Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = single-cell force spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2274 KB  
Article
An Attomolar-Level Biosensor Based on Polypyrrole and TiO2@Pt Nanocomposite for Electrochemical Detection of TCF3-PBX1 Oncogene in Acute Lymphoblastic Leukemia
by Saulo Henrique Silva, Karen Yasmim Pereira dos Santos Avelino, Norma Lucena-Silva, Abdelhamid Errachid, Maria Danielly Lima de Oliveira and César Augusto Souza de Andrade
Sensors 2025, 25(17), 5313; https://doi.org/10.3390/s25175313 - 27 Aug 2025
Viewed by 673
Abstract
Acute lymphoblastic leukemia (ALL) represents the most common type of cancer in the pediatric population. The (1;19)(q23;p13) translocation is a primary chromosomal abnormality present in 3–12% of ALL cases. The current study aims to develop a label-free innovative nanodevice for the ultrasensitive diagnosis [...] Read more.
Acute lymphoblastic leukemia (ALL) represents the most common type of cancer in the pediatric population. The (1;19)(q23;p13) translocation is a primary chromosomal abnormality present in 3–12% of ALL cases. The current study aims to develop a label-free innovative nanodevice for the ultrasensitive diagnosis of the TCF3-PBX1 chimeric oncogene, featuring simplified operation and rapid analysis using minimal sample volumes, which positions it as a superior alternative for clinical diagnostics and early leukemia identification. The biosensor system was engineered on a nanostructured platform composed of polypyrrole (PPy) and a novel chemically functionalized hybrid nanocomposite of platinum nanospheres and titanium dioxide nanoparticles (TiO2@Pt). Single-stranded oligonucleotide sequences were chemically immobilized on the nanoengineered transducer to enable biospecific detection. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ultraviolet-visible spectroscopy (UV-Vis), and atomic force microscopy (AFM) were used to characterize each stage of the biotechnological device fabrication process. The analytical properties of the sensing tool were explored using recombinant plasmids containing the TCF3-PBX1 oncogenic sequence and clinical specimens from pediatric patients with B-cell ALL. After exposing the molecular monitoring system to the genetic target, significant variations were observed in the voltammetric oxidation current (∆I = 33.08% ± 0.28 to 124.91% ± 17.08) and in the resistance to charge transfer (ΔRCT = 19.73% ± 0.96 to 83.51% ± 0.84). Data analysis revealed high reproducibility, with a relative standard deviation of 3.66%, a response range from 3.58 aM to 357.67 fM, a detection limit of 19.31 aM, and a limit of quantification of 64.39 aM. Therefore, a novel nanosensor for multiparametric electrochemical screening of the TCF3-PBX1 chimeric oncogene was described for the first time, potentially improving the quality of life for leukemic patients. Full article
(This article belongs to the Special Issue Nanotechnology Applications in Sensors Development)
Show Figures

Figure 1

15 pages, 4194 KB  
Article
Performance Enhancement of a-C:Cr Thin Films Deposited on 316L Stainless Steel as Bipolar Plates via a Thin Ti Layer by Mid-Frequency Magnetron Sputtering for PEMFC Application
by Yuxing Zhao, Song Li, Saiqiang Wang, Ming Ma, Ming Chen, Jiao Yang, Chunlei Yang and Weimin Li
Energies 2025, 18(13), 3270; https://doi.org/10.3390/en18133270 - 23 Jun 2025
Viewed by 491
Abstract
Ti/a-C:Cr multilayer films were deposited on 316L stainless steel (SS316L) substrates using medium-frequency alternating current magnetron sputtering, with a single-layer a-C:Cr film also prepared on a titanium substrate. The influence of sputtering pressure on the film’s structure and properties was systematically investigated. Film [...] Read more.
Ti/a-C:Cr multilayer films were deposited on 316L stainless steel (SS316L) substrates using medium-frequency alternating current magnetron sputtering, with a single-layer a-C:Cr film also prepared on a titanium substrate. The influence of sputtering pressure on the film’s structure and properties was systematically investigated. Film morphology and microstructure were analyzed via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). At a pressure of 1.4 MPa, the interfacial contact resistance (ICR) of SS316L bipolar plates (BPPs) coated with the films reached as low as 3.30 mΩ·cm2, while that of titanium BPPs was 2.90 mΩ·cm2. Under simulated proton exchange membrane fuel cell (PEMFC) cathode conditions (70 °C, 0.6 V vs. SCE, 0.5 M H2SO4, 5 ppm HF solution), the corrosion current density, Icorr, reached optimal values of 0.69 μA·cm−2 for SS316L and 0.62 μA·cm−2 for titanium. These results demonstrate that parameter optimization enables SS316L BPPs to functionally replace titanium counterparts, offering significant cost reductions for metal BPPs and accelerating the commercialization of PEMFC technology. Full article
Show Figures

