Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (33,419)

Search Parameters:
Keywords = signalling system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 16203 KB  
Article
High-Resolution Dynamical Downscaling Reveals Multi-Scale Evolution of the Surface Wind Field over Hainan Island (1961–2022)
by Shitong Huang, Yue Jiao, Ming Shang, Jing Wu, Quanlin Yang, Deshi Yang, Yihang Xing, Jingying Xu, Chenxiao Shi, Bing Wang and Lei Bai
Atmosphere 2025, 16(9), 1037; https://doi.org/10.3390/atmos16091037 (registering DOI) - 31 Aug 2025
Abstract
Wind fields on tropical islands are among the most complex systems in atmospheric science, simultaneously influenced by large-scale monsoons, tropical cyclones, local sea-land circulation, and island topography. These interactions result in extremely complex responses to climate change, posing significant challenges for detailed assessment. [...] Read more.
Wind fields on tropical islands are among the most complex systems in atmospheric science, simultaneously influenced by large-scale monsoons, tropical cyclones, local sea-land circulation, and island topography. These interactions result in extremely complex responses to climate change, posing significant challenges for detailed assessment. This study examines how multi-scale processes have shaped the long-term evolution of the near-surface wind speed over Hainan, China’s largest tropical island. We developed a new high-resolution (5 km, hourly) regional climate reanalysis spanning 1961–2022, based on the WRF model and ERA5 data. Our analysis reveals three key findings: First, the long-term trend of wind speed over Hainan exhibits significant spatial heterogeneity, characterized by “coastal stilling and inland strengthening.” Wind speeds in coastal areas have decreased by −0.03 to −0.09 m/s per decade, while those in the mountainous interior have paradoxically increased by up to +0.06 m/s per decade. This pattern arises from the interaction between the weakening East Asian Winter Monsoon and the island’s complex terrain. Second, the frequency of extreme wind events has undergone seasonal reorganization: days with strong winds linked to the winter monsoon have significantly decreased (−0.214 days per decade), whereas days linked to warm-season tropical cyclones have increased (+0.097 days per decade), indicating asynchronous evolution of climate extremes. Third, the risk from 100-year extreme wind events is undergoing geographical redistribution, shifting from the coast to the mountainous interior (with an increase of 0.4–0.7 m/s in inland areas), posing a direct challenge to existing engineering design standards. Taken together, these findings demonstrate that local topography can significantly influence large-scale climate change signals, underscoring the critical role of high-resolution modeling in understanding the climate response of such complex systems. Full article
(This article belongs to the Section Meteorology)
18 pages, 1652 KB  
Article
Design and Experimental Validation of the Profiling Cutting Platform for Tea Harvesting
by Hang Zheng, Ning Ren, Tong Fu, Bin Chen, Zhaowei Hu and Guohong Yu
Agriculture 2025, 15(17), 1866; https://doi.org/10.3390/agriculture15171866 (registering DOI) - 31 Aug 2025
Abstract
The low quality of mechanized tea harvesting in China’s hilly plantations, often caused by irregular canopy morphology, necessitates improved technology. This study addresses this issue by proposing a contact-based profiling mechanism and a corresponding control method for tea cutting platforms. This cutting platform [...] Read more.
