Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = simplified two-source energy balance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7331 KB  
Article
Potential of Abandoned Agricultural Lands for New Photovoltaic Installations
by Giulia Ronchetti and Martina Aiello
Sustainability 2025, 17(2), 694; https://doi.org/10.3390/su17020694 - 17 Jan 2025
Cited by 4 | Viewed by 2007
Abstract
Decarbonization strategies aim at increasing renewable energy source (RES) capacity, including new photovoltaic (PV) systems. Utility-scale PV installations are often placed in agricultural areas, resulting in a reduction in agricultural land and affecting the environment. To balance agricultural and energy policies, PV development [...] Read more.
Decarbonization strategies aim at increasing renewable energy source (RES) capacity, including new photovoltaic (PV) systems. Utility-scale PV installations are often placed in agricultural areas, resulting in a reduction in agricultural land and affecting the environment. To balance agricultural and energy policies, PV development should not limit agricultural purposes, allowing sustainable exploitation under specific technological and environmental conditions, particularly in areas of actual or potential abandonment. Studying agricultural abandonment is complex due to its multifaceted nature, the lack of a clear definition, and challenges in acquiring cartographic data. This study introduces and compares two methodologies to identify abandoned agricultural areas, aiming to delineate macro-areas of potential abandonment and examine patterns for conversion to energy use, with a focus on Toscana, a region (NUTS-2) in central Italy, which has experienced cropland reduction unrelated to urbanization. The first, simplified approach analyses land cover changes from 2000 to 2018, while the second method provides a more detailed abandonment detection by means of medium spatial resolution satellite imagery from the Harmonized Landsat and Sentinel-2 dataset. A Random Forest classifier combined with Object-Based Image Analysis (OBIA) is applied to satellite data to map annual active/non-active croplands. Annual maps are then validated with a trajectory-based approach to detect agricultural land abandonment. This second methodology can help in providing spatially and timely meaning estimates of abandoned agricultural areas to be recovered for energy purposes and promote a sustainable growth of PV systems. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

18 pages, 4762 KB  
Technical Note
SSEBop Evapotranspiration Estimates Using Synthetically Derived Landsat Data from the Continuous Change Detection and Classification Algorithm
by Mikael P. Hiestand, Heather J. Tollerud, Chris Funk, Gabriel B. Senay, Kate C. Fickas and MacKenzie O. Friedrichs
Remote Sens. 2024, 16(7), 1297; https://doi.org/10.3390/rs16071297 - 6 Apr 2024
Cited by 2 | Viewed by 3486
Abstract
The operational Simplified Surface Energy Balance (SSEBop) model has been utilized to generate gridded evapotranspiration data from Landsat images. These estimates are primarily driven by two sources of information: reference evapotranspiration and Landsat land surface temperature (LST) values. Hence, SSEBop is limited by [...] Read more.
The operational Simplified Surface Energy Balance (SSEBop) model has been utilized to generate gridded evapotranspiration data from Landsat images. These estimates are primarily driven by two sources of information: reference evapotranspiration and Landsat land surface temperature (LST) values. Hence, SSEBop is limited by the availability of Landsat data. Here, in this proof-of-concept paper, we utilize the Continuous Change Detection and Classification (CCDC) algorithm to generate synthetic Landsat data, which are then used as input for SSEBop to generate evapotranspiration estimates for six target areas in the continental United States, representing forests, shrublands, and irrigated agriculture. These synthetic land cover data are then used to generate the LST data required for SSEBop evapotranspiration estimates. The synthetic LST, evaporative fractions, and evapotranspiration data from CCDC closely mirror the phenological cycles in the observed Landsat data. Across the six sites, the median correlation in seasonal LST was 0.79, and the median correlation in seasonal evapotranspiration was 0.8. The median root mean squared error (RMSE) values were 2.82 °C for LST and 0.50 mm/day for actual evapotranspiration. CCDC predictions typically underestimate the average evapotranspiration by less than 1 mm/day. The average performance of the CCDC evaporative fractions, and corresponding evapotranspiration estimates, were much better than the initial LST estimates and, therefore, promising. Future work could include bias correction to improve CCDC’s ability to accurately reproduce synthetic Landsat data during the summer, allowing for more accurate evapotranspiration estimates, and determining the ability of SSEBop to predict regional evapotranspiration at seasonal timescales based on projected land cover change from CCDC. Full article
Show Figures

