show Figures

Figure 1

12 pages, 2295 KB  
Article
Infrared Photoluminescence of Nd-Doped Sesquioxide and Fluoride Nanocrystals: A Comparative Study
by Fulvia Gennari, Milica Sekulić, Tanja Barudžija, Željka Antić, Miroslav D. Dramićanin and Alessandra Toncelli
Crystals 2022, 12(8), 1071; https://doi.org/10.3390/cryst12081071 - 31 Jul 2022
Cited by 4 | Viewed by 2090
Abstract
Lanthanide ions possess various emission channels in the near-infrared region that are well known in bulk crystals but are far less studied in samples with nanometric size. In this work, we present the infrared spectroscopic characterization of various Nd-doped fluoride and sesquioxide nanocrystals, [...] Read more.
Lanthanide ions possess various emission channels in the near-infrared region that are well known in bulk crystals but are far less studied in samples with nanometric size. In this work, we present the infrared spectroscopic characterization of various Nd-doped fluoride and sesquioxide nanocrystals, namely Nd:Y2O3, Nd:Lu2O3, Nd:Sc2O3, Nd:YF3, and Nd:LuF3. Emissions from the three main emission bands in the near-infrared region have been observed and the emission cross-sections have been calculated. Moreover, another decay channel at around 2 μm has been observed and ascribed to the 4F3/24I15/2 transition. The lifetime of the 4F3/2 level has been measured under LED pumping. Emission cross-sections for the various compounds are calculated in the 1 μm, 900 nm, and 1.3 μm regions and are of the order of 10−20 cm2 in agreement with the literature results. Those in the 2 μm region are of the order of 10−21 cm2. Full article
(This article belongs to the Special Issue Optical and Spectroscopic Properties of Rare-Earth-Doped Crystals)
Show Figures

Figure 1

25 pages, 6740 KB  
Article
The Effect of Pre-Oxidation on the Reducibility of Chromite Using Hydrogen: A Preliminary Study
by Jamey Davies, Merete Tangstad, Eli Ringdalen, Johan Paul Beukes, Dmitri Bessarabov and Stephanus Petrus du Preez
Minerals 2022, 12(7), 911; https://doi.org/10.3390/min12070911 - 20 Jul 2022
Cited by 13 | Viewed by 3984
Abstract
The majority of ferrochrome (FeCr) is produced through the carbothermic reduction of chromite ore. In recent years, FeCr producers have been pressured to curve carbon emissions, necessitating the exploration of alternative smelting methods. The use of hydrogen as a chromite reductant only yields [...] Read more.
The majority of ferrochrome (FeCr) is produced through the carbothermic reduction of chromite ore. In recent years, FeCr producers have been pressured to curve carbon emissions, necessitating the exploration of alternative smelting methods. The use of hydrogen as a chromite reductant only yields water as a by-product, preventing the formation of carbon monoxide (CO)-rich off-gas. It is however understood that only the Fe-oxide constituency of chromite can be metalized by hydrogen, whereas the chromium (Cr)-oxide constituency requires significantly higher temperatures to be metalized. Considering the alternation of chromite’s spinel structure when oxidized before traditional smelting procedures, the effects on its reducibility using hydrogen were investigated. Firstly, the effect of hydrogen availability was considered and shown to have a significant effect on Fe metallization. Subsequently, spinel alternation induced by pre-oxidation promoted the hydrogen-based reducibly of the Fe-oxide constituency, and up to 88.4% of the Fe-oxide constituency was metallized. The Cr-oxide constituency showed little to no reduction. The increase in Fe-oxide reducibility was ascribed to the formation of an exsolved Fe2O3-enriched sesquioxide phase, which was more susceptible to reduction when compared to Fe-oxides present in the chromite spinel. The extent of Fe metallization of the pre-oxidized chromite was comparable to that of unoxidized chromite under significantly milder reduction conditions. Full article
Show Figures

Figure 1

11 pages, 2801 KB  
Article
Densities of Liquid Tm2O3, Yb2O3, and Lu2O3 Measured by an Electrostatic Levitation Furnace Onboard the International Space Station
by Takehiko Ishikawa, Chihiro Koyama, Hirohisa Oda, Rina Shimonishi, Tsuyoshi Ito and Paul-François Paradis
Metals 2022, 12(7), 1126; https://doi.org/10.3390/met12071126 - 30 Jun 2022
Cited by 6 | Viewed by 2319
Abstract
Liquid densities of three lanthanoid sesquioxides (Tm2O3, Yb2O3, and Lu2O3), whose melting temperatures are above 2400 °C, were measured using an electrostatic levitation furnace onboard the International Space Station (ISS). Each [...] Read more.
Liquid densities of three lanthanoid sesquioxides (Tm2O3, Yb2O3, and Lu2O3), whose melting temperatures are above 2400 °C, were measured using an electrostatic levitation furnace onboard the International Space Station (ISS). Each sample was positively charged, and its position was controlled by Coulomb forces between the sample and the surrounding electrodes. Following heating and melting of the sample by high-power lasers, its volume was calculated from its spherical shape in its liquidus phase. After weighing the mass of the sample returned to Earth, its density was determined. The densities (ρ) of Tm2O3, Yb2O3, and Lu2O3 can be expressed as ρTm2O3 = 8304 − 0.18 × (TTm), ρYb2O3 = 8425 − 0.55 × (TTm), and ρLu2O3 = 8627 − 0.43 × (TTm), respectively, where Tm is their melting temperatures. Full article
(This article belongs to the Special Issue Thermo-Physical Properties of Metals and Oxides)
Show Figures

Figure 1

Back to TopTop