Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (206)

Search Parameters:
Keywords = silicon oxide nanoparticle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 6401 KB  
Review
Silicon Nanostructures for Hydrogen Generation and Storage
by Gauhar Mussabek, Gulmira Yar-Mukhamedova, Sagi Orazbayev, Valeriy Skryshevsky and Vladimir Lysenko
Nanomaterials 2025, 15(19), 1531; https://doi.org/10.3390/nano15191531 - 7 Oct 2025
Viewed by 339
Abstract
Today, hydrogen is already widely regarded as up-and-coming source of energy. It is essential to meet energy needs while reducing environmental pollution, since it has a high energy capacity and does not emit carbon oxide when burned. However, for the widespread application of [...] Read more.
Today, hydrogen is already widely regarded as up-and-coming source of energy. It is essential to meet energy needs while reducing environmental pollution, since it has a high energy capacity and does not emit carbon oxide when burned. However, for the widespread application of hydrogen energy, it is necessary to search new technical solutions for both its production and storage. A promising effective and cost-efficient method of hydrogen generation and storage can be the use of solid materials, including nanomaterials in which chemical or physical adsorption of hydrogen occurs. Focusing on the recommendations of the DOE, the search is underway for materials with high gravimetric capacity more than 6.5% wt% and in which sorption and release of hydrogen occurs at temperatures from −20 to +100 °C and normal pressure. This review aims to summarize research on hydrogen generation and storage using silicon nanostructures and silicon composites. Hydrogen generation has been observed in Si nanoparticles, porous Si, and Si nanowires. Regardless of their size and surface chemistry, the silicon nanocrystals interact with water/alcohol solutions, resulting in their complete oxidation, the hydrolysis of water, and the generation of hydrogen. In addition, porous Si nanostructures exhibit a large internal specific surface area covered by SiHx bonds. A key advantage of porous Si nanostructures is their ability to release molecular hydrogen through the thermal decomposition of SiHx groups or in interaction with water/alkali. The review also covers simulations and theoretical modeling of H2 generation and storage in silicon nanostructures. Using hydrogen with fuel cells could replace Li-ion batteries in drones and mobile gadgets as more efficient. Finally, some recent applications, including the potential use of Si-based agents as hydrogen sources to address issues associated with new approaches for antioxidative therapy. Hydrogen acts as a powerful antioxidant, specifically targeting harmful ROS such as hydroxyl radicals. Antioxidant therapy using hydrogen (often termed hydrogen medicine) has shown promise in alleviating the pathology of various diseases, including brain ischemia–reperfusion injury, Parkinson’s disease, and hepatitis. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

21 pages, 9399 KB  
Article
Combined Effect of Zinc Oxide and Titanium Dioxide Nanoparticles on Color Stability and Antifungal Activity of Maxillofacial Silicone Elastomers: An In Vitro Study
by Ali Sabah Mohammad and Zhala Dara Omar Meran
Prosthesis 2025, 7(5), 122; https://doi.org/10.3390/prosthesis7050122 - 25 Sep 2025
Viewed by 260
Abstract
Objective: Maxillofacial silicone elastomers represent a standard material in maxillofacial prosthetic applications due to their excellent biocompatibility and aesthetic properties. However, their long-term performance is limited by color degradation and susceptibility to fungal colonization. Incorporating nanoparticles into silicone matrices has emerged as a [...] Read more.
Objective: Maxillofacial silicone elastomers represent a standard material in maxillofacial prosthetic applications due to their excellent biocompatibility and aesthetic properties. However, their long-term performance is limited by color degradation and susceptibility to fungal colonization. Incorporating nanoparticles into silicone matrices has emerged as a potential solution to enhance durability and hygiene. This study aimed to evaluate the effect of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles used individually and in combination to evaluate the color stability and antifungal activity of pigmented maxillofacial silicone elastomers. Material and Methods: Fifty specimens were fabricated for each test and divided into five groups: Group (A) control (pigmented silicone only, no nanoparticles), Group (B) ZnO (1.5 wt%), Group (C) TiO2 (2.5 wt%), and two combinations: Group(D1) (0.75 wt% ZnO + 1.25 wt% TiO2) and Group (D2)(0.5 wt% ZnO + 0.83 wt% TiO2) ratios. Color stability was assessed before and after 500 h of artificial aging using CIELAB-ΔE values and visual scoring. Antifungal activity was evaluated against Candida albicans using the disk diffusion method. Attenuated Total Reflectance with Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning electron microscopy (SEM) along side with Energy-dispersive X-ray spectroscopy (EDS) were applied for Specimen characterization. Data were analyzed with one-way ANOVA and Tukey’s post hoc test (α = 0.05). Results: The dual-nanoparticle group with 0.75% ZnO and 1.25% TiO2 demonstrated the best color stability (ΔE = 0.86 ± 0.50) and strongest antifungal activity (inhibition zone: 7.8 ± 3.8 mm) compared to the control (ΔE = 2.31 ± 0.62; no inhibition). Single-nanoparticle groups showed moderate improvements. A significant Association (r = 0.89, p < 0.01) was found between nanoparticle dispersion and material performance. Conclusions: Incorporating ZnO and TiO2 nanoparticles into maxillofacial silicone elastomers significantly enhances color stability and antifungal efficacy. The combined formulation showed a synergistic effect, offering promising potential for improving the longevity and hygiene of maxillofacial prostheses. Full article
Show Figures