Figure 1

28 pages, 7518 KB  
Article
Probing Bacterial Interactions with the Schistosoma mansoni-Killing Toxin Biomphalysin via Atomic Force Microscopy and Single Molecule Force Spectroscopy
by Jihen Zouaoui, Pierre Poteaux, Audrey Beaussart, Nicolas Lesniewska, David Duval and Jérôme F. L. Duval
Toxins 2025, 17(6), 269; https://doi.org/10.3390/toxins17060269 - 27 May 2025
Viewed by 1553
Abstract
Recent work has identified biomphalysin (BM) protein from the snail Biomphalaria glabrata as a cytolytic toxin against the Schistosoma mansoni parasite. Ex vivo interactome studies further evidenced BM’s ability to bind bacterial outer membrane proteins, but its specific antibacterial mechanisms and selectivity remain [...] Read more.
Recent work has identified biomphalysin (BM) protein from the snail Biomphalaria glabrata as a cytolytic toxin against the Schistosoma mansoni parasite. Ex vivo interactome studies further evidenced BM’s ability to bind bacterial outer membrane proteins, but its specific antibacterial mechanisms and selectivity remain unclear. Accordingly, this study aims to elucidate the interaction between BM and two model bacteria with distinct cell surface architectures: Escherichia coli (Gram−) and Micrococcus luteus (Gram+). Employing a multiscale approach, we used in vivo single-molecule force spectroscopy (SMFS) to probe molecular interactions at the single cell level. Combined with cell aggregation assays, immunoblotting and Atomic Force Microscopy (AFM) imaging, SMFS results evidenced a selective interaction of BM from snail plasma with M. luteus but not E. coli. Exposure of M. luteus to BM compromised cell surface integrity and induced cell aggregation. These effects correlated with a patch-like distribution of BM on M. luteus reminiscent of pore-forming toxins, as revealed by the anti-BM antibody-functionalized AFM tip. Overall, this work highlights the utility of SMFS in dissecting host–pathogen molecular dialogs. It reveals BM’s selective action against M. luteus, potentially via surface clustering, and it shows spatially heterogeneous responses to the toxin within and between individual cells. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Graphical abstract

28 pages, 13218 KB  
Article
Optothermal Properties of Donor–Acceptor Layers, Including PTB7, PTB7th, Y5, and Y6, for Organic Photovoltaic Cell Applications
by Gabriela Lewinska, Jarosław Kanak, Jerzy Sanetra and Konstanty W. Marszalek
Materials 2025, 18(8), 1841; https://doi.org/10.3390/ma18081841 - 17 Apr 2025
Cited by 1 | Viewed by 807
Abstract
This study addresses the development and optothermal analysis of donor–acceptor thin layers, including materials universally used in organic photovoltaic cells. This article presents the impact of temperature on the optical properties and morphology of thin films made from materials commonly used in organic [...] Read more.
This study addresses the development and optothermal analysis of donor–acceptor thin layers, including materials universally used in organic photovoltaic cells. This article presents the impact of temperature on the optical properties and morphology of thin films made from materials commonly used in organic solar cells. This research focused on two donor materials (PTB7 and PTB7th) and two non-fullerene acceptors (Y5 and Y6), individually and in binary combinations with PTB7 and PTB7th. This study employed various techniques, including UV–Vis spectroscopy, ellipsometry, and atomic force microscopy (AFM), to analyze changes in the absorption, refractive index, extinction coefficient, and morphology at temperatures ranging from 30 °C to 120 °C. This research shows reversible changes in thickness and absorption with temperature, but the extent of these changes differs between PTB7 and PTB7th. Y5 shows some reversible changes, while Y6 demonstrates greater instability and more permanent changes at higher temperatures. The enhanced thermal stability of binary mixtures compared to single-component materials was observed. Full article
(This article belongs to the Special Issue The Optical, Ferroelectric and Dielectric Properties of Thin Films)
Show Figures