Figure 1

23 pages, 6022 KB  
Article
Is the Subsurface Drip the Most Sustainable Irrigation System for Almond Orchards in Water-Scarce Areas?
by Francisco Montoya, Juan M. Sánchez, José González-Piqueras and Ramón López-Urrea
Agronomy 2022, 12(8), 1778; https://doi.org/10.3390/agronomy12081778 - 28 Jul 2022
Cited by 13 | Viewed by 3758
Abstract
The expansion of irrigated almond orchards in arid and semi-arid areas with scarce water available raises key issues related to the sustainability of the water resources. A 3-year field experiment was conducted on a commercial young almond orchard located in the southeast of [...] Read more.
The expansion of irrigated almond orchards in arid and semi-arid areas with scarce water available raises key issues related to the sustainability of the water resources. A 3-year field experiment was conducted on a commercial young almond orchard located in the southeast of Spain to study the effect of two drip irrigation systems (surface, DI and subsurface, SDI) on almond crop growth and their physiological responses under fully-irrigated conditions. Crop evapotranspiration (ETc) and its components (crop transpiration, Tc and soil evaporation, Es) were monitored as well as the irrigation water and nitrogen productivities. To estimate ETc, a simplified two-source energy balance (STSEB) approach was used. Although a lower irrigation water amount was applied in SDI compared to DI (differences between 10% and 13.8%), the almond crop growth and physiological responses as well as the yield components and kernel yield showed no significant differences. The ETc estimates resulted in small differences for spring and fall periods (0.1–0.2 mm day−1) for both treatments, while differences were significant during higher ETo periods (May–August), being 1.0–1.3 mm day−1 higher for the DI treatment than for the SDI treatment. The irrigation water productivity (IWP) was significantly higher in the SDI treatment than in the DI treatment. However, no significant differences between the two treatments were observed for nitrogen productivity. It can be concluded that the SDI system is a suitable strategy for irrigating almond crops, reducing consumptive water use and increasing IWP. Full article
Show Figures

Figure 1

24 pages, 15866 KB  
Article
Power and Energy Management of a DC Microgrid for a Renewable Curtailment Case Due to the Integration of a Small-Scale Wind Turbine
by Jamila Aourir, Fabrice Locment and Manuela Sechilariu
Energies 2022, 15(9), 3421; https://doi.org/10.3390/en15093421 - 7 May 2022
Cited by 3 | Viewed by 4010
Abstract
Economic dispatch optimization and power management are the main concerns for a microgrid (MG). They are always studied and are considered to achieve an efficient operation of the MG by simplifying the control process and decreasing losses. The integration of a small-scale wind [...] Read more.
Economic dispatch optimization and power management are the main concerns for a microgrid (MG). They are always studied and are considered to achieve an efficient operation of the MG by simplifying the control process and decreasing losses. The integration of a small-scale wind turbine (SSWD) into a direct current (DC) MG has an impact on its power and energy management. Excess power produced by renewable energy sources (RESs) is one of the problems that face the reliability of the MG and should be resolved. For this reason, a supervisory system is suggested to manage the excess of power. During the supervision process, some criteria, such as the physical limits and tariffs of the components are taken into account. Then, the suggested power management strategy aims to achieve an instantaneous power balance considering a rule-based power and depends on the above-mentioned criteria. To better meet the power balance, it is necessary to explore the constraints related to the control and supervision of the studied DC MG. Performance measures include the overall system energy cost and renewable curtailment (renewable energy that cannot be utilized and should be limited). Thus, the power limitation strategy consists of using two types of “shedding coefficients”, α  and γ, to calculate the power that should be limited from each RES in the case of energy surplus. Simulation tests are carried out using two power management strategies: optimization and without optimization (i.e., storage priority). The results reveal that the coefficient γ reduces the overall energy cost and whatever the applied coefficient, optimization still provides good performances and significantly reduces the global energy cost. Full article
(This article belongs to the Special Issue Wind Turbine Advances)
Show Figures

