Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (674)

Search Parameters:
Keywords = single-protein dynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 17064 KB  
Article
Interplay of the Genetic Variants and Allele Specific Methylation in the Context of a Single Human Genome Study
by Maria D. Voronina, Olga V. Zayakina, Kseniia A. Deinichenko, Olga Sergeevna Shingalieva, Olga Y. Tsimmer, Darya A. Tarasova, Pavel Alekseevich Grebnev, Ekaterina A. Snigir, Sergey I. Mitrofanov, Vladimir S. Yudin, Anton A. Keskinov, Sergey M. Yudin, Dmitry V. Svetlichnyy and Veronika I. Skvortsova
Int. J. Mol. Sci. 2025, 26(19), 9641; https://doi.org/10.3390/ijms26199641 - 2 Oct 2025
Abstract
The methylation of CpG sites with 5mC mark is a dynamic epigenetic modification. However, the relationship between the methylation and the surrounding genomic sequence context remains poorly explored. Investigation of the allele methylation provides an opportunity to decipher the interplay between differences in [...] Read more.
The methylation of CpG sites with 5mC mark is a dynamic epigenetic modification. However, the relationship between the methylation and the surrounding genomic sequence context remains poorly explored. Investigation of the allele methylation provides an opportunity to decipher the interplay between differences in the primary DNA sequence and epigenetic variation. Here, we performed high-coverage long-read whole-genome direct DNA sequencing of one individual using Oxford Nanopore technology. We also used Illumina whole-genome sequencing of the parental genomes in order to identify allele-specific methylation sites with a trio-binning approach. We have compared the results of the haplotype-specific methylation detection and revealed that trio binning outperformed other approaches that do not take into account parental information. Also, we analysed the cis-regulatory effects of the genomic variations for influence on CpG methylation. To this end, we have used available Deep Learning models trained on the primary DNA sequence to score the cis-regulatory potential of the genomic loci. We evaluated the functional role of the allele-specific epigenetic changes with respect to gene expression using long-read Nanopore RNA sequencing. Our analysis revealed that the frequency of SNVs near allele-specific methylation positions is approximately four times higher compared to the biallelic methylation positions. In addition, we identified that allele-specific methylation sites are more conserved and enriched at the chromatin states corresponding to bivalent promoters and enhancers. Together, these findings suggest that significant impact on methylation can be encoded in the DNA sequence context. In order to elucidate the effect of the SNVs around sites of allele-specific methylation, we applied the Deep Learning model for detection of the cis-regulatory modules and estimated the impact that a genomic variant brings with respect to changes to the regulatory activity of a DNA loci. We revealed higher cis-regulatory impact variants near differentially methylated sites that we further coupled with transcriptomic long-read sequencing results. Our investigation also highlights technical aspects of allele methylation analysis and the impact of sequencing coverage on the accuracy of genomic phasing. In particular, increasing coverage above 30X does not lead to a significant improvement in allele-specific methylation discovery, and only the addition of trio binning information significantly improves phasing. We investigated genomic variation in a single human individual and coupled computational discovery of cis-regulatory modules with allele-specific methylation (ASM) profiling. In this proof-of-concept analysis, we observed that SNPs located near methylated CpG sites on the same haplotype were enriched for sequence features suggestive of high-impact regulatory potential. This finding—derived from one deeply sequenced genome—illustrates how phased genetic and epigenetic data analyses can jointly put forward a hypotheses about the involvement of regulatory protein machinery in shaping allele-specific epigenetic states. Our investigation provides a methodological framework and candidate loci for future studies of genomic imprinting and cis-mediated epigenetic regulation in humans. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 1394 KB  
Review
Growth Plate Skeletal Stem Cells and Their Actions Within the Stem Cell Niche
by Natalie Kiat-amnuay Cheng, Shion Orikasa and Noriaki Ono
Int. J. Mol. Sci. 2025, 26(19), 9460; https://doi.org/10.3390/ijms26199460 - 27 Sep 2025
Abstract
The growth plate is a specialized cartilage structure near the ends of long bones that orchestrates longitudinal bone growth during fetal and postnatal stages. Within this region reside a dynamic population of growth plate skeletal stem cells (gpSSCs), primarily located in the resting [...] Read more.
The growth plate is a specialized cartilage structure near the ends of long bones that orchestrates longitudinal bone growth during fetal and postnatal stages. Within this region reside a dynamic population of growth plate skeletal stem cells (gpSSCs), primarily located in the resting zone, which possess self-renewal and multilineage differentiation capacity. Recent advances in cell-lineage tracing, single-cell transcriptomics, and in vivo functional studies have revealed distinct subpopulations of gpSSCs, which are defined by markers such as parathyroid hormone-related protein (PTHrP), CD73, axis inhibition protein 2 (Axin2), forkhead box protein A2 (FoxA2), and apolipoprotein E (ApoE). These stem cells interact intricately with their niche, particularly after the formation of the secondary ossification center, through stage-specific regulatory mechanisms involving several key signaling pathways. This review summarizes the current understanding of gpSSC identity, behavior, and regulation, focusing on how these cells sustain growth plate function through adapting to biomechanical and molecular cues. Full article
(This article belongs to the Special Issue Recent Advances in Adult Stem Cell Research)
Show Figures