Figure 1

26 pages, 1732 KB  
Review
Recent Developments in Osteoarthritis Research: Innovative Therapeutic Approaches and the Role of Polyphenols and Nanotechnology
by Humberto Vélez-Slimani, Jacobo Hernández-Montelongo and Luis A. Salazar
Int. J. Mol. Sci. 2025, 26(18), 8925; https://doi.org/10.3390/ijms26188925 - 13 Sep 2025
Viewed by 712
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease with a significant impact on quality of life. This review summarizes recent advances in the understanding of OA pathophysiology, emphasizing mechanical factors, angiogenesis, aging, and the role of interleukins in disease progression. It also explores [...] Read more.
Osteoarthritis (OA) is a chronic degenerative joint disease with a significant impact on quality of life. This review summarizes recent advances in the understanding of OA pathophysiology, emphasizing mechanical factors, angiogenesis, aging, and the role of interleukins in disease progression. It also explores key molecular pathways, particularly the NF-κB signaling cascade, and crucial catabolic mediators such as MMPs and ADAMTS, which are involved in cartilage degradation. Emerging therapeutic strategies are discussed, with a focus on the potential of polyphenols, such as pinocembrin and caffeic acid phenethyl ester, in cartilage protection and regeneration. In addition, nanotechnology is examined as a promising tool to enhance the bioavailability of these bioactive compounds and support the development of innovative OA treatments. Drug delivery systems based on nanotechnology, including porous silicon nanoparticles functionalized with β-cyclodextrin, have shown promise in improving therapeutic efficacy. This review highlights the importance of multidisciplinary approaches integrating molecular biology, natural compounds, and advanced technologies in the treatment of OA. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapeutic Approaches to Osteoarthritis)
Show Figures

Figure 1

13 pages, 3253 KB  
Article
Effects of SiO2 Nanoparticles on the Yield and Quality of Sophora tonkinensis Under Drought Stress
by Ying Liang, Shuangshuang Qin, Guili Wei, Ximei Liang and Fan Wei
Agronomy 2025, 15(9), 2171; https://doi.org/10.3390/agronomy15092171 - 11 Sep 2025
Viewed by 389
Abstract
This study investigates the novel application of silicon nanoparticles (SiO2 NPs) to enhance drought tolerance and medicinal quality in the threatened medicinal plant Sophora tonkinensis, providing technical support for its conservation and cultivation. Six treatments were applied: control (CK), CK + [...] Read more.
This study investigates the novel application of silicon nanoparticles (SiO2 NPs) to enhance drought tolerance and medicinal quality in the threatened medicinal plant Sophora tonkinensis, providing technical support for its conservation and cultivation. Six treatments were applied: control (CK), CK + 100 mg/L SiO2 NPs, CK + 200 mg/L SiO2 NPs, drought stress (SD), SD + 100 mg/L SiO2 NPs, SD + 200 mg/L SiO2 NPs. After 21 days of foliar application, we assessed biomass, physio–biochemical parameters (including soluble protein, soluble sugar, superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), malondialdehyde (MDA), superoxide anion (O2), and hydrogen peroxide (H2O2)), as well as concentrations of matrine, oxymatrine, genistin, genistein, total alkaloids, and total flavonoids. Under drought stress, the application of 100 mg/L SiO2 NPs was the most effective treatment for enhancing biomass accumulation and eliciting a coordinated physio–biochemical response. This was demonstrated by a significant increase in leaf soluble protein content and root SOD activity, along with a decrease in oxidative stress markers (H2O2 and O2). Furthermore, SiO2 NPs application under both normal and drought conditions selectively enhanced the accumulation of bioactive compounds in the roots, with the optimal concentration being compound-specific. Notably, under drought conditions, the application of 200 mg/L SiO2 NPs proved optimal for enhancing the biosynthesis of several key medicinal compounds in the roots. Specifically, this treatment significantly maximized the content of matrine (214.15 μg/g), genistin (4.06 μg/g), genistein (48.56 μg/g), total alkaloids (9.96 mg/g), and total flavonoids (11.44 mg/g) compared to the drought-stressed control (SD). These results demonstrate that SiO2 NPs significantly improve yield and key medicinal components of S. tonkinensis under drought stress, with a differential efficiency depending on the concentration, plant organ, and target compound. Full article
Show Figures