Figure 1

15 pages, 5121 KB  
Article
Combining Operando Techniques for an Accurate Depiction of the SEI Formation in Lithium-Ion Batteries
by Michael Stich, Jesus Eduardo Valdes Landa, Isabel Pantenburg, Falk Thorsten Krauss, Christoph Baumer, Bernhard Roling and Andreas Bund
Batteries 2025, 11(4), 117; https://doi.org/10.3390/batteries11040117 - 21 Mar 2025
Cited by 2 | Viewed by 1226
Abstract
Its crucial importance to the long-term operation of lithium-ion batteries has made the solid electrolyte interphase (SEI) the subject of intensive research efforts. These investigations are challenging, however, due to the very complex and fragile nature of this layer. With its typical thickness [...] Read more.
Its crucial importance to the long-term operation of lithium-ion batteries has made the solid electrolyte interphase (SEI) the subject of intensive research efforts. These investigations are challenging, however, due to the very complex and fragile nature of this layer. With its typical thickness being in the range of some 10 nm and its chemical make-up being highly sensitive to even the smallest amounts of impurities, it becomes clear that artifacts are easily introduced in investigations of the SEI, especially if the measurements are performed ex situ. To help ameliorate these issues, we herein report a combination of non-destructive operando techniques that can be employed simultaneously in the same electrochemical cell to provide a plethora of physical, morphological, and electrochemical data on the macroscopic and microscopic scale. These techniques encompass atomic force microscopy (AFM), electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D), and impedance spectroscopy (EIS). This work focuses on how to combine these techniques in a single electrochemical cell, which is suitable to study SEI formation while avoiding noise, crosstalk, inhomogeneous SEI formation, and other pitfalls. Full article
Show Figures

Figure 1

19 pages, 12311 KB  
Article
Rapid and Efficient Polymer/Contaminant Removal from Single-Layer Graphene via Aqueous Sodium Nitrite Rinsing for Enhanced Electronic Applications
by Kimin Lee, Juneyoung Kil, JaeWoo Park, Sui Yang and Byoungchoo Park
Polymers 2025, 17(5), 689; https://doi.org/10.3390/polym17050689 - 4 Mar 2025
Viewed by 1507
Abstract
The removal of surface residues from single-layer graphene (SLG), including poly(methyl methacrylate) (PMMA) polymers and Cl ions, during the transfer process remains a significant challenge with regard to preserving the intrinsic properties of SLG, with the process often leading to unintended doping [...] Read more.
The removal of surface residues from single-layer graphene (SLG), including poly(methyl methacrylate) (PMMA) polymers and Cl ions, during the transfer process remains a significant challenge with regard to preserving the intrinsic properties of SLG, with the process often leading to unintended doping and reduced electronic performance capabilities. This study presents a rapid and efficient surface treatment method that relies on an aqueous sodium nitrite (NaNO2) solution to remove such contaminants effectively. The NaNO2 solution rinse leverages reactive nitric oxide (NO) species to neutralize ionic contaminants (e.g., Cl) and partially oxidize polymer residues in less than 10 min, thereby facilitating a more thorough final cleaning while preserving the intrinsic properties of graphene. Characterization techniques, including atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM), and X-ray photoelectron spectroscopy (XPS), demonstrated substantial reductions in the levels of surface residues. The treatment restored the work function of the SLG to approximately 4.79 eV, close to that of pristine graphene (~4.5–4.8 eV), compared to the value of nearly 5.09 eV for conventional SLG samples treated with deionized (DI) water. Raman spectroscopy confirmed the reduced doping effects and improved structural integrity of the rinsed SLG. This effective rinsing process enhances the reproducibility and performance of SLG, enabling its integration into advanced electronic devices such as organic light-emitting diodes (OLEDs), photovoltaic (PV) cells, and transistors. Furthermore, the technique is broadly applicable to other two-dimensional (2D) materials, paving the way for next-generation (opto)electronic technologies. Full article
(This article belongs to the Special Issue Graphene-Based Polymer Composites and Their Applications II)
Show Figures