Figure 1

15 pages, 6815 KB  
Article
Structural Characterization, Cytotoxicity and Microbiological Activity of One-Step-Synthesized RGO/AuNPs Nanocomposites
by Boris Martinov, Dimitar Dimitrov, Tsvetelina Foteva, Aneliya Kostadinova and Anna Staneva
Materials 2025, 18(19), 4464; https://doi.org/10.3390/ma18194464 - 25 Sep 2025
Abstract
This study presents a green, single-step method for synthesizing nanocomposites based on reduced graphene oxide (RGO) and gold nanoparticles (AuNPs), using sodium citrate as a mild reducing and stabilizing agent. AuNPs were generated from chloroauric acid (HAuCl4) directly on the surface [...] Read more.
This study presents a green, single-step method for synthesizing nanocomposites based on reduced graphene oxide (RGO) and gold nanoparticles (AuNPs), using sodium citrate as a mild reducing and stabilizing agent. AuNPs were generated from chloroauric acid (HAuCl4) directly on the surface of graphene oxide (GO), which was simultaneously reduced to RGO. Structural characterization via Transmission Electron Microscopy (TEM), High Resolution TEM (HRTEM) and Selected Area Electron Diffraction (SAED) confirms spherical AuNPs (10–60 nm) distributed on RGO sheets, with indications of nanoparticle aggregation. Dynamic Light Scattering (DLS) and zeta potential analysis support these findings, suggesting colloidal instability with higher RGO content. Biological evaluation demonstrates dose-dependent cytotoxicity in HaCaT keratinocytes, with IC50 values (half maximal inhibitory concentration) decreasing as RGO content is increased. At moderate dilutions (1–25 µL/100 µL), the composites show acceptable cell viability (>70%). Antibacterial assays reveal strong synergistic effects against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis, with sample RGO/Au 0.500/0.175 g/L showing complete E. coli inhibition at low Au content (0.175 g/L). The composite retained activity even in protein-rich media, suggesting potential for antimicrobial applications. These findings highlight the potential of RGO/AuNPs composites as multifunctional materials for biomedical uses, particularly in antimicrobial coatings and targeted therapeutic strategies. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Graphical abstract