The low quality of mechanized tea harvesting in China’s hilly plantations, often caused by irregular canopy morphology, necessitates improved technology. This study addresses this issue by proposing a contact-based profiling mechanism and a corresponding control method for tea cutting platforms. This cutting platform mainly consists of a canopy profiling mechanism, a tea harvesting unit, a lifting actuator, and a control system, containing a mathematical model correlating the tea canopy pose with sensor signals. Following a theoretical analysis of key components of the profiling device, we determined their structural parameters. Subsequently, a profiling control strategy was formulated, and an automatic control system for the profiling cutting platform was developed. Finally, a prototype was constructed and subjected to experimental validation to assess the dynamic characteristics of its pose adjustment and its profiling-based harvesting performance. The results of this experiment illustrate that after implementing the profiling system, the proportion of time the cutting blade remained in an optimal cutting position increased from 26.5% to 95.0%, an improvement of 68.5%, demonstrating that the system successfully achieves its design objective of the adaptive profiling apparatus in response to variation in canopy morphology. In addition, the integrity rate of harvested tea leaves increased from 50.7% without profiling to 74.6% with profiling, an improvement of 47.1%, which indicates the good performance of this profiling cutting platform. Therefore, this research provides a valuable reference for the design of intelligent tea harvesting machinery for the hilly tea plantations in China. Full article
(This article belongs to the Section Agricultural Technology)
34 pages, 2865 KB  
Review
Mitochondrial Transport Proteins in Cardiovascular Diseases: Metabolic Gatekeepers, Pathogenic Mediators and Therapeutic Targets
by Yue Pei, Sitong Wan, Jingyi Qi, Xueyao Xi, Yinhua Zhu, Peng An, Junjie Luo and Yongting Luo
Int. J. Mol. Sci. 2025, 26(17), 8475; https://doi.org/10.3390/ijms26178475 (registering DOI) - 31 Aug 2025
Abstract
Mitochondria, as the metabolic hubs of cells, play a pivotal role in maintaining cardiovascular homeostasis through dynamic regulation of energy metabolism, redox balance, and calcium signaling. Cardiovascular diseases (CVDs), including heart failure, ischemic heart disease, cardiomyopathies, and myocardial infarction, remain the leading cause [...] Read more.
Mitochondria, as the metabolic hubs of cells, play a pivotal role in maintaining cardiovascular homeostasis through dynamic regulation of energy metabolism, redox balance, and calcium signaling. Cardiovascular diseases (CVDs), including heart failure, ischemic heart disease, cardiomyopathies, and myocardial infarction, remain the leading cause of global mortality, with mitochondrial dysfunction emerging as a unifying pathological mechanism across these conditions. Emerging evidence suggests that impaired mitochondrial transport systems—critical gatekeepers of metabolite flux, ion exchange, and organelle communication—drive disease progression by disrupting bioenergetic efficiency and exacerbating oxidative stress. This review synthesizes current knowledge on mitochondrial transport proteins, such as the voltage-dependent anion channels, transient receptor potential channels, mitochondrial calcium uniporter, and adenine nucleotide translocator, focusing on their structural–functional relationships and dysregulation in CVD pathogenesis. We highlight how aberrant activity of these transporters contributes to hallmark features of cardiac pathology, including metabolic inflexibility, mitochondrial permeability transition pore destabilization, and programmed cell death. Furthermore, we critically evaluate preclinical advances in targeting mitochondrial transport systems through pharmacological modulation, gene editing, and nanoparticle-based delivery strategies. By elucidating the mechanistic interplay between transport protein dysfunction and cardiac metabolic reprogramming, we address a critical knowledge gap in cardiovascular biology and provide a roadmap for developing precision therapies. Our insights underscore the translational potential of mitochondrial transport machinery as both diagnostic biomarkers and therapeutic targets, offering new avenues to combat the growing burden of CVDs in aging populations. Full article
(This article belongs to the Special Issue Mitochondria in Aging and Aging-Related Diseases)
Show Figures