Figure 1

13 pages, 1986 KB  
Article
Nano-Biomechanical Investigation of Phosphatidylserine-Mediated Ebola Viral Attachment via Human Gas6 and Axl
by Decheng Hou, Qian Mu, Weixuan Chen, Wenpeng Cao and Xiaohui Frank Zhang
Viruses 2024, 16(11), 1700; https://doi.org/10.3390/v16111700 - 30 Oct 2024
Viewed by 1503
Abstract
The Ebola virus is a deadly pathogen that has been threatening public health for decades. Recent studies have revealed alternative viral invasion routes where Ebola virus approaches cells via interactions among phosphatidylserine (PS), PS binding ligands such as Gas6, and TAM family receptors [...] Read more.
The Ebola virus is a deadly pathogen that has been threatening public health for decades. Recent studies have revealed alternative viral invasion routes where Ebola virus approaches cells via interactions among phosphatidylserine (PS), PS binding ligands such as Gas6, and TAM family receptors such as Axl. In this study, we investigate the interactions among phosphatidylserine on the Ebola viral-like particle (VLP) membrane, human Gas6, and human Axl using atomic force microscope-based single molecule force spectroscopy to compare their binding strength and affinity from a biomechanical perspective. The impact of calcium ions on their interactions is also studied and quantified to provide more details on the calcium-dependent phosphatidylserine-Gas6 binding mechanism. Our results indicate that, in the presence of calcium ions, the binding strengths of VLP-Gas6 and VLP-Gas6-Axl increase but are still weaker than that of Gas6-Axl, and the binding affinity of VLP-Gas6 and VLP-Gas6-Axl is largely improved. The binding strength and affinity of Gas6-Axl basically remain the same, indicating no impact in the presence of calcium ions. Together, our study suggests that, under physiological conditions with calcium present, the Ebola virus can utilize its membrane phosphatidylserine to dock on cell surface via Gas6-Axl bound complex. Full article
(This article belongs to the Special Issue Nanotechnological Applications in Virology 2023)
Show Figures