23 pages, 1450 KB  
Review
Bacterial Systematic Genetics and Integrated Multi-Omics: Beyond Static Genomics Toward Predictive Models
by Tatsuya Sakaguchi, Yuta Irifune, Rui Kamada and Kazuyasu Sakaguchi
Int. J. Mol. Sci. 2025, 26(19), 9326; https://doi.org/10.3390/ijms26199326 - 24 Sep 2025
Viewed by 44
Abstract
The field of bacterial systems biology is rapidly advancing beyond static genomic analyses, and moving toward dynamic, integrative approaches that connect genetic variation with cellular function. This review traces the progression from genome-wide association studies (GWAS) to multi-omics frameworks that incorporate transcriptomics, proteomics, [...] Read more.
The field of bacterial systems biology is rapidly advancing beyond static genomic analyses, and moving toward dynamic, integrative approaches that connect genetic variation with cellular function. This review traces the progression from genome-wide association studies (GWAS) to multi-omics frameworks that incorporate transcriptomics, proteomics, and interactome mapping. We emphasize recent breakthroughs in high-resolution transcriptomics, including single-cell, spatial, and epitranscriptomic technologies, which uncover functional heterogeneity and regulatory complexity in bacterial populations. At the same time, innovations in proteomics, such as data-independent acquisition (DIA) and single-bacterium proteomics, provide quantitative insights into protein-level mechanisms. Experimental and AI-assisted strategies for mapping protein–protein interactions help to clarify the architecture of bacterial molecular networks. The integration of these omics layers through quantitative trait locus (QTL) analysis establishes mechanistic links between single-nucleotide polymorphisms and systems-level phenotypes. Despite persistent challenges such as bacterial clonality and genomic plasticity, emerging tools, including deep mutational scanning, microfluidics, high-throughput genome editing, and machine-learning approaches, are enhancing the resolution and scope of bacterial genetics. By synthesizing these advances, we describe a transformative trajectory toward predictive, systems-level models of bacterial life. This perspective opens new opportunities in antimicrobial discovery, microbial engineering, and ecological research. Full article
(This article belongs to the Special Issue Benchmarking of Modeling and Informatic Methods in Molecular Sciences)
Show Figures

Figure 1

42 pages, 1304 KB  
Review
Exploring Protein Misfolding and Aggregate Pathology in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Interventions
by Joel Theophilus Johnson, Fila Winifred Awosiminiala and Christian Kosisochukwu Anumudu
Appl. Sci. 2025, 15(18), 10285; https://doi.org/10.3390/app151810285 - 22 Sep 2025
Viewed by 368
Abstract
Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease are characterized by progressive neuronal loss, driven mainly by the misfolding, aggregation, and accumulation of each disease’s specific proteins. These pathogenic aggregates, including tau, α-synuclein, TDP-43, and huntingtin, disrupt cellular proteostasis and [...] Read more.
Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease are characterized by progressive neuronal loss, driven mainly by the misfolding, aggregation, and accumulation of each disease’s specific proteins. These pathogenic aggregates, including tau, α-synuclein, TDP-43, and huntingtin, disrupt cellular proteostasis and initiate cascades of neuroinflammation, oxidative stress, mitochondrial dysfunction, and synaptic failure. While protein aggregation has been a long-recognized hallmark of these disorders, growing evidence points towards a more complex interplay of initial molecular pathways with defects in RNA processing, stress granule pathology, and cell-type-specific vulnerability. Notably, such events may manifest differentially with respect to sex and are further modulated by age-related loss of the protein quality control processes like the ubiquitin–proteasome pathway, autophagy–lysosome pathway, and molecular chaperones. This review synthesizes current insights into the structural and functional dynamics of protein aggregation and its significance for neuronal well-being. It highlights the role of post-translational modifications, prion-like transmission, and aggregation kinetics in the regulation of toxicity. The review further discusses promising therapeutic strategies centered on restoring proteostasis, including small molecules that inhibit aggregation, protein clearance pathway enhancers, immunotherapy, antioxidant therapy, and diagnostic prospects such as the identification of reliable molecular signatures in bodily fluids that can reflect pathological changes even before clinical symptoms emerge. Advancements in single-cell transcriptomics and multi-omics platforms, which are changing our understanding of disease onset and progression and opening avenues for precision medicine and personalized treatments, were also discussed. Ultimately, deciphering the molecular logic that distinguishes physiological from pathological protein assemblies and understanding how cellular systems fail to adapt under stress will be key to the development of effective, disease-modifying therapies for these debilitating disorders. Full article
Show Figures