Figure 1

19 pages, 24853 KB  
Article
The Impact of Zinc Oxide Nanoparticles on the Color Stability and Surface Roughness of Heat-Polymerized Maxillofacial Silicone Elastomer Subjected to Artificial Aging: An In Vitro Study
by Lozan Othman, Kawan Othman and Bruska Azhdar
Polymers 2025, 17(17), 2336; https://doi.org/10.3390/polym17172336 - 28 Aug 2025
Viewed by 830
Abstract
In this study, zinc oxide nanoparticles are utilized to assess the color stability and surface roughness of heat-temperature vulcanized maxillofacial silicone under simulated aging conditions. Silicone specimens were created with different concentrations of ZnO nanoparticles (0 wt%, 1 wt%, 2 wt%, 3 wt%, [...] Read more.
In this study, zinc oxide nanoparticles are utilized to assess the color stability and surface roughness of heat-temperature vulcanized maxillofacial silicone under simulated aging conditions. Silicone specimens were created with different concentrations of ZnO nanoparticles (0 wt%, 1 wt%, 2 wt%, 3 wt%, and 4 wt%) and pigmented with two inherent colors (soft brown and rose silk). The color stability was evaluated by calculating the CIELAB color space, and the surface roughness was analyzed both before and after UV exposure. The applied method considerably improved color stability, with the best results achieved when 1 wt% and 3 wt% ZnO were used. During the aging periods, the soft brown pigment was more resistant to discoloration than rose silk. The incorporation of ZnO resulted in a reduction in the initial surface roughness parameters, while simultaneously increasing the surface’s resistance to UV-induced degradation. Substantial increases in roughness were observed in the control samples. By contrast, adding ZnO improved surface integrity. In conclusion, including an optimized amount of ZnO nanoparticles to heat-polymerized maxillofacial silicone can increase the lifespan of silicone prostheses, providing a smooth appearance and resistance to environmental factors. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