Figure 1

21 pages, 1581 KB  
Review
Research Progress on MET, Tip Link, and Stereocilia Complex with Special Reference to Zebrafish
by Xun Wang, Yuqian Shen and Dong Liu
Int. J. Mol. Sci. 2025, 26(17), 8480; https://doi.org/10.3390/ijms26178480 (registering DOI) - 31 Aug 2025
Abstract
Hearing is essential for animal survival and social communication, relying on the function of sensory hair cells. These cells possess organized stereocilia bundles enriched with mechano-electrical transduction (MET) channels that convert mechanical stimuli into electrical signals. Tip links, fine extracellular filaments connecting adjacent [...] Read more.
Hearing is essential for animal survival and social communication, relying on the function of sensory hair cells. These cells possess organized stereocilia bundles enriched with mechano-electrical transduction (MET) channels that convert mechanical stimuli into electrical signals. Tip links, fine extracellular filaments connecting adjacent stereocilia, play a critical role in transmitting mechanical forces to MET channels. Over the past three decades, technological advances have significantly enhanced our understanding of the molecular and cellular mechanisms underlying auditory transduction. Zebrafish, with its conserved hair cell structure and function similar to mammals, has become a valuable model in auditory research. The aim of this review is to summarize the research progress on the molecular and cellular mechanisms of MET, tip link, and stereocilia complex, with an emphasis on zebrafish studies, providing an important reference for understanding diseases of the human auditory system. Full article
(This article belongs to the Special Issue Zebrafish Model for Neurological Research)
Show Figures

Figure 1

27 pages, 1140 KB  
Review
Protective Role of Key Micronutrients in Chemotherapy-Induced Organ Toxicity: A Comprehensive Review of Mechanistic Insights and Clinical Implications
by Ioannis Konstantinidis, Sophia Tsokkou, Eleni Gavriilaki, Georgios Delis and Theodora Papamitsou
Nutrients 2025, 17(17), 2838; https://doi.org/10.3390/nu17172838 (registering DOI) - 31 Aug 2025
Abstract
Background/Objectives: Systemic toxicities to key organs like the heart, liver, and kidneys impair the efficacy of chemotherapy in cancer treatment. These toxicities are caused by oxidative stress, inflammation, mitochondrial malfunction and ferroptosis, causing clinical morbidity and possibly impaired adherence to treatment. This review, [...] Read more.
Background/Objectives: Systemic toxicities to key organs like the heart, liver, and kidneys impair the efficacy of chemotherapy in cancer treatment. These toxicities are caused by oxidative stress, inflammation, mitochondrial malfunction and ferroptosis, causing clinical morbidity and possibly impaired adherence to treatment. This review, also, examines how magnesium, selenium, zinc and vitamin D protect against chemotherapy-induced cardiotoxicity, hepatotoxicity and nephrotoxicity. Methodology: A complete literature search of PubMed (MEDLINE), Scopus, Cochrane Library and Embase was used to synthesize data till 29 June 2025. Studies included randomized and non-randomized trials, cohort studies, case series (≥3 patients), and relevant systematic reviews. To contextualize pathways, preclinical in vivo and in vitro studies were studied independently. Patients undergoing systemic chemotherapy and magnesium, selenium, zinc or vitamin D therapies were eligible. Supplementation’s safety and organ-specific toxicity were investigated. Results: Magnesium protected against cisplatin-induced nephrotoxicity via modulating renal transporters and oxidative defenses across chemotherapy regimens. Selenium supplementation has strong antioxidant and anti-inflammatory characteristics, especially in avoiding cardiac and hepatic injury, although its nephroprotective potential was formulation-dependent. Zinc’s activity was connected to metallothionein-mediated redox stabilization, inflammatory regulation, and cardiac and hepatic resilience. Vitamin D and its analogs reduced cardiotoxicity and nephrotoxicity through mitochondrial preservation and immunomodulatory signaling. Conclusions: To date, magnesium, selenium, zinc, and vitamin D have been shown to reduce chemotherapy-related organ toxicities. Preclinical studies are promising, but randomized clinical trials are needed to prove therapeutic effectiveness and oncologic safety. Full article
(This article belongs to the Section Micronutrients and Human Health)
21 pages, 4068 KB  
Article
Integrin β Regulates the Hepatopancreas Antiviral Innate Immune System by Affecting the Expression of Antimicrobial Peptides in Penaeus vannamei
by Bingbing Yang, Li Zhang, Kun Luo, Sheng Luan, Jie Kong, Qiang Fu, Jiawang Cao, Baolong Chen, Ping Dai, Xupeng Li and Xianhong Meng
Int. J. Mol. Sci. 2025, 26(17), 8478; https://doi.org/10.3390/ijms26178478 (registering DOI) - 31 Aug 2025
Abstract
Penaeus vannamei aquaculture production accounts for the majority of total shrimp aquaculture output, but it has suffered a severe decline in production and economic losses due to WSSV disease. Therefore, elucidating the relationship between the host immune system and pathogens is crucial for [...] Read more.
Penaeus vannamei aquaculture production accounts for the majority of total shrimp aquaculture output, but it has suffered a severe decline in production and economic losses due to WSSV disease. Therefore, elucidating the relationship between the host immune system and pathogens is crucial for shrimp disease prevention and control. Integrins, as receptor-related molecules, have been shown to participate in various physiological functions, including cell migration, organismal development, and the pathogenesis of multiple diseases. However, the regulatory mechanisms of integrin genes in the shrimp immune system remain unclear. This study reports that integrins may regulate the Toll, IMD, and STAT signaling pathways in P. vannamei by influencing Spätzle, TLR, and Domeless, thereby affecting the shrimp’s innate immune system against diseases. Additionally, integrins can inhibit viral entry and replication. Through RNA interference (RNAi) experiments, it was found that knocking down Pv-Integrin β increases the viral load of white spot syndrome virus (WSSV), making shrimp more susceptible to WSSV and giving rise to increasing mortality. Further research indicates that Pv-Integrin β acts as an upstream recognition receptor in the disease resistance immune pathway, influencing other signaling pathway receptors to regulate the innate immune system. Importantly, knocking down Pv-Integrin β upregulates the expression of antimicrobial peptides such as ALF1 and ALF2, but reduces the expression of Crustin1, Crustin2 and prophenoloxidase. In conclusion, this study reveals that Pv-Integrin β regulates the disease resistance immune signaling pathways by affecting the related receptors. Full article
(This article belongs to the Special Issue Molecular Genetics and Genomics of Aquatic Crustaceans)
Show Figures