Figure 1

25 pages, 7326 KB  
Article
Physico-Chemical Properties of Copper-Doped Hydroxyapatite Coatings Obtained by Vacuum Deposition Technique
by Yassine Benali, Daniela Predoi, Krzysztof Rokosz, Carmen Steluta Ciobanu, Simona Liliana Iconaru, Steinar Raaen, Catalin Constantin Negrila, Carmen Cimpeanu, Roxana Trusca, Liliana Ghegoiu, Coralia Bleotu, Ioana Cristina Marinas, Miruna Stan and Khaled Boughzala
Materials 2024, 17(15), 3681; https://doi.org/10.3390/ma17153681 - 25 Jul 2024
Cited by 4 | Viewed by 2129
Abstract
The hydroxyapatite and copper-doped hydroxyapatite coatings (Ca10−xCux(PO4)6(OH)2; xCu = 0, 0.03; HAp and 3CuHAp) were obtained by the vacuum deposition technique. Then, both coatings were analyzed by the X-ray diffraction (XRD), scanning [...] Read more.
The hydroxyapatite and copper-doped hydroxyapatite coatings (Ca10−xCux(PO4)6(OH)2; xCu = 0, 0.03; HAp and 3CuHAp) were obtained by the vacuum deposition technique. Then, both coatings were analyzed by the X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and water contact angle techniques. Information regarding the in vitro antibacterial activity and biological evaluation were obtained. The XRD studies confirmed that the obtained thin films consist of a single phase associated with hydroxyapatite (HAp). The obtained 2D and 3D SEM images did not show cracks or other types of surface defects. The FTIR studies’ results proved the presence of vibrational bands characteristic of the hydroxyapatite structure in the studied coating. Moreover, information regarding the HAp and 3CuHAp surface wettability was obtained by water contact angle measurements. The biocompatibility of the HAp and 3CuHAp coatings was evaluated using the HeLa and MG63 cell lines. The cytotoxicity evaluation of the coatings was performed by assessing the cell viability through the MTT assay after incubation with the HAp and 3CuHAp coatings for 24, 48, and 72 h. The results proved that the 3CuHAp coatings exhibited good biocompatible activity for all the tested intervals. The ability of Pseudomonas aeruginosa 27853 ATCC (P. aeruginosa) cells to adhere to and develop on the surface of the HAp and 3CuHAp coatings was investigated using AFM studies. The AFM studies revealed that the 3CuHAp coatings inhibited the formation of P. aeruginosa biofilms. The AFM data indicated that P. aeruginosa’s attachment and development on the 3CuHAp coatings were significantly inhibited within the first 24 h. Both the 2D and 3D topographies showed a rapid decrease in attached bacterial cells over time, with a significant reduction observed after 72 h of exposure. Our studies suggest that 3CuHAp coatings could be suitable candidates for biomedical uses such as the development of new antimicrobial agents. Full article
(This article belongs to the Special Issue Recent Advances and Emerging Challenges in Functional Coatings)
Show Figures

Figure 1

20 pages, 4524 KB  
Article
Stereoselective Asymmetric Syntheses of Molecules with a 4,5-Dihydro-1H-[1,2,4]-Triazoline Core Possessing an Acetylated Carbohydrate Appendage: Crystal Structure, Spectroscopy, and Pharmacology
by Anwaar S. Al Maqbali, Nawal K. Al Rasbi, Wajdi M. Zoghaib, Nallusamy Sivakumar, Craig C. Robertson, Musa S. Shongwe, Norbert Grzegorzek and Raid J. Abdel-Jalil
Molecules 2024, 29(12), 2839; https://doi.org/10.3390/molecules29122839 - 14 Jun 2024
Cited by 2 | Viewed by 1800
Abstract
A new series of chiral 4,5-dihydro-1H-[1,2,4]-triazoline molecules, featuring a β-ᴅ-glucopyranoside appendage, were synthesized via a 1,3-dipolar cycloaddition reaction between various hydrazonyl chlorides and carbohydrate Schiff bases. The isolated enantiopure triazolines (8aj) were identified through high-resolution mass spectrometry [...] Read more.
A new series of chiral 4,5-dihydro-1H-[1,2,4]-triazoline molecules, featuring a β-ᴅ-glucopyranoside appendage, were synthesized via a 1,3-dipolar cycloaddition reaction between various hydrazonyl chlorides and carbohydrate Schiff bases. The isolated enantiopure triazolines (8aj) were identified through high-resolution mass spectrometry (HRMS) and vibrational spectroscopy. Subsequently, their solution structures were elucidated through NMR spectroscopic techniques. Single-crystal X-ray analysis of derivative 8b provided definitive evidence for the 3-D structure of this compound and revealed important intermolecular forces in the crystal lattice. Moreover, it confirmed the (S)-configuration at the newly generated stereo-center. Selected target compounds were investigated for anti-tumor activity in 60 cancer cell lines, with derivative 8c showing the highest potency, particularly against leukemia. Additionally, substituent-dependent anti-fungal and anti-bacterial behavior was observed. Full article
Show Figures