38 pages, 6998 KB  
Review
Silicon Carbide (SiC) and Silicon/Carbon (Si/C) Composites for High-Performance Rechargeable Metal-Ion Batteries
by Sara Adnan Mahmood, Nadhratun Naiim Mobarak, Arofat Khudayberdieva, Malika Doghmane, Sabah Chettibi and Kamel Eid
Int. J. Mol. Sci. 2025, 26(16), 7757; https://doi.org/10.3390/ijms26167757 - 11 Aug 2025
Cited by 1 | Viewed by 1771
Abstract
Silicon carbide (SiC) and silicon nanoparticle-decorated carbon (Si/C) materials are electrodes that can potentially be used in various rechargeable batteries, owing to their inimitable merits, including non-flammability, stability, eco-friendly nature, low cost, outstanding theoretical capacity, and earth abundance. However, SiC has inferior electrical [...] Read more.
Silicon carbide (SiC) and silicon nanoparticle-decorated carbon (Si/C) materials are electrodes that can potentially be used in various rechargeable batteries, owing to their inimitable merits, including non-flammability, stability, eco-friendly nature, low cost, outstanding theoretical capacity, and earth abundance. However, SiC has inferior electrical conductivity, volume expansion, a low Li+ diffusion rate during charge–discharge, and inevitable repeated formation of a solid–electrolyte interface layer, which hinders its commercial utilization. To address these issues, extensive research has focused on optimizing preparation methods, engineering morphology, doping, and creating composites with other additives (such as carbon materials, metal oxides, nitrides, chalcogenides, polymers, and alloys). Owing to the upsurge in this research arena, providing timely updates on the use of SiC and Si/C for batteries is of great importance. This review summarizes the controlled design of SiC-based and Si/C composites using various methods for rechargeable metal-ion batteries like lithium-ion (LIBs), sodium-ion (SIBs), zinc-air (ZnBs), and potassium-ion batteries (PIBs). The experimental and predicted theoretical performance of SiC composites that incorporate various carbon materials, nanocrystals, and non-metal dopants are summarized. In addition, a brief synopsis of the current challenges and prospects is provided to highlight potential research directions for SiC composites in batteries. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

16 pages, 2276 KB  
Article
Effect of Nanoparticles on the Development of Bacterial Speck in Tomato (Solanum lycopersicum L.) and Chili Variegation (Capsicum annuum L.)
by Edgar Alejandro Ruiz-Ramirez, Daniel Leobardo Ochoa-Martínez, Gilberto Velázquez-Juárez, Reyna Isabel Rojas-Martinez and Victor Manuel Zuñiga-Mayo
Horticulturae 2025, 11(8), 907; https://doi.org/10.3390/horticulturae11080907 - 4 Aug 2025
Viewed by 847
Abstract
Among the new strategies for managing diseases in agricultural crops is the application of metallic nanoparticles due to their ability to inhibit the development of phytopathogenic microorganisms and to induce plant defense responses. Therefore, this research evaluated the effects of silver (AgNPs), zinc [...] Read more.
Among the new strategies for managing diseases in agricultural crops is the application of metallic nanoparticles due to their ability to inhibit the development of phytopathogenic microorganisms and to induce plant defense responses. Therefore, this research evaluated the effects of silver (AgNPs), zinc oxide (ZnONPs), and silicon dioxide (SiO2NPs) nanoparticles on symptom progression and physiological parameters in two pathosystems: Pseudomonas syringae pv. tomato (Psto) in tomato (pathosystem one, culturable pathogen) and Candidatus Liberibacter solanacearum (CaLso) in pepper plants (pathosystem two, non-culturable pathogen). For in vitro pathosystem one assays, SiO2NPs did not inhibit Psto growth. The minimum inhibitory concentration (MIC) was 31.67 ppm for AgNPs and 194.3 ppm for ZnONPs. Furthermore, the minimum lethal concentration (MLC) for AgNPs was 100 ppm, while for ZnONPs, it was 1000 ppm. For in planta assays, ZnONPs, AgNPs, and SiO2NPs reduced the number of lesions per leaf, but only ZnONPs significantly decreased the severity. Regarding pathosystem two, AgNPs, ZnONPs, and SiO2NPs application delayed symptom progression. However, only AgNPs significantly reduced severity percentage. Moreover, treatments with AgNPs and SiO2NPs increased the plant height and dry weight compared to the results for the control. Full article
Show Figures