Figure 1

26 pages, 17206 KB  
Article
Using Remote Sensing to Estimate Scales of Spatial Heterogeneity to Analyze Evapotranspiration Modeling in a Natural Ecosystem
by Ayman Nassar, Alfonso Torres-Rua, Lawrence Hipps, William Kustas, Mac McKee, David Stevens, Héctor Nieto, Daniel Keller, Ian Gowing and Calvin Coopmans
Remote Sens. 2022, 14(2), 372; https://doi.org/10.3390/rs14020372 - 13 Jan 2022
Cited by 16 | Viewed by 5213
Abstract
Understanding the spatial variability in highly heterogeneous natural environments such as savannas and river corridors is an important issue in characterizing and modeling energy fluxes, particularly for evapotranspiration (ET) estimates. Currently, remote-sensing-based surface energy balance (SEB) models are applied [...] Read more.
Understanding the spatial variability in highly heterogeneous natural environments such as savannas and river corridors is an important issue in characterizing and modeling energy fluxes, particularly for evapotranspiration (ET) estimates. Currently, remote-sensing-based surface energy balance (SEB) models are applied widely and routinely in agricultural settings to obtain ET information on an operational basis for use in water resources management. However, the application of these models in natural environments is challenging due to spatial heterogeneity in vegetation cover and complexity in the number of vegetation species existing within a biome. In this research effort, small unmanned aerial systems (sUAS) data were used to study the influence of land surface spatial heterogeneity on the modeling of ET using the Two-Source Energy Balance (TSEB) model. The study area is the San Rafael River corridor in Utah, which is a part of the Upper Colorado River Basin that is characterized by arid conditions and variations in soil moisture status and the type and height of vegetation. First, a spatial variability analysis was performed using a discrete wavelet transform (DWT) to identify a representative spatial resolution/model grid size for adequately solving energy balance components to derive ET. The results indicated a maximum wavelet energy between 6.4 m and 12.8 m for the river corridor area, while the non-river corridor area, which is characterized by different surface types and random vegetation, does not show a peak value. Next, to evaluate the effect of spatial resolution on latent heat flux (LE) estimation using the TSEB model, spatial scales of 6 m and 15 m instead of 6.4 m and 12.8 m, respectively, were used to simplify the derivation of model inputs. The results indicated small differences in the LE values between 6 m and 15 m resolutions, with a slight decrease in detail at 15 m due to losses in spatial variability. Lastly, the instantaneous (hourly) LE was extrapolated/upscaled to daily ET values using the incoming solar radiation (Rs) method. The results indicated that willow and cottonwood have the highest ET rates, followed by grass/shrubs and treated tamarisk. Although most of the treated tamarisk vegetation is in dead/dry condition, the green vegetation growing underneath resulted in a magnitude value of ET. Full article
(This article belongs to the Special Issue Remote Sensing-Based Evapotranspiration Models)
Show Figures

Figure 1

21 pages, 4967 KB  
Article
Modified Permanent Magnet Synchronous Generators for Using in Energy Supply System for Autonomous Consumer
by Denis Kotin, Ilya Ivanov and Sofya Shtukkert
Energies 2021, 14(21), 7196; https://doi.org/10.3390/en14217196 - 2 Nov 2021
Cited by 6 | Viewed by 2938
Abstract
In this paper, the possibility of using synchronous generators with magnetoelectric excitation for the autonomous consumers’ supply with the use of renewable energy sources is considered. To eliminate a number of the disadvantages associated with the difficulty of energy-efficient regulation of the generated [...] Read more.
In this paper, the possibility of using synchronous generators with magnetoelectric excitation for the autonomous consumers’ supply with the use of renewable energy sources is considered. To eliminate a number of the disadvantages associated with the difficulty of energy-efficient regulation of the generated parameters, such as the generated current and voltage, the use of modified multi-winding synchronous generators with permanent magnets is proposed. It allows solving the problem of controlling this type of generator. In addition, the use of this type of generator helps to increase the amount of energy generated. The authors have proposed several synchronous generators with permanent magnets of various supply network architectures: single-phase, two-phase and traditional three-phase types. This will simplify the design of architecture for several cases of consumer power supply systems. It will also help to eliminate the need to organize a balanced distribution of loads in phases to prevent accidents, damage and/or disabling of consumers themselves. Here, we considered mathematical descriptions of several types of generators that differ in their assembling, in particular, the number of phases (one-, two- and three-phase generators), the number of pairs of permanent magnet poles on the rotor, and the method of switching the generator windings among themselves. Using the developed mathematical descriptions that describe the operation of every single winding of the generator, their mathematical models were developed in the SimInTech mathematical modeling environment. The results of the mathematical modeling of these generators were presented; their interpretation for use with renewable energy sources was made; and the methods of using these generators were described. The developed mathematical descriptions of synchronous generators with permanent magnets can be used for further study of their operation. It can also help for the development of control systems and power systems for micro-grid energy complexes that use renewable energy sources to increase the energy efficiency of micro-grid systems. Full article
(This article belongs to the Special Issue Frontiers in Power Electronics and Drive Systems)
Show Figures