Figure 1

18 pages, 11400 KB  
Review
The Contribution of Scanning Force Microscopy on Dental Research: A Narrative Review
by Christine Müller-Renno and Christiane Ziegler
Materials 2024, 17(9), 2100; https://doi.org/10.3390/ma17092100 - 29 Apr 2024
Cited by 3 | Viewed by 2281
Abstract
Scanning force microscopy (SFM) is one of the most widely used techniques in biomaterials research. In addition to imaging the materials of interest, SFM enables the mapping of mechanical properties and biological responses with sub-nanometer resolution and piconewton sensitivity. This review aims to [...] Read more.
Scanning force microscopy (SFM) is one of the most widely used techniques in biomaterials research. In addition to imaging the materials of interest, SFM enables the mapping of mechanical properties and biological responses with sub-nanometer resolution and piconewton sensitivity. This review aims to give an overview of using the scanning force microscope (SFM) for investigations on dental materials. In particular, SFM-derived methods such as force–distance curves (scanning force spectroscopy), lateral force spectroscopy, and applications of the FluidFM® will be presented. In addition to the properties of dental materials, this paper reports the development of the pellicle by the interaction of biopolymers such as proteins and polysaccharides, as well as the interaction of bacteria with dental materials. Full article
(This article belongs to the Special Issue Materials and Techniques in Dentistry, Oral Surgery and Orthodontics)
Show Figures

Figure 1

15 pages, 4198 KB  
Article
Freeze-Dried Camelina Lipid Droplets Loaded with Human Basic Fibroblast Growth Factor-2 Formulation for Transdermal Delivery: Breaking through the Cuticle Barrier to Accelerate Deep Second-Degree Burn Healing
by Hongtao Gao, Xue Wang, Hao Wu, Yuan Zhang, Wenxiao Zhang, Zuobin Wang, Xin Liu, Xiaokun Li and Haiyan Li
Pharmaceuticals 2023, 16(10), 1492; https://doi.org/10.3390/ph16101492 - 20 Oct 2023
Cited by 1 | Viewed by 1989
Abstract
Transdermal administration of chemo therapeutics into burn healing may be an effective treatment to reduce toxic side effects and improve patient compliance for burns. As a transdermal delivery system, Camelina lipid droplets (CLDs) have received great attention due to their biocompatibility, high drug [...] Read more.
Transdermal administration of chemo therapeutics into burn healing may be an effective treatment to reduce toxic side effects and improve patient compliance for burns. As a transdermal delivery system, Camelina lipid droplets (CLDs) have received great attention due to their biocompatibility, high drug payload, and rapid absorption. However, the absorbed-related mechanisms of Camelina lipid droplets have not yet been reported. Thus, this paper not only demonstrated that CLD can accelerate skin burn healing through promoting hFGF2 absorption, but also elucidated the mechanism between the skin tissue and keratinocytes using Franz, HE staining, DSC, FTIR spectroscopy, and atomic force microscopy with the presence of CLD-hFGF2 freeze-dried powder. We found that the cumulative release rate of CLD-hFGF2 freeze-dried powder was significantly higher than that of free hFGF2 freeze-dried powder into the skin. At the same time, CLD can change the structure and content of lipids and keratin to increase the permeability of hFGF2 freeze-dried powder in skin tissue. Unlike the free state of hFGF2, the biophysical properties of single cells, including height and adhesion force, were changed under CLD-hFGF2 freeze-dried powder treatment. Meanwhile, CLD-hFGF2 freeze-dried powder was more easily taken up through keratinocytes without damaging cell integrity, which provided a new viewpoint for understanding the absorption mechanism with the CLD system for cellular physiology characteristics. Overall, our findings demonstrated that CLD could break through the stratum corneum (SC) barrier and elucidated the transport mechanism of lipid droplets in skin tissue, which provides a crucial guideline in drug delivery applications for future engineering. Full article
(This article belongs to the Special Issue Biodegradable Polymeric Nanosystems for Drug Delivery)
Show Figures