Figure 1

21 pages, 3814 KB  
Article
Features of the Structure of Layered Epoxy Composite Coatings Formed on a Metal-Ceramic-Coated Aluminum Base
by Volodymyr Korzhyk, Volodymyr Kopei, Petro Stukhliak, Olena Berdnikova, Olga Kushnarova, Oleg Kolisnichenko, Oleg Totosko, Danylo Stukhliak and Liubomyr Ropyak
Materials 2025, 18(15), 3620; https://doi.org/10.3390/ma18153620 - 1 Aug 2025
Viewed by 624
Abstract
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer [...] Read more.
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer of basalt fabric, which allows for effective heating of the antenna, and to study the properties of this coating. The multilayer coating was formed on an aluminum base that was subjected to abrasive jet processing. The first and second metal-ceramic layers, Al2O3 + 5% Al, which were applied by high-speed multi-chamber cumulative detonation spraying (CDS), respectively, provide maximum adhesion strength to the aluminum base and high adhesion strength to the third layer of the epoxy composite containing Al2O3. On this not-yet-polymerized layer of epoxy composite containing Al2O3, a layer of carbon fabric (impregnated with epoxy resin) was formed, which serves as a resistive heating element. On top of this carbon fabric, a layer of epoxy composite containing Cr2O3 and SiO2 was applied. Next, basalt fabric was applied to this still-not-yet-polymerized layer. Then, the resulting layered coating was compacted and dried. To study this multilayer coating, X-ray analysis, light and raster scanning microscopy, and transmission electron microscopy were used. The thickness of the coating layers and microhardness were measured on transverse microsections. The adhesion strength of the metal-ceramic coating layers to the aluminum base was determined by both bending testing and peeling using the adhesive method. It was established that CDS provides the formation of metal-ceramic layers with a maximum fraction of lamellae and a microhardness of 7900–10,520 MPa. In these metal-ceramic layers, a dispersed subgrain structure, a uniform distribution of nanoparticles, and a gradient-free level of dislocation density are observed. Such a structure prevents the formation of local concentrators of internal stresses, thereby increasing the level of dispersion and substructural strengthening of the metal-ceramic layers’ material. The formation of materials with a nanostructure increases their strength and crack resistance. The effectiveness of using aluminum, chromium, and silicon oxides as nanofillers in epoxy composite layers was demonstrated. The presence of structures near the surface of these nanofillers, which differ from the properties of the epoxy matrix in the coating, was established. Such zones, specifically the outer surface layers (OSL), significantly affect the properties of the epoxy composite. The results of industrial tests showed the high performance of the multilayer coating during antenna heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 1624 KB  
Article
Neurobehavioral and Oxidative Stress Effects of SiO2 Nanoparticles in Zebrafish and the Protective Role of N-Acetylcysteine
by Viorica Rarinca, Irina-Luciana Gurzu, Mircea Nicusor Nicoara, Alin Ciobica, Malina Visternicu, Catalina Ionescu, Ioana Miruna Balmus, Gabriel-Ionut Plavan, Elena Todirascu-Ciornea and Bogdan Gurzu
Biomedicines 2025, 13(7), 1762; https://doi.org/10.3390/biomedicines13071762 - 18 Jul 2025
Cited by 1 | Viewed by 734
Abstract
Background/Objectives: Silicon dioxide nanoparticles (SiO2NPs) do not exist in isolation in the environment but can interact with other substances, thus influencing their toxic effects on aquatic organisms. We assessed the combined impact of SiO2NPs and N-acetylcysteine (NAC), an antioxidant [...] Read more.
Background/Objectives: Silicon dioxide nanoparticles (SiO2NPs) do not exist in isolation in the environment but can interact with other substances, thus influencing their toxic effects on aquatic organisms. We assessed the combined impact of SiO2NPs and N-acetylcysteine (NAC), an antioxidant with the potential to counteract nanoparticle-induced oxidative stress (OS). Methods: Behavioral assessments, including the social interaction test and color preference test, were performed to evaluate neurobehavioral changes. OS biomarkers, including malondialdehyde (MDA) levels for lipid peroxidation and the activity of key antioxidant enzymes such as glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD), were assessed to evaluate the extent of cellular damage. Results: The results indicate that prolonged exposure to SiO2NPs induces significant behavioral disruptions, including reduced exploratory behavior and increased anxiety-like responses. Furthermore, biochemical analysis revealed increased OS, suggesting nanoparticle-induced cellular toxicity. NAC co-treatment partially reversed these effects, particularly improving locomotor outcomes and antioxidant response, but was less effective on social behavior. Conclusions: These findings highlight the ecological and health risks posed by SiO2NPs and point toward the need for further toxicological studies on their long-term biological effects. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