Figure 1

26 pages, 6502 KB  
Article
Monitoring Crop Evapotranspiration and Transpiration/Evaporation Partitioning in a Drip-Irrigated Young Almond Orchard Applying a Two-Source Surface Energy Balance Model
by Juan M. Sánchez, Llanos Simón, José González-Piqueras, Francisco Montoya and Ramón López-Urrea
Water 2021, 13(15), 2073; https://doi.org/10.3390/w13152073 - 29 Jul 2021
Cited by 31 | Viewed by 4003
Abstract
Encouraged by the necessity to better understand the water use in this woody crop, a study was carried out in a commercial drip-irrigated young almond orchard to quantify and monitor the crop evapotranspiration (ETc) and its partitioning into tree canopy transpiration [...] Read more.
Encouraged by the necessity to better understand the water use in this woody crop, a study was carried out in a commercial drip-irrigated young almond orchard to quantify and monitor the crop evapotranspiration (ETc) and its partitioning into tree canopy transpiration (T) and soil evaporation (E), to list and analyze single and dual crop coefficients, and to extract relationships between them and the vegetation fractional cover (fc) and remote-sensing-derived vegetation indices (VIs). A Simplified Two-Source Energy Balance (STSEB) model was applied, and the results were compared to ground measurements from a flux tower. This study comprises three consecutive growing seasons from 2017 to 2019, corresponding to Years 2 to 4 after planting. Uncertainties lower than 50 W m−2 were obtained for all terms of the energy balance equation on an instantaneous scale, with average estimation errors of 0.06 mm h−1 and 0.6 mm d−1, for hourly and daily ETc, respectively. Water use for our young almond orchard resulted in average mid-season crop coefficient (Kc mid) values of 0.30, 0.33, and 0.45 for the 2017, 2018, and 2019 growing seasons, corresponding to fc mean values of 0.21, 0.35, and 0.39, respectively. Average daily evapotranspiration for the same periods resulted in 1.7, 2.1, and 3.2 mm d−1. The results entail the possibility of predicting the water use of any age almond orchards by monitoring its biophysical parameters. Full article
(This article belongs to the Special Issue Water Management in Woody Crops: Challenges and Opportunities)
Show Figures

Figure 1

23 pages, 14329 KB  
Article
Assessment of an Automated Calibration of the SEBAL Algorithm to Estimate Dry-Season Surface-Energy Partitioning in a Forest–Savanna Transition in Brazil
by Leonardo Laipelt, Anderson Luis Ruhoff, Ayan Santos Fleischmann, Rafael Henrique Bloedow Kayser, Elisa de Mello Kich, Humberto Ribeiro da Rocha and Christopher Michael Usher Neale
Remote Sens. 2020, 12(7), 1108; https://doi.org/10.3390/rs12071108 - 31 Mar 2020
Cited by 36 | Viewed by 6245
Abstract
Evapotranspiration ( E T ) provides a strong connection between surface energy and hydrological cycles. Advancements in remote sensing techniques have increased our understanding of energy and terrestrial water balances as well as the interaction between surface and atmosphere over large areas. In [...] Read more.
Evapotranspiration ( E T ) provides a strong connection between surface energy and hydrological cycles. Advancements in remote sensing techniques have increased our understanding of energy and terrestrial water balances as well as the interaction between surface and atmosphere over large areas. In this study, we computed surface energy fluxes using the Surface Energy Balance Algorithm for Land (SEBAL) algorithm and a simplified adaptation of the CIMEC (Calibration using Inverse Modeling at Extreme Conditions) process for automated endmember selection. Our main purpose was to assess and compare the accuracy of the automated calibration of the SEBAL algorithm using two different sources of meteorological input data (ground measurements from an eddy covariance flux tower and reanalysis data from Modern-Era Reanalysis for Research and Applications version 2 (MERRA-2)) to estimate the dry season partitioning of surface energy and water fluxes in a transitional area between tropical rainforest and savanna. The area is located in Brazil and is subject to deforestation and cropland expansion. The SEBAL estimates were validated using eddy covariance measurements (2004 to 2006) from the Large-Scale Biosphere-Atmosphere Experiment in the Amazon (LBA) at the Bananal Javaés (JAV) site. Results indicated a high accuracy for daily ET, using both ground measurements and MERRA-2 reanalysis, suggesting a low sensitivity to meteorological inputs. For daily ET estimates, we found a root mean square error (RMSE) of 0.35 mm day−1 for both observed and reanalysis meteorology using accurate quantiles for endmembers selection, yielding an error lower than 9% (RMSE compared to the average daily ET). Overall, the ET rates in forest areas were 4.2 mm day−1, while in grassland/pasture and agricultural areas we found average rates between 2.0 and 3.2 mm day−1, with significant changes in energy partitioning according to land cover. Thus, results are promising for the use of reanalysis data to estimate regional scale patterns of sensible heat (H) and latent heat (LE) fluxes, especially in areas subject to deforestation. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