Figure 1

20 pages, 1984 KB  
Article
Simulation Study of Multi-GNSS Positioning Systems in Urban Canyon Environments
by Seung-Hoon Hwang and Ju-Hyun Maeng
Electronics 2025, 14(17), 3485; https://doi.org/10.3390/electronics14173485 (registering DOI) - 31 Aug 2025
Abstract
This study presents a comprehensive performance evaluation of hybrid global navigation satellite system (GNSS) configurations in urban canyon environments across South Korea, focusing on the integration of Global Positioning System (GPS) with the BeiDou, GLONASS, Galileo, Quasi Zenith Satellite System (QZSS), and Navigation [...] Read more.
This study presents a comprehensive performance evaluation of hybrid global navigation satellite system (GNSS) configurations in urban canyon environments across South Korea, focusing on the integration of Global Positioning System (GPS) with the BeiDou, GLONASS, Galileo, Quasi Zenith Satellite System (QZSS), and Navigation with Indian Constellation (NavIC) constellations. Simulation scenarios representing pedestrian, vehicular, and unmanned aerial vehicle (UAV) movements are used to analyze the positioning accuracy and reliability of each hybrid system. The results indicate that GPS–BeiDou and GPS–QZSS combinations consistently provide superior accuracy and continuous satellite visibility, with GPS–BeiDou achieving centimeter-level precision in the UAV scenario. In contrast, GPS–GLONASS and GPS–NavIC systems exhibit higher error rates and less stable performance. These findings emphasize the critical role of satellite availability, receiver altitude, and signal compatibility in achieving robust positioning. Although the results are specific to South Korea, the proposed evaluation framework is broadly applicable and can help other countries assess hybrid GNSS performance to guide the design and optimization of their regional navigation satellite systems. Full article
23 pages, 26514 KB  
Article
LEO Navigation Augmentation Signal-Based Passive Radar: System Model and Performance Analysis
by Mingxu Zhang, Bin Sun and Qilei Zhang
Remote Sens. 2025, 17(17), 3021; https://doi.org/10.3390/rs17173021 (registering DOI) - 31 Aug 2025
Abstract
As the next generation of time–space infrastructure, low-earth-orbit navigation augmentation (LEO-NA) technology has become a hot research topic, since it can overcome the vulnerabilities and limitations of global navigation satellite systems (GNSSs). Meanwhile, a LEO-NA signal can serve as a better cooperative illuminator [...] Read more.
As the next generation of time–space infrastructure, low-earth-orbit navigation augmentation (LEO-NA) technology has become a hot research topic, since it can overcome the vulnerabilities and limitations of global navigation satellite systems (GNSSs). Meanwhile, a LEO-NA signal can serve as a better cooperative illuminator to build more powerful passive radar (PR). This paper proposes and investigates a new and promising PR system, LEO-NA signal-based PR (LNAS-PR), which utilizes LEO-NA signals as the illuminator and utilizes an unmanned aerial vehicle (UAV) to carry the receiver. Taking advantage of higher landing power and global coverage, LNAS-PR can be used to detect maritime targets with benefits of low cost and high efficiency. However, new technical challenges of information capture and processing need to be dealt with. Therefore, this paper presents the system model, signal model, and performance analyses within a maritime monitoring scenario, providing a foundation for future in-depth research. Full article
Show Figures