Graphical abstract

13 pages, 4656 KB  
Article
Revealing the Control Mechanisms of pH on the Solution Properties of Chitin via Single-Molecule Studies
by Song Zhang, Miao Yu, Guoqiang Zhang, Guanmei He, Yunxu Ji, Juan Dong, Huayan Zheng and Lu Qian
Molecules 2023, 28(19), 6769; https://doi.org/10.3390/molecules28196769 - 22 Sep 2023
Cited by 3 | Viewed by 2726
Abstract
Chitin is one of the most common polysaccharides and is abundant in the cell walls of fungi and the shells of insects and aquatic organisms as a skeleton. The mechanism of how chitin responds to pH is essential to the precise control of [...] Read more.
Chitin is one of the most common polysaccharides and is abundant in the cell walls of fungi and the shells of insects and aquatic organisms as a skeleton. The mechanism of how chitin responds to pH is essential to the precise control of brewing and the design of smart chitin materials. However, this molecular mechanism remains a mystery. Results from single-molecule studies, including single-molecule force spectroscopy (SMFS), AFM imaging, and molecular dynamic (MD) simulations, have shown that the mechanical and conformational behaviors of chitin molecules show surprising pH responsiveness. This can be compared with how, in natural aqueous solutions, chitin tends to form a more relaxed spreading conformation and show considerable elasticity under low stretching forces in acidic conditions. However, its molecular chain collapses into a rigid globule in alkaline solutions. The results show that the chain state of chitin can be regulated by the proportions of inter- and intramolecular H-bonds, which are determined via the number of water bridges on the chain under different pH values. This basic study may be helpful for understanding the cellular activities of fungi under pH stress and the design of chitin-based drug carriers. Full article
Show Figures

Graphical abstract

19 pages, 3230 KB  
Article
A Strategy for Tuning the Structure, Morphology, and Magnetic Properties of MnFe2O4/SiO2 Ceramic Nanocomposites via Mono-, Di-, and Trivalent Metal Ion Doping and Annealing
by Thomas Dippong, Erika Andrea Levei, Ioan Petean, Iosif Grigore Deac and Oana Cadar
Nanomaterials 2023, 13(14), 2129; https://doi.org/10.3390/nano13142129 - 22 Jul 2023
Cited by 8 | Viewed by 2087
Abstract
This work presents the effect of monovalent (Ag+, Na+), divalent (Ca2+, Cd2+), and trivalent (La3+) metal ion doping and annealing temperature (500, 800, and 1200 °C) on the structure, morphology, and magnetic properties [...] Read more.
This work presents the effect of monovalent (Ag+, Na+), divalent (Ca2+, Cd2+), and trivalent (La3+) metal ion doping and annealing temperature (500, 800, and 1200 °C) on the structure, morphology, and magnetic properties of MnFe2O4/SiO2 ceramic nanocomposites synthesized via sol–gel method. Fourier-transform infrared spectroscopy confirms the embedding of undoped and doped MnFe2O4 nanoparticles in the SiO2 matrix at all annealing temperatures. In all cases, the X-ray diffraction (XRD) confirms the formation of MnFe2O4. In the case of undoped, di-, and trivalent metal-ion-doped gels annealed at 1200 °C, three crystalline phases (cristobalite, quartz, and tridymite) belonging to the SiO2 matrix are observed. Doping with mono- and trivalent ions enhances the nanocomposite’s structure by forming single-phase MnFe2O4 at low annealing temperatures (500 and 800 °C), while doping with divalent ions and high annealing temperature (1200 °C) results in additional crystalline phases. Atomic force microscopy (AFM) reveals spherical ferrite particles coated by an amorphous layer. The AFM images showed spherical particles formed due to the thermal treatment. The structural parameters calculated by XRD (crystallite size, crystallinity, lattice constant, unit cell volume, hopping length, density, and porosity) and AFM (particle size, powder surface area, and thickness of coating layer), as well as the magnetic parameters (saturation magnetization, remanent magnetization, coercivity, and anisotropy constant), are contingent on the doping ion and annealing temperature. By doping, the saturation magnetization and magnetocrystalline anisotropy decrease for gels annealed at 800 °C, but increase for gels annealed at 1200 °C, while the remanent magnetization and coercivity decrease by doping at both annealing temperatures (800 and 1200 °C). Full article
Show Figures