34 pages, 10325 KB  
Article
Evapotranspiration Estimation in the Sahel Using a New Ensemble-Contextual Method
by Aubin Allies, Jérôme Demarty, Albert Olioso, Ibrahim Bouzou Moussa, Hassane Bil-Assanou Issoufou, Cécile Velluet, Malik Bahir, Ibrahim Maïnassara, Monique Oï, Jean-Philippe Chazarin and Bernard Cappelaere
Remote Sens. 2020, 12(3), 380; https://doi.org/10.3390/rs12030380 - 24 Jan 2020
Cited by 26 | Viewed by 4882
Abstract
In many tropical areas, evapotranspiration is the most important but least known component of the water cycle. An innovative method, named E3S (for EVASPA S-SEBI Sahel), was developed to provide spatially-distributed estimates of daily actual evapotranspiration (ETd) from remote sensing data [...] Read more.
In many tropical areas, evapotranspiration is the most important but least known component of the water cycle. An innovative method, named E3S (for EVASPA S-SEBI Sahel), was developed to provide spatially-distributed estimates of daily actual evapotranspiration (ETd) from remote sensing data in the Sahel. This new method combines the strengths of a contextual approach that is used to estimate the evaporative fraction (EF) from surface temperature vs. albedo scatterograms and of an ensemble approach that derives ETd estimates from a weighted average of evapotranspiration estimated from several EF methods. In this work, the two combined approaches were derived from the simplified surface energy balance index (S-SEBI) model and the EVapotranspiration Assessment from SPAce (EVASPA) tool. Main innovative aspects concern (i) ensemble predictions of ETd through the implementation of a dynamic weighting scheme of several evapotranspiration estimations, (ii) epistemic uncertainty of the estimation of ETd from the analysis of the variability of evapotranspiration estimates, and (iii) a new cloud filtering method that significantly improves the detection of cloud edges that negatively affect EF determination. E3S was applied to MODIS/TERRA and AQUA datasets acquired during the 2005–2008 period over the mesoscale AMMA-CATCH (Analyse Multidisciplinaire de la Mousson Africaine—Couplage de l’Atmosphère Tropicale et du Cycle Hydrologique) observatory in South-West Niger. E3S estimates of instantaneous and daily available energy, evaporative fraction, and evapotranspiration were evaluated at a local scale based on two field-monitored plots representing the two main ecosystem types in the area—a millet crop and a fallow savannah bush. In addition to these ground-based observations, the local scale evaluation was performed against continuous simulations by a locally-calibrated soil-vegetation-atmosphere transfer model for the two plots. The RMSE (root mean square error) from this comparison for E3S’s ETd estimates from combined AQUA/TERRA sources was 0.5 mm·day−1, and the determination coefficient was 0.90. E3S significantly improved representation of the evapotranspiration seasonality, compared with a classical implementation of S-SEBI or with the original EVASPA’s non-weighted ensemble scheme. At the mesoscale, ETd estimates were obtained with an average epistemic uncertainty of 0.4 mm·day−1. Comparisons with the reference 0.25°-resolution GLEAM (global land evaporation Amsterdam model) product showed good agreement. These results suggested that E3S could be used to produce reliable continuous regional estimations at a kilometric resolution, consistent with land and water management requirements in the Sahel. Moreover, all these innovations could be easily transposed to other contextual approaches. Full article
(This article belongs to the Special Issue Remote Sensing of Evapotranspiration (ET) II)
Show Figures