Figure 1

17 pages, 1782 KB  
Article
Protein Language Models Expose Viral Immune Mimicry
by Dan Ofer and Michal Linial
Viruses 2025, 17(9), 1199; https://doi.org/10.3390/v17091199 (registering DOI) - 31 Aug 2025
Abstract
Viruses have evolved sophisticated solutions to evade host immunity. One of the most pervasive strategies is molecular mimicry, whereby viruses imitate the molecular and biophysical features of their hosts. This mimicry poses significant challenges for immune recognition, therapeutic targeting, and vaccine development. In [...] Read more.
Viruses have evolved sophisticated solutions to evade host immunity. One of the most pervasive strategies is molecular mimicry, whereby viruses imitate the molecular and biophysical features of their hosts. This mimicry poses significant challenges for immune recognition, therapeutic targeting, and vaccine development. In this study, we leverage pretrained protein language models (PLMs) to distinguish between viral and human proteins. Our model enables the identification and interpretation of viral proteins that most frequently elude classification. We characterize these by integrating PLMs with explainable models. Our approach achieves state-of-the-art performance with ROC-AUC of 99.7%. The 3.9% of misclassified sequences are signified by viral proteins with low immunogenicity. These errors disproportionately involve human-specific viral families associated with chronic infections and immune evasion, suggesting that both the immune system and machine learning models are confounded by overlapping biophysical signals. By coupling PLMs with explainable AI techniques, our work advances computational virology and offers mechanistic insights into viral immune escape. These findings carry implications for the rational design of vaccines, and improved strategies to counteract viral persistence and pathogenicity. Full article
(This article belongs to the Special Issue Herpesviruses and Associated Diseases)
Show Figures