10 pages, 2813 KB  
Article
The Effect of Doping with Aluminum on the Optical, Structural, and Morphological Properties of Thin Films of SnO2 Semiconductors
by Isis Chetzyl Ballardo Rodriguez, U. Garduño Terán, A. I. Díaz Cano, B. El Filali and M. Badaoui
J. Compos. Sci. 2025, 9(7), 358; https://doi.org/10.3390/jcs9070358 - 9 Jul 2025
Viewed by 693
Abstract
There is considerable interest in broadband nanomaterials, particularly transparent semiconductor oxides, within both fundamental research and technological applications. Historically, it has been considered that the variation in dopant concentration during the synthesis of semiconductor materials is a crucial factor in activating and/or modulating [...] Read more.
There is considerable interest in broadband nanomaterials, particularly transparent semiconductor oxides, within both fundamental research and technological applications. Historically, it has been considered that the variation in dopant concentration during the synthesis of semiconductor materials is a crucial factor in activating and/or modulating the optical and structural properties, particularly the bandgap and the parameters of the unit cell, of semiconductor oxides. Recently, tin oxide has emerged as a key material due to its excellent structural properties, optical transparency, and various promising applications in optoelectronics. This study utilized the ultrasonic spray pyrolysis technique to synthesize aluminum-doped tin oxide (ATO) thin films on quartz and polished single-crystal silicon substrates. The impact of varying aluminum doping levels (0, 2, 5, and 10 at. %) on morphology and structural and optical properties was examined. The ATO thin films were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmittance spectroscopy. SEM images demonstrated a slight reduction in the size of ATO nanoparticles as the aluminum doping concentration increased. XRD analysis revealed a tetragonal crystalline structure with the space group P42/mnm, and a shift in the XRD peaks to higher angles was noted with increasing aluminum content, indicating a decrease in the crystalline lattice parameters of ATO. The transmittance of the ATO films varied between 75% and 85%. By employing the transmittance spectra and the established Tauc formula the optical bandgap values of ATO films were calculated, showing an increase in the bandgap with higher doping levels. These findings were thoroughly analyzed and discussed; additionally, an effort was made to clarify the contradictory analyses present in the literature and to identify a doping range that avoids the onset of a secondary phase. Full article
(This article belongs to the Special Issue Optical–Electric–Magnetic Multifunctional Composite Materials)
Show Figures

Graphical abstract

24 pages, 13679 KB  
Article
Seed Nanopriming with ZnO and SiO2 Enhances Germination, Seedling Vigor, and Antioxidant Defense Under Drought Stress
by Erick H. Ochoa-Chaparro, Juan J. Patiño-Cruz, Julio C. Anchondo-Páez, Sandra Pérez-Álvarez, Celia Chávez-Mendoza, Luis U. Castruita-Esparza, Ezequiel Muñoz Márquez and Esteban Sánchez
Plants 2025, 14(11), 1726; https://doi.org/10.3390/plants14111726 - 5 Jun 2025
Cited by 3 | Viewed by 1465
Abstract
Drought stress is one of the main factors limiting seed germination and seedling establishment in field crops such as jalapeño peppers (Capsicum annuum L.). Nanopriming, a seed improvement technique using nanoparticle suspensions, has emerged as a sustainable approach to improving water use [...] Read more.
Drought stress is one of the main factors limiting seed germination and seedling establishment in field crops such as jalapeño peppers (Capsicum annuum L.). Nanopriming, a seed improvement technique using nanoparticle suspensions, has emerged as a sustainable approach to improving water use efficiency during the early stages of development. This study evaluated the effects of zinc oxide (ZnO, 100 mg·L−1), silicon dioxide (SiO2, 10 mg·L−1), and their combination (ZnO + SiO2), stabilized with chitosan, on the germination yield and drought tolerance of jalapeño seeds under mannitol-induced water stress (0%, 15%, and 30%). Compared to the hydroprimed control (T1), nanoparticle treatments consistently improved seed yield. Priming with ZnO (T2) increased the germination percentage by up to 25%, priming with SiO2 (T3) improved the germination rate by 34%, and the combined treatment (T4: ZnO + SiO2) improved the fresh weight of the seedlings by 40%. Proline accumulation increased 7.5 times, antioxidant capacity (DPPH) increased 6.5 times, and total phenol content increased 4.8 times in the combined treatment. Flavonoid levels also showed notable increases, suggesting enhanced antioxidant defense. These results clearly demonstrate the superior efficacy of nanoparticle pretreatment compared to conventional hydraulic pretreatment, especially under drought conditions. Multivariate analysis further highlighted the synergistic role of ZnO and SiO2 in improving osmolite accumulation, antioxidant activity, and water use efficiency. Nanopriming with ZnO and SiO2 offers a promising, economical, and scalable strategy to improve germination, early growth, and drought resistance in jalapeño pepper cultivation under semi-arid conditions. Full article
Show Figures