Graphical abstract

26 pages, 847 KB  
Article
A Novel Approach to Model a Gas Network
by Ali Ekhtiari, Ioannis Dassios, Muyang Liu and Eoin Syron
Appl. Sci. 2019, 9(6), 1047; https://doi.org/10.3390/app9061047 - 13 Mar 2019
Cited by 27 | Viewed by 8459
Abstract
The continuous uninterrupted supply of Natural Gas (NG) is crucial to today’s economy, with issues in key infrastructure, e.g., Baumgarten hub in Austria in 2017, highlighting the importance of the NG infrastructure for the supply of primary energy. The balancing of gas supply [...] Read more.
The continuous uninterrupted supply of Natural Gas (NG) is crucial to today’s economy, with issues in key infrastructure, e.g., Baumgarten hub in Austria in 2017, highlighting the importance of the NG infrastructure for the supply of primary energy. The balancing of gas supply from a wide range of sources with various end users can be challenging due to the unique and different behaviours of the end users, which in some cases span across a continent. Further complicating the management of the NG network is its role in supporting the electrical network. The fast response times of NG power plants and the potential to store energy in the network play a key role in adding flexibility across other energy systems. Traditionally, modelling the NG network relies on nonlinear pipe flow equations that incorporate the demand (load), flow rate, and physical network parameters including topography and NG properties. It is crucial that the simulations produce accurate results quickly. This paper seeks to provide a novel method to solve gas flow equations through a network under steady-state conditions. Firstly, the model is reformulated into non-linear matrix equations, then the equations separated into their linear and nonlinear components, and thirdly, the non-linear system is solved approximately by providing a linear system with similar solutions to the non-linear one. The non-linear equations of the NG transport system include the main variables and characteristics of a gas network, focusing on pressure drop in the gas network. Two simplified models, both of the Irish gas network (1. A gas network with 13 nodes, 2. A gas network with 109 nodes) are used as a case study for comparison of the solutions. Results are generated by using the novel method, and they are compared to the outputs of two numerical methods, the Newton–Raphson solution using MATLAB and SAINT, a commercial software that is used for the simulation of the gas network and electrical grids. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