Figure 1

12 pages, 1236 KB  
Hypothesis
Relevance of Host Cell Surface Glycan Structure for Cell Specificity of Influenza A Viruses
by Markus Kastner, Andreas Karner, Rong Zhu, Qiang Huang, Andreas Geissner, Anne Sadewasser, Markus Lesch, Xenia Wörmann, Alexander Karlas, Peter H. Seeberger, Thorsten Wolff, Peter Hinterdorfer, Andreas Herrmann and Christian Sieben
Viruses 2023, 15(7), 1507; https://doi.org/10.3390/v15071507 - 5 Jul 2023
Cited by 5 | Viewed by 2698
Abstract
Influenza A viruses (IAVs) initiate infection via binding of the viral hemagglutinin (HA) to sialylated glycans on host cells. HA’s receptor specificity towards individual glycans is well studied and clearly critical for virus infection, but the contribution of the highly heterogeneous and complex [...] Read more.
Influenza A viruses (IAVs) initiate infection via binding of the viral hemagglutinin (HA) to sialylated glycans on host cells. HA’s receptor specificity towards individual glycans is well studied and clearly critical for virus infection, but the contribution of the highly heterogeneous and complex glycocalyx to virus–cell adhesion remains elusive. Here, we use two complementary methods, glycan arrays and single-virus force spectroscopy (SVFS), to compare influenza virus receptor specificity with virus binding to live cells. Unexpectedly, we found that HA’s receptor binding preference does not necessarily reflect virus–cell specificity. We propose SVFS as a tool to elucidate the cell binding preference of IAVs, thereby including the complex environment of sialylated receptors within the plasma membrane of living cells. Full article
(This article belongs to the Special Issue Physical Virology - Viruses at Multiple Levels of Complexity)
Show Figures

Figure 1

20 pages, 3088 KB  
Article
Bladder Cancer Cells Interaction with Lectin-Coated Surfaces under Static and Flow Conditions
by Renata Szydlak, Ingrid H. Øvreeide, Marcin Luty, Tomasz Zieliński, Victorien E. Prot, Joanna Zemła, Bjørn T. Stokke and Małgorzata Lekka
Int. J. Mol. Sci. 2023, 24(9), 8213; https://doi.org/10.3390/ijms24098213 - 4 May 2023
Cited by 9 | Viewed by 3107
Abstract
Aberrant expression of glycans, i.e., oligosaccharide moiety covalently attached to proteins or lipids, is characteristic of various cancers, including urothelial ones. The binding of lectins to glycans is classified as molecular recognition, which makes lectins a strong tool for understanding their role in [...] Read more.
Aberrant expression of glycans, i.e., oligosaccharide moiety covalently attached to proteins or lipids, is characteristic of various cancers, including urothelial ones. The binding of lectins to glycans is classified as molecular recognition, which makes lectins a strong tool for understanding their role in developing diseases. Here, we present a quantitative approach to tracing glycan–lectin interactions in cells, from the initial to the steady phase of adhesion. The cell adhesion was measured between urothelial cell lines (non-malignant HCV29 and carcinoma HT1376 and T24 cells) and lectin-coated surfaces. Depending on the timescale, single-cell force spectroscopy, and adhesion assays conducted in static and flow conditions were applied. The obtained results reveal that the adhesion of urothelial cells to two specific lectins, i.e., phytohemagglutinin-L and wheat germ agglutinin, was specific and selective. Thus, these lectins can be applied to selectively capture, identify, and differentiate between cancer types in a label-free manner. These results open up the possibility of designing lectin-based biosensors for diagnostic or prognostic purposes and developing strategies for drug delivery that could target cancer-associated glycans. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

Back to TopTop