Figure 1

20 pages, 8428 KB  
Article
The Role of Pd-Pt Bimetallic Catalysts in Ethylene Detection by CMOS-MEMS Gas Sensor Dubbed GMOS
by Hanin Ashkar, Sara Stolyarova, Tanya Blank and Yael Nemirovsky
Micromachines 2025, 16(6), 672; https://doi.org/10.3390/mi16060672 - 31 May 2025
Cited by 2 | Viewed by 3283
Abstract
The importance and challenges of ethylene detection based on combustion-type low-cost commercial sensors for agricultural and industrial applications are well-established. This work summarizes the significant progress in ethylene detection based on an innovative Gas Metal Oxide Semiconductor (GMOS) sensor and a new catalytic [...] Read more.
The importance and challenges of ethylene detection based on combustion-type low-cost commercial sensors for agricultural and industrial applications are well-established. This work summarizes the significant progress in ethylene detection based on an innovative Gas Metal Oxide Semiconductor (GMOS) sensor and a new catalytic composition of metallic nanoparticles. The paper presents a study on ethylene and ethanol sensing using a miniature catalytic sensor fabricated by Complementary Metal Oxide Semiconductor–Silicon-on-Insulator–Micro-Electro-Mechanical System (CMOS-SOI-MEMS) technology. The GMOS performance with bimetallic palladium–platinum (Pd-Pt) and monometallic palladium (Pd) and platinum (Pt) catalysts is compared. The synergetic effect of the Pd-Pt catalyst is observed, which is expressed in the shift of combustion reaction ignition to lower catalyst temperatures as well as increased sensitivity compared to monometallic components. The optimal catalysts and their temperature regimes for low and high ethylene concentrations are chosen, resulting in lower power consumption by the sensor. Full article
(This article belongs to the Collection Women in Micromachines)
Show Figures

Figure 1

17 pages, 836 KB  
Review
Silicon Nanoparticles and Apoplastic Protein Interaction: A Hypothesized Mechanism for Modulating Plant Growth and Immunity
by Guopeng Miao, Juan Han and Taotao Han
Plants 2025, 14(11), 1630; https://doi.org/10.3390/plants14111630 - 27 May 2025
Cited by 2 | Viewed by 1252
Abstract
Silicon nanoparticles (SiNPs) have emerged as multifunctional tools in sustainable agriculture, demonstrating significant efficacy in promoting crop growth and enhancing plant resilience against diverse biotic and abiotic stresses. Although their ability to strengthen antioxidant defense systems and activate systemic immune responses is well [...] Read more.
Silicon nanoparticles (SiNPs) have emerged as multifunctional tools in sustainable agriculture, demonstrating significant efficacy in promoting crop growth and enhancing plant resilience against diverse biotic and abiotic stresses. Although their ability to strengthen antioxidant defense systems and activate systemic immune responses is well documented, the fundamental mechanisms driving these benefits remain unclear. This review synthesizes emerging evidence to propose an innovative paradigm: SiNPs remodel plant redox signaling networks and stress adaptation mechanisms by forming protein coronas through apoplastic protein adsorption. We hypothesize that extracellular SiNPs may elevate apoplastic reactive oxygen species (ROS) levels by adsorbing and inhibiting antioxidant enzymes, thereby enhancing intracellular redox buffering capacity and activating salicylic acid (SA)-dependent defense pathways. Conversely, smaller SiNPs infiltrating symplastic compartments risk oxidative damage due to direct suppression of cytoplasmic antioxidant systems. Additionally, SiNPs may indirectly influence heavy metal transporter activity through redox state regulation and broadly modulate plant physiological functions via transcription factor regulatory networks. Critical knowledge gaps persist regarding the dynamic composition of protein coronas under varying environmental conditions and their transgenerational impacts. By integrating existing mechanisms of SiNPs, this review provides insights and potential strategies for developing novel agrochemicals and stress-resistant crops. Full article
Show Figures