32 pages, 8236 KB  
Article
Analyzing the Near-Field Effects and the Power Production of an Array of Heaving Cylindrical WECs and OSWECs Using a Coupled Hydrodynamic-PTO Model
by Philip Balitsky, Nicolas Quartier, Gael Verao Fernandez, Vasiliki Stratigaki and Peter Troch
Energies 2018, 11(12), 3489; https://doi.org/10.3390/en11123489 - 14 Dec 2018
Cited by 14 | Viewed by 3366
Abstract
The Power Take-Off (PTO) system is the key component of a Wave Energy Converter (WEC) that distinguishes it from a simple floating body because the uptake of the energy by the PTO system modifies the wave field surrounding the WEC. Consequently, the choice [...] Read more.
The Power Take-Off (PTO) system is the key component of a Wave Energy Converter (WEC) that distinguishes it from a simple floating body because the uptake of the energy by the PTO system modifies the wave field surrounding the WEC. Consequently, the choice of a proper PTO model of a WEC is a key factor in the accuracy of a numerical model that serves to validate the economic impact of a wave energy project. Simultaneously, the given numerical model needs to simulate many WEC units operating in close proximity in a WEC farm, as such conglomerations are seen by the wave energy industry as the path to economic viability. A balance must therefore be struck between an accurate PTO model and the numerical cost of running it for various WEC farm configurations to test the viability of any given WEC farm project. Because hydrodynamic interaction between the WECs in a farm modifies the incoming wave field, both the power output of a WEC farm and the surface elevations in the ‘near field’ area will be affected. For certain types of WECs, namely heaving cylindrical WECs, the PTO system strongly modifies the motion of the WECs. Consequently, the choice of a PTO system affects both the power production and the surface elevations in the ‘near field’ of a WEC farm. In this paper, we investigate the effect of a PTO system for a small wave farm that we term ‘WEC array’ of 5 WECs of two types: a heaving cylindrical WEC and an Oscillating Surge Wave Energy Converter (OSWEC). These WECs are positioned in a staggered array configuration designed to extract the maximum power from the incident waves. The PTO system is modelled in WEC-Sim, a purpose-built WEC dynamics simulator. The PTO system is coupled to the open-source wave structure interaction solver NEMOH to calculate the average wave field η in the ‘near-field’. Using a WEC-specific novel PTO system model, the effect of a hydraulic PTO system on the WEC array power production and the near-field is compared to that of a linear PTO system. Results are given for a series of regular wave conditions for a single WEC and subsequently extended to a 5-WEC array. We demonstrate the quantitative and qualitative differences in the power and the ‘near-field’ effects between a 5-heaving cylindrical WEC array and a 5-OSWEC array. Furthermore, we show that modeling a hydraulic PTO system as a linear PTO system in the case of a heaving cylindrical WEC leads to considerable inaccuracies in the calculation of average absorbed power, but not in the near-field surface elevations. Yet, in the case of an OSWEC, a hydraulic PTO system cannot be reduced to a linear PTO coefficient without introducing substantial inaccuracies into both the array power output and the near-field effects. We discuss the implications of our results compared to previous research on WEC arrays which used simplified linear coefficients as a proxy for PTO systems. Full article
(This article belongs to the Special Issue Renewable Energy in Marine Environment)
Show Figures

Figure 1

16 pages, 8674 KB  
Article
Assessing Olive Evapotranspiration Partitioning from Soil Water Balance and Radiometric Soil and Canopy Temperatures
by Francisco L. Santos
Agronomy 2018, 8(4), 43; https://doi.org/10.3390/agronomy8040043 - 6 Apr 2018
Cited by 6 | Viewed by 5109
Abstract
Evapotranspiration (ETc) partitioning and obtaining of FAO56 dual crop coefficient (Kc) for olive was carried out with the SIMDualKc software application for root zone and topsoil soil water balance based on the dual crop coefficients. A simplified [...] Read more.
Evapotranspiration (ETc) partitioning and obtaining of FAO56 dual crop coefficient (Kc) for olive was carried out with the SIMDualKc software application for root zone and topsoil soil water balance based on the dual crop coefficients. A simplified two source-energy balance model (STSEB), based on daily remotely sensed soil and canopy thermal infrared data and retrieval of surface fluxes, also provided information on partitioning ETc for the olive orchard. Both models were calibrated and validated with ground-based, sap flow-derived transpiration rates, and their performance was compared in partitioning ETc for incomplete cover, intensive olive grown in orchards (≤300 trees ha−1). The SIMDualKc proved adequate in partitioning ETc. The STSEB model underestimated ETc mostly by inadequately simulating soil evaporation and its contribution to the total latent heat flux. Such results suggest difficulties in using information from the STSEB algorithm for assessing ETc and dual Kc crop coefficients of intensive olive orchards with incomplete ground cover. Full article
(This article belongs to the Special Issue Sensing and Automated Systems for Improved Crop Management)
Show Figures