Figure 1

22 pages, 4562 KB  
Article
Adaptation to Hot and Humid Climates in the Silkworm: Energy Reallocation and Cuticle Transpiration
by Jiajun Zhuo, Yuli Zhang, Xing Gao, Cailin Liang, Guizheng Zhang, Lihui Bi, Wei Wei, Shoumin Fang, Xiaoling Tong, Fangyin Dai, Cheng Lu and Quanyou Yu
Insects 2025, 16(9), 962; https://doi.org/10.3390/insects16090962 - 12 Sep 2025
Viewed by 520
Abstract
The silkworm (Bombyx mori) is rich in germplasm resources, including thermotolerant strains that live in tropical/subtropical humid climates. In this study, two thermotolerant strains and one sensitive strain were used as materials, with the former exhibiting higher critical thermal maximum (CTmax) [...] Read more.
The silkworm (Bombyx mori) is rich in germplasm resources, including thermotolerant strains that live in tropical/subtropical humid climates. In this study, two thermotolerant strains and one sensitive strain were used as materials, with the former exhibiting higher critical thermal maximum (CTmax) values. Under different temperature and humidity stresses, physiological and transcriptomic responses of the fifth instar larvae were compared. It was confirmed that high humidity exacerbates harmful effects only under high temperature conditions. Based on transcriptome and co-expression network analysis, 88 evolved thermoplastic genes (Evo_TPGs) and 1338 evolved non-plastic genes (Evo_non-PGs) were identified, which exhibited specific responses or expressions in the two thermotolerant strains. Eighteen of the Evo_TPGs encode cuticular proteins, 17 of which were specifically downregulated in the two thermotolerant strains after short-term exposure to 35 °C. This may promote cuticular transpiration to dissipate internal heat, thus compensating for the suppression of tracheal ventilation in hot and humid climates. For the Evo_non-PGs, most of the metabolic genes showed lower expression at background levels in the thermotolerant strains, while oxidative stress genes showed the opposite trend, suggesting that silkworms can enhance heat tolerance by suppressing metabolic rates and allocating more resources to overcome heat-induced oxidative damage. Furthermore, the heat resistance-related genes showed higher single nucleotide polymorphisms (SNPs) between resistant and sensitive strains compared to randomly selected genes, suggesting that they may have been subjected to natural selection. Through long-term adaptive evolution, thermotolerant silkworms may reduce their internal temperature by dynamically regulating cuticle respiration in response to high temperature and humidity, while allocating more energy to cope with and repair heat-induced damage. Overall, these findings provide insights into the evolution of heat-resistant adaptations to climate change in insects. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

26 pages, 6444 KB  
Article
Localization and Dynamics of the Cell Shape-Determining Csd2 Protein Complex in H. pylori
by Maximilian Greger and Barbara Waidner
Cells 2025, 14(18), 1420; https://doi.org/10.3390/cells14181420 - 11 Sep 2025
Viewed by 338
Abstract
Approximately half of the world population is infected with the human pathogen Helicobacter pylori, which causes gastric inflammation, chronic gastritis, or peptide ulceration. A significant factor in the colonization of the upper digestive system is the helical shape of H. pylori. [...] Read more.
Approximately half of the world population is infected with the human pathogen Helicobacter pylori, which causes gastric inflammation, chronic gastritis, or peptide ulceration. A significant factor in the colonization of the upper digestive system is the helical shape of H. pylori. This helical form is maintained by a complex network of peptidoglycan (PG)-modifying enzymes and cytoskeletal proteins. Among these, the D,D-endopeptidase Csd2 plays a central role, working in conjunction with other cell shape-determining (Csd) proteins. Csd1 and Csd2 have been categorized as members of the M23B metallopeptidase family. These enzymes are classified as D,D-endopeptidases, and their function involves the cleavage of the D-Ala4-mDAP3 bond, which is present in the cross-linked di-mer muropeptides. Despite the fact that the structure of the Csd1:Csd2 complex has been examined via biochemical methods, information on the in vivo localization and dynamics of D,D-endopeptidases is still missing. Here, we use an approach that employs sophisticated different microscopy methods to visualize the spatial temporal localization and dynamics of Csd2, involving both structured illumination microscopy and single-molecule tracking. Our findings thus contribute to refining the existing model for this cellular complex by revealing curvature-dependent spatial organization and temporal dynamics underlying peptidoglycan remodeling processes essential for helical cell shape formation and maintenance. Understanding the dynamics provides insight into the mechanisms that maintain bacterial morphology and potential targets for therapeutic intervention. Full article
Show Figures