Figure 1

27 pages, 2586 KB  
Article
Management-Oriented Assessment of Transport Service Quality Using Logistics Monitoring System and Harrington’s Desirability Function in Support of SDG 9
by Victor Aulin, Oleh Liashuk, Dmytro Mironov, Piotr Staliński, Marek Rutkowski and Sergiy Lysenko
Sustainability 2025, 17(17), 7837; https://doi.org/10.3390/su17177837 (registering DOI) - 31 Aug 2025
Abstract
The quality of transport services is not only a measure of operational efficiency but also an important factor of strategic logistics management in the pursuit of sustainable development. This study identifies five key transport service quality indicators (timeliness, routing, economy, safety, efficiency) and [...] Read more.
The quality of transport services is not only a measure of operational efficiency but also an important factor of strategic logistics management in the pursuit of sustainable development. This study identifies five key transport service quality indicators (timeliness, routing, economy, safety, efficiency) and uses data from a logistics monitoring system to assess them with Harrington’s desirability function. Each indicator’s performance is converted into a partial desirability score and these scores are combined into a single overall desirability score (D), with weights determined from the data. Notably, a threshold around D = 0.63 emerged as the benchmark for acceptable service quality. This numeric threshold provides managers with a clear KPI target—if the service quality index falls below 0.63, it signals the need for corrective action, whereas consistently achieving values near 0.8 reflects very good performance aligned with strategic sustainability goals. Based on the proposed approach, an algorithm and software tool were developed to automate the assessment process. The obtained results show how improvements in service reliability, safety and efficiency can be aligned with broader sustainability goals in automotive transportation. The proposed approach offers managerial decision makers a robust tool to guide policy and investment, ensuring that enhancements in transport service performance also advance environmental and social sustainability. In doing so, the framework advances SDG 9 by turning logistics telemetry into an actionable management index that strengthens resilient transport infrastructure and fosters practical innovation at the enterprise level. Full article
Show Figures

Figure 1

10 pages, 2858 KB  
Article
Low-Loss Multicore FIFO Device Based on Chemically Etched Optical Fibers
by Arkadiusz Woźniak, Mateusz Łakomski and Zbigniew Lisik
Electronics 2025, 14(17), 3479; https://doi.org/10.3390/electronics14173479 (registering DOI) - 31 Aug 2025
Abstract
We present a low-loss fan-in/fan-out (FIFO) device fabricated from a bundle of chemically etched optical fibers integrated within a standard FC/PC connector. The device demonstrates efficient coupling with insertion losses of 0.32 dB and 0.40 dB at wavelengths of 1310 nm and 1550 [...] Read more.
We present a low-loss fan-in/fan-out (FIFO) device fabricated from a bundle of chemically etched optical fibers integrated within a standard FC/PC connector. The device demonstrates efficient coupling with insertion losses of 0.32 dB and 0.40 dB at wavelengths of 1310 nm and 1550 nm, respectively. Crosstalk and back reflection were measured to be below −41.8 dB and 51.3 dB, confirming high channel isolation and minimal signal degradation. This compact and connectorized solution offers a practical approach for scalable multicore fiber interfacing in advanced optical communication systems. Full article
(This article belongs to the Special Issue New Trends in Electronic and Optoelectronic Devices)
Show Figures