Figure 1

14 pages, 1653 KB  
Article
Unstable Leader Inception Criteria of Atmospheric Discharges
by Liliana Arevalo and Vernon Cooray
Atmosphere 2017, 8(9), 156; https://doi.org/10.3390/atmos8090156 - 23 Aug 2017
Cited by 6 | Viewed by 5484
Abstract
In the literature, there are different criteria to represent the formation of a leader channel in short and long gap discharges. Due to the complexity of the physics of the heating phenomena, and the limitations of the computational resources, a simplified criterion for [...] Read more.
In the literature, there are different criteria to represent the formation of a leader channel in short and long gap discharges. Due to the complexity of the physics of the heating phenomena, and the limitations of the computational resources, a simplified criterion for the minimum amount of electrical charge required to incept an unstable leader has recently been used for modeling long gap discharges and lightning attachments. The criterion is based on the assumption that the total energy of the streamer is used to heat up the gas, among other principles. However, from a physics point of view, energy can also be transferred to other molecular processes, such as rotation, translation, and vibrational excitation. In this paper, the leader inception mechanism was studied based on fundamental particle physics and the energy balance of the gas media. The heating process of the plasma is evaluated with a detailed two-dimensional self-consistent model. The model is able to represent the streamer propagation, dark period, and unsuccessful leaders that may occur prior to the heating of the channel. The main processes that participate in heating the gas are identified within the model, indicating that impact ionization and detachment are the leading sources of energy injection, and that recombination is responsible for loss of electrons and limiting the energy. The model was applied to a well-known experiment for long air gaps under positive switching impulses reported in the literature, and used to validate models for lightning attachments and long gap discharges. Results indicate that the streamer–leader transition depends on the amount of energy transferred to the heating process. The minimum electric charge required for leader inception varies with the gap geometry, the background electric field, the reduction of electric field due to the space charge, the energy expended on the vibrational relation, and the environmental conditions, among others. Full article
Show Figures

Figure 1

53 pages, 380 KB  
Review
A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data
by Zhao-Liang Li, Ronglin Tang, Zhengming Wan, Yuyun Bi, Chenghu Zhou, Bohui Tang, Guangjian Yan and Xiaoyu Zhang
Sensors 2009, 9(5), 3801-3853; https://doi.org/10.3390/s90503801 - 19 May 2009
Cited by 648 | Viewed by 26723
Abstract
An overview of the commonly applied evapotranspiration (ET) models using remotely sensed data is given to provide insight into the estimation of ET on a regional scale from satellite data. Generally, these models vary greatly in inputs, main assumptions and accuracy of results, [...] Read more.
An overview of the commonly applied evapotranspiration (ET) models using remotely sensed data is given to provide insight into the estimation of ET on a regional scale from satellite data. Generally, these models vary greatly in inputs, main assumptions and accuracy of results, etc. Besides the generally used remotely sensed multi-spectral data from visible to thermal infrared bands, most remotely sensed ET models, from simplified equations models to the more complex physically based two-source energy balance models, must rely to a certain degree on ground-based auxiliary measurements in order to derive the turbulent heat fluxes on a regional scale. We discuss the main inputs, assumptions, theories, advantages and drawbacks of each model. Moreover, approaches to the extrapolation of instantaneous ET to the daily values are also briefly presented. In the final part, both associated problems and future trends regarding these remotely sensed ET models were analyzed to objectively show the limitations and promising aspects of the estimation of regional ET based on remotely sensed data and ground-based measurements. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

22 pages, 2223 KB  
Article
A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields
by Gabriel B. Senay, Michael Budde, James P. Verdin and Assefa M. Melesse
Sensors 2007, 7(6), 979-1000; https://doi.org/10.3390/s7060979 - 15 Jun 2007
Cited by 249 | Viewed by 21901
Abstract
Accurate crop performance monitoring and production estimation are critical fortimely assessment of the food balance of several countries in the world. Since 2001, theFamine Early Warning Systems Network (FEWS NET) has been monitoring cropperformance and relative production using satellite-derived data and simulation models [...] Read more.
Accurate crop performance monitoring and production estimation are critical fortimely assessment of the food balance of several countries in the world. Since 2001, theFamine Early Warning Systems Network (FEWS NET) has been monitoring cropperformance and relative production using satellite-derived data and simulation models inAfrica, Central America, and Afghanistan where ground-based monitoring is limitedbecause of a scarcity of weather stations. The commonly used crop monitoring models arebased on a crop water-balance algorithm with inputs from satellite-derived rainfallestimates. These models are useful to monitor rainfed agriculture, but they are ineffectivefor irrigated areas. This study focused on Afghanistan, where over 80 percent ofagricultural production comes from irrigated lands. We developed and implemented aSimplified Surface Energy Balance (SSEB) model to monitor and assess the performanceof irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250-m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water- use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between upstream and downstream basins. A major advantage of the energy-balance approach is that it can be used to quantify spatial extent of irrigated fields and their water-use dynamics without reference to source of water as opposed to a water- balance model which requires knowledge of both the magnitude and temporal distribution of rainfall and irrigation applied to fields. Full article
(This article belongs to the Special Issue Remote Sensing of Natural Resources and the Environment)
Show Figures

Back to TopTop