Figure 1

37 pages, 4989 KB  
Article
Genomic and Structural Investigation of Mutations in Biotinidase (BTD) Gene Deficiency in Greater Middle Eastern Cohort: Insights from Molecular Dynamics Study
by Faisal E. Ibrahim, BalaSubramani Gattu Linga, Muthanna Samara, Jameela Roshanuddin, Salma Younes, Gheyath K. Nasrallah, Hatem Zayed, M. Walid Qoronfleh, Sawsan G. A. A. Mohammed, Dalia El Khoury, Dinesh Velayutham, Ghassan Abdoh, Hilal Al Rifai and Nader Al-Dewik
Biomedicines 2025, 13(9), 2210; https://doi.org/10.3390/biomedicines13092210 - 9 Sep 2025
Viewed by 428
Abstract
Background: Biotinidase deficiency (BD) is a common autosomal recessive metabolic disorder in Qatar and the Arab world. It is treatable if detected early, making it essential to understand the genetic variants involved. This study aimed to investigate the carrier frequency of BD-related [...] Read more.
Background: Biotinidase deficiency (BD) is a common autosomal recessive metabolic disorder in Qatar and the Arab world. It is treatable if detected early, making it essential to understand the genetic variants involved. This study aimed to investigate the carrier frequency of BD-related variants in a healthy Qatari population, reflecting the genetic landscape of the broader Middle Eastern region; classify them using bioinformatics tools; and compare findings with global datasets. Methods: Whole-genome sequencing data from 14,669 participants in the Qatar Genome Program (QGP), a multiethnic cohort including Qatari nationals and long-term residents (≥15 years), were analyzed to identify BTD variants. A total of 723, including 653 single-nucleotide polymorphisms (SNPs) and 70 structural variants (SVs) in BTD associated with BD, were screened against the Qatari cohort and compared with international data. In silico tools were used to assess variant pathogenicity, conservation, and protein stability. Molecular dynamics (MD) simulations were performed to evaluate structural and functional changes in the BTD. Results: A total of 80 SNPs and 3 SVs were identified, among which 21 variants (19 SNPs and 2 SVs) were classified as pathogenic or likely pathogenic, according to ClinVar. The carrier frequency of BTD-related variants in Qatar was 1:20, primarily driven by rs13078881 (D444H). Molecular dynamics (MD) simulations revealed significant conformational changes with H323R, D444H, and P497S, which demonstrated increased flexibility (higher RMSD/RMSF and PCA trace values). Additionally, R209C and D444H showed reduced compactness (higher Rg) and distinct energy minima, suggesting altered conformational states. Conclusions: This study demonstrates a high carrier frequency of pathogenic BTD variants in the Qatari population, underscoring the need to integrate these SNPs and SVs into the national genomic neonatal screening program (gNBS) for enhanced early detection and treatment strategies. The mild structural deviations observed in the D444H mutant through MD simulations may explain its association with milder clinical phenotypes of BTD, offering valuable insights for personalized therapeutic approaches. Full article
Show Figures