Figure 1

32 pages, 41844 KB  
Article
Surface Resistivity Correlation to Nano-Defects in Laser Powder Bed Fused Molybdenum (Mo)-Silicon Carbide (SiC) Alloys
by Andrew Mason, Larry Burggraf, Ryan Kemnitz and Nate Ellsworth
J. Manuf. Mater. Process. 2025, 9(6), 174; https://doi.org/10.3390/jmmp9060174 - 26 May 2025
Viewed by 806
Abstract
The integration of Silicon Carbide (SiC) nanoparticles into Laser Powder Bed Fusion (LB-PBF) Molybdenum (Mo) printing represents a significant advancement in refractory metal additive manufacturing. Our investigation examined how varying SiC nanoparticle sizes affect the microstructural and electrical properties of LB-PBF-printed molybdenum components [...] Read more.
The integration of Silicon Carbide (SiC) nanoparticles into Laser Powder Bed Fusion (LB-PBF) Molybdenum (Mo) printing represents a significant advancement in refractory metal additive manufacturing. Our investigation examined how varying SiC nanoparticle sizes affect the microstructural and electrical properties of LB-PBF-printed molybdenum components while maintaining a 0.01 mass fraction of Mo. At an Linear Energy Densities (LED) of 1.8 J/mm, the addition of 80 nm SiC particles achieved a 46% reduction in porosity, while sheet resistance decreased by 6% at LED of 2.0 J/mm with 80 nm SiC particles. These performance improvements stem from several mechanisms: SiC particles serve as oxygen scavengers, facilitate secondary phase formation, and enhance laser absorption efficiency. Their dual role as sacrificial oxidizing agents and Mo disilicide phase promoters represents a novel approach to addressing microcracking and porosity in LB-PBF-printed Mo components. Through systematic investigation of particle size effects on both microscale and nanoscale properties, our findings suggest that optimized nanoparticle addition could become a universal strategy for enhancing LB-PBF processing of refractory metals, particularly in applications requiring enhanced mechanical and electrical performance. Full article
Show Figures

Figure 1

21 pages, 4037 KB  
Article
Comparative Study on the Effects of Silicon Nanoparticles and Cellulose Nanocrystals on Drought Tolerance in Tall Fescue (Festuca arundinacea Schreb.)
by Meng Li, Sile Hu, Xulong Bai, Jie Ren, Kanliang Tian, Huili Zhang, Zhilong Zhang and Vanquy Nguyen
Plants 2025, 14(10), 1461; https://doi.org/10.3390/plants14101461 - 14 May 2025
Cited by 1 | Viewed by 825
Abstract
Tall fescue (Festuca arundinacea Schreb.) is a herbaceous species that is commonly used for ecological slope restoration in China. However, water scarcity often constrains its growth due to the unique site conditions of steep slopes and climate-induced drought stress. This study aims [...] Read more.
Tall fescue (Festuca arundinacea Schreb.) is a herbaceous species that is commonly used for ecological slope restoration in China. However, water scarcity often constrains its growth due to the unique site conditions of steep slopes and climate-induced drought stress. This study aims to compare the ameliorative effects of silicon nanoparticles (Si NPs) and cellulose nanocrystals (CNCs) on drought stress in tall fescue and to elucidate their underlying mechanisms of action. The results indicated that drought stress impaired photosynthesis, restricted nutrient absorption, and increased oxidative stress, ultimately reducing biomass. However, Si NPs and CNCs enhanced drought tolerance and promoted biomass accumulation by improving photosynthesis, osmotic regulation, and antioxidant defense mechanisms. Specifically, Si NP treatment increased biomass by 48.71% compared to drought-stressed control plants, while CNCs resulted in a 33.41% increase. Transcriptome sequencing further revealed that both nanomaterials enhanced drought tolerance by upregulating genes associated with photosynthesis and antioxidant defense. Additionally, Si NPs improved drought tolerance by stimulating root growth, enhancing nutrient uptake, and improving leaf structure. In contrast, CNCs play a distinct role by regulating the expression of genes related to cell wall synthesis and metabolism. These findings highlight the crucial roles of these two nanomaterials in plant stress protection and offer a sustainable strategy for the maintenance and management of slope vegetation. Full article
Show Figures

Graphical abstract

Back to TopTop