Figure 1

19 pages, 3765 KB  
Article
AS1411 Aptamer-Conjugated Liposomal siRNA Targeting MTA2 Suppresses PI3K/AKT Signaling in Pancreatic Cancer Cells
by Minseo Kwak, Truong Chinh Hua, Hyesoo Jin, Jongsam Lee and Dong-Eun Kim
Int. J. Mol. Sci. 2025, 26(17), 8467; https://doi.org/10.3390/ijms26178467 (registering DOI) - 30 Aug 2025
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal malignancies due to late diagnosis, poor drug penetration, and intrinsic chemoresistance. Targeted delivery strategies are urgently needed to enhance therapeutic precision while minimizing systemic toxicity. Here, we developed an AS1411 aptamer-functionalized liposomal platform encapsulating [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal malignancies due to late diagnosis, poor drug penetration, and intrinsic chemoresistance. Targeted delivery strategies are urgently needed to enhance therapeutic precision while minimizing systemic toxicity. Here, we developed an AS1411 aptamer-functionalized liposomal platform encapsulating siRNA against metastasis-associated protein 2 (MTA2), a chromatin remodeling factor that suppresses the tumor suppressor PTEN and activates PI3K/AKT signaling. The AS1411 aptamer, which binds nucleolin overexpressed on PDAC cells, was conjugated to cationic liposomes via copper-free click chemistry. The resulting AS1411-Lipm[siRNA] exhibited high siRNA encapsulation efficiency, selective uptake by nucleolin-positive PDAC cells, and enhanced endosomal escape. Treatment of MIA PaCa-2 cells with AS1411-Lipm[siRNA] significantly reduced MTA2 expression by ~60%, substantially restored PTEN, and inhibited AKT phosphorylation by ~50%, leading to decreased cell viability, impaired migration by ~75%, and increased apoptosis by ~35%, while sparing nucleolin-negative cells. These findings highlight AS1411-Lipm[siRNA] as a promising platform for selective siRNA delivery and potent molecular inhibition in PDAC therapy. Full article
20 pages, 10005 KB  
Article
A Highly Sensitive SERS Technique Based on Au NP Monolayer Film Combined with Multivariate Statistical Algorithms for Auxiliary Screening of Postmenopausal Osteoporosis
by Yun Yu, Jinlian Hu, Qidan Shen, Huifeng Xu, Shanshan Wang, Xiaoning Wang, Yuhuan Zhong, Tingting He, Hao Huang, Quanxing Hong, Erdan Huang and Xihai Li
Biosensors 2025, 15(9), 568; https://doi.org/10.3390/bios15090568 (registering DOI) - 30 Aug 2025
Abstract
Postmenopausal osteoporosis (PMOP) has become an important public health issue. The diagnosis of PMOP relies on clinical symptoms and radiology. However, most patients with PMOP do not exhibit obvious symptoms in the early stages of this disease. This study aimed to explore the [...] Read more.
Postmenopausal osteoporosis (PMOP) has become an important public health issue. The diagnosis of PMOP relies on clinical symptoms and radiology. However, most patients with PMOP do not exhibit obvious symptoms in the early stages of this disease. This study aimed to explore the feasibility of surface-enhanced Raman scattering (SERS) technology in the auxiliary screening of PMOP. PMOP rats were induced by ovariectomy (OVX) surgery, with a Sham group and an icariin (ICA) treatment group serving as controls. A monolayer film of Au nanoparticles (NPs) was prepared using the Marangoni effect in an oil/water/oil three-phase system, and was used to detect serum SERS signals in the Sham, OVX, and ICA treatment groups. Then, the spectral diagnostic model for PMOP screening was established utilizing partial least squares (PLS) and support vector machine (SVM) algorithms. Histopathology confirmed the establishment of the PMOP rat model. The assignment of Raman peaks and the analysis of spectral differences revealed the biochemical changes associated with PMOP, including the upregulation of tyrosine levels and the downregulation of arginine, tryptophan, lipids, and collagen. When employing the PLS-SVM algorithm to simultaneously classify and discriminate three groups of samples, the diagnostic sensitivity for PMOP is 93.33%, the specificity is 96.67%, and the accuracy of three-class classification is 91.11%. This study demonstrated the potential of SERS for the auxiliary screening of PMOP. Full article
(This article belongs to the Special Issue Surface-Enhanced Raman Scattering in Biosensing Applications)
21 pages, 8308 KB  
Review
From Viral Infection to Malignancy: The Dual Threat of EBV and COVID-19 in Cancer Development
by Moyed Alsaadawe, Bakeel A. Radman, Longtai Hu, Jingyi Long, Qingshuang Luo, Chushu Tan, Hadji Sitti Amirat, Mohenned Alsaadawi and Xiaoming Lyu
Viruses 2025, 17(9), 1195; https://doi.org/10.3390/v17091195 (registering DOI) - 30 Aug 2025
Abstract
This narrative review consolidates existing evidence about the interaction between Epstein-Barr virus (EBV) and SARS-CoV-2 in cancer development. EBV is a recognized oncogenic driver, whereas COVID-19 may heighten cancer risk by immunological dysregulation, persistent inflammation, and reactivation of latent viruses. We underscore molecular [...] Read more.