Figure 1

23 pages, 2403 KB  
Review
Decoding the Tumor Microenvironment: Insights and New Targets from Single-Cell Sequencing and Spatial Transcriptomics
by Shriya Pattabiram, Prakash Gangadaran, Sanjana Dhayalan, Gargii Chatterjee, Danyal Reyaz, Kruthika Prakash, Raksa Arun, Ramya Lakshmi Rajendran, Byeong-Cheol Ahn and Kandasamy Nagarajan Aruljothi
Curr. Issues Mol. Biol. 2025, 47(9), 730; https://doi.org/10.3390/cimb47090730 - 9 Sep 2025
Viewed by 473
Abstract
The field of oncology has been extensively studied to design more effective and efficient treatments. This review explores the advanced techniques that are transforming our comprehension of cancer and its constituents. Specifically, it highlights the signaling pathways that drive tumor progression, angiogenesis, and [...] Read more.
The field of oncology has been extensively studied to design more effective and efficient treatments. This review explores the advanced techniques that are transforming our comprehension of cancer and its constituents. Specifically, it highlights the signaling pathways that drive tumor progression, angiogenesis, and resistance to therapy, as well as the modern approaches used to identify and characterize these pathways within the tumor microenvironment (TME). Key pathways discussed in this review include vascular endothelial growth factor (VEGF), programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and various extracellular matrix (ECM) pathways. Conventional methods of diagnosis have yielded sufficient knowledge but have failed to reveal the heterogeneity that exists within the TME, resulting in gaps in our understanding of the cellular interaction and spatial dynamics. Single-cell sequencing (SCS) and spatial transcriptomics (ST) are effective tools that can enable the dissection of the TME with the resolution capacity of a single cell. SCS allows the capture of the unique genetic and transcriptomic profiles of individual cells along with rare cell types and new therapeutic targets. ST complements this by providing a spatial map of gene expression, showing the gene expression profiles within the tumor tissue at specific sites with good accuracy. By mapping gene expression patterns at a single cell level and correlating them with the spatial locations, researchers can uncover the intricate networks and microenvironmental influences that contribute to tumor heterogeneity. Full article
(This article belongs to the Special Issue Technological Advances Around Next-Generation Sequencing Application)
Show Figures

Figure 1

16 pages, 6255 KB  
Article
Design of a First-in-Class homoPROTAC to Induce ICP0 Degradation in Human Herpes Simplex Virus 1
by Leyla Salimova, Ali Sahin, Ozge Ardicli, Fatima Hacer Kurtoglu Babayev, Zeynep Betul Sari, Muhammed Emin Sari, Muhammet Guzel Kurtoglu, Sena Ardicli and Huseyn Babayev
Drugs Drug Candidates 2025, 4(3), 42; https://doi.org/10.3390/ddc4030042 - 8 Sep 2025
Viewed by 392
Abstract
Background/Objectives: Human Herpes Simplex Virus 1 (HSV-1) is a common pathogen that establishes lifelong latent infections. The emergence of drug resistance necessitates novel therapeutic strategies. This study introduces a novel antiviral approach: a bivalent degrader designed to induce the degradation of an [...] Read more.
Background/Objectives: Human Herpes Simplex Virus 1 (HSV-1) is a common pathogen that establishes lifelong latent infections. The emergence of drug resistance necessitates novel therapeutic strategies. This study introduces a novel antiviral approach: a bivalent degrader designed to induce the degradation of an essential protein. Methods: A structural model of ICP0, generated via the Chai-1 AI platform, was analyzed with fpocket, P2Rank, and KVFinder to identify a superior allosteric target site. An iterative de novo design workflow with CReM-dock then yielded a lead scaffold based on its predicted affinity and drug-like properties. This selected “warhead” was used to rationally design the final bivalent degrader, ICP0-deg-01, for the ICP0 dimer model. Results: The generative process yielded a lead chemical scaffold that was selected based on its predicted binding affinity and favorable drug-like properties. This scaffold was used to rationally design a single candidate bivalent degrader, ICP0-deg-01. Our structural model predicts that ICP0-deg-01 can successfully bridge two ICP0 protomers, forming an energetically favorable ternary complex. Conclusions: This work provides a computational proof-of-concept for a novel class of anti-herpetic agents and identifies a lead candidate for future molecular dynamics simulations and experimental validation. Full article
(This article belongs to the Section In Silico Approaches in Drug Discovery)
Show Figures

Figure 1

22 pages, 4155 KB  
Article
Performance Evaluation of a HBsAg-Specific Immunoadsorbent Based on a Humanized Anti-HBsAg Monoclonal Antibody
by Shuangshuang Gao, Xiaobin Cai, Tianhui Yan, Yefu Wang and Xinyuan Tao
Biomedicines 2025, 13(9), 2175; https://doi.org/10.3390/biomedicines13092175 - 5 Sep 2025
Viewed by 358
Abstract
Background/Objectives: Hepatitis B virus (HBV) infection poses a major global health challenge, with current therapies like nucleos(t)ide analogs and pegylated interferon alpha offering limited functional cure rates due to persistent HBsAg-driven immune tolerance. This study aimed to develop a targeted immunoadsorption system [...] Read more.
Background/Objectives: Hepatitis B virus (HBV) infection poses a major global health challenge, with current therapies like nucleos(t)ide analogs and pegylated interferon alpha offering limited functional cure rates due to persistent HBsAg-driven immune tolerance. This study aimed to develop a targeted immunoadsorption system using a high-affinity humanized anti-HBsAg monoclonal antibody for efficient HBsAg and viral particle clearance, providing a novel approach to overcome therapeutic bottlenecks in chronic hepatitis B (CHB). Methods: A murine anti-HBsAg monoclonal antibody was humanized via complementarity-determining region grafting, resulting in HmAb-12 (equilibrium dissociation constant, KD = 0.36 nM). A stable Chinese Hamster Ovary K1 (CHO-K1) cell line was established for high-yield expression (fed-batch yield: 8.31 g/L). The antibody was covalently coupled to agarose microspheres (coupling efficiency > 95%) to prepare the immunoadsorbent. Efficacy was evaluated through in vitro dynamic circulation assays with artificial sera and preclinical trials using an integrated blood purification system in two CHB participants. Clearance rates for HBsAg and HBV DNA were quantified, with safety assessed via blood component monitoring. Results: In vitro, a single treatment cycle achieved HBsAg clearance rates of 70.14% (high antigen load, >105 IU/mL) and 92.10% (low antigen load, ~3000 IU/mL). Preclinically, one treatment session resulted in acute HBsAg reductions of 78.30% and 74.31% in participants with high and moderate antigen loads, respectively, alongside HBV DNA decreases of 65.66% and 73.55%. Minimal fluctuations in total protein and albumin levels (<15%) confirmed favorable safety profiles, with no serious adverse events observed. Conclusions: Preliminary findings from this study indicate that the HBsAg-specific immunoadsorption system can achieve efficient HBV antigen clearance with an initial favorable safety profile in a small cohort. These results support its further investigation as a potential therapeutic strategy for functional cure in CHB. Future work will focus on validating these findings in larger studies and exploring the system’s combinatory potential with existing blood purification platforms. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

15 pages, 3003 KB  
Article
Phylogenetic and Molecular Evolutionary Insights into Monkeypox Virus Circulation in Shenzhen, China, 2023–2024
by Chuan Shi, Xiaochen Zheng, Lei Lei, Jinhui Xiao, Guangqing Yu, Yingdong Li, Zhifeng Ma, Minjie Li, Yanling Zeng, Ziquan Lv, Yixiong Chen, Wei Tan and Qianru Wang
Viruses 2025, 17(9), 1214; https://doi.org/10.3390/v17091214 - 5 Sep 2025
Viewed by 626
Abstract
The 2022 global mpox outbreak highlighted the risk of sustained human-to-human transmission of monkeypox virus (MPXV) in non-endemic regions, yet genomic surveillance in Asia, particularly in China, remains limited. This study conducted horizontal genomic surveillance of MPXV in Shenzhen from 2023 to 2024 [...] Read more.
The 2022 global mpox outbreak highlighted the risk of sustained human-to-human transmission of monkeypox virus (MPXV) in non-endemic regions