This narrative review consolidates existing evidence about the interaction between Epstein-Barr virus (EBV) and SARS-CoV-2 in cancer development. EBV is a recognized oncogenic driver, whereas COVID-19 may heighten cancer risk by immunological dysregulation, persistent inflammation, and reactivation of latent viruses. We underscore molecular similarities (e.g., NF-κB activation, T-cell exhaustion) and clinical ramifications for high-risk individuals, stressing the necessity for interdisciplinary research to alleviate dual viral risks. EBV, a well-known oncogenic virus, has been linked to numerous malignancies, including lymphomas, nasopharyngeal carcinoma, and gastric cancer. Through the production of viral proteins that interfere with immune evasion, cellular signaling, and genomic integrity, it encourages malignant transformation and ultimately results in unchecked cell proliferation. Because of its capacity to induce tissue damage, immunological dysregulation, and chronic inflammation, COVID-19, which is brought on by the SARS-CoV-2 virus, has become a possible carcinogen. The virus’s influence on cellular pathways and its long-term effects on the immune system may raise the chance of malignancy, particularly in people with pre-existing vulnerabilities, even if direct correlations to cancer are still being investigated. When two viruses co-infect a host, the review highlights the possibility of synergistic effects that could hasten the development of cancer. It describes how overlapping mechanisms like inflammation, immune suppression, and viral reactivation may be used by a combined EBV and COVID-19 infection to exacerbate carcinogenic processes. Gaining an understanding of these relationships is essential for creating tailored treatment plans and enhancing cancer prevention in high-risk groups. Full article
(This article belongs to the Special Issue EBV and Disease: New Perspectives in the Post COVID-19 Era)
24 pages, 2159 KB  
Article
Agentic RAG-Driven Multi-Omics Analysis for PI3K/AKT Pathway Deregulation in Precision Medicine
by Micheal Olaolu Arowolo, Sulaiman Olaniyi Abdulsalam, Rafiu Mope Isiaka, Kingsley Theophilus Igulu, Bukola Fatimah Balogun, Mihail Popescu and Dong Xu
Algorithms 2025, 18(9), 545; https://doi.org/10.3390/a18090545 (registering DOI) - 30 Aug 2025
Abstract
The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway is a crucial regulator of cellular metabolism, proliferation, and survival. It is frequently dysregulated in metabolic, cardiovascular, and neoplastic disorders. Despite the advancements in multi-omics technology, existing methods often fail to provide real-time, pathway-specific insights for precision [...] Read more.
The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway is a crucial regulator of cellular metabolism, proliferation, and survival. It is frequently dysregulated in metabolic, cardiovascular, and neoplastic disorders. Despite the advancements in multi-omics technology, existing methods often fail to provide real-time, pathway-specific insights for precision medicine and drug repurposing. We offer Agentic RAG-Driven Multi-Omics Analysis (ARMOA), an autonomous, hypothesis-driven system that integrates retrieval-augmented generation (RAG), large language models (LLMs), and agentic AI to thoroughly analyze genomic, transcriptomic, proteomic, and metabolomic data. Through the use of graph neural networks (GNNs) to model complex interactions within the PI3K/AKT pathway, ARMOA enables the discovery of novel biomarkers, probable candidates for drug repurposing, and customized therapy responses to address the complexities of PI3K/AKT dysregulation in disease states. ARMOA dynamically gathers and synthesizes knowledge from multiple sources, including KEGG, TCGA, and DrugBank, to guarantee context-aware insights. Through adaptive reasoning, it gradually enhances predictions, achieving 91% accuracy in external testing and 92% accuracy in cross-validation. Case studies in breast cancer and type 2 diabetes demonstrate that ARMOA can identify synergistic drug combinations with high clinical relevance and predict therapeutic outcomes specific to each patient. The framework’s interpretability and scalability are greatly enhanced by its use of multi-omics data fusion and real-time hypothesis creation. ARMOA provides a cutting-edge example for precision medicine by integrating multi-omics data, clinical judgment, and AI agents. Its ability to provide valuable insights on its own makes it a powerful tool for advancing biomedical research and treatment development. Full article
(This article belongs to the Special Issue Advanced Algorithms for Biomedical Data Analysis)
Show Figures

Figure 1

Back to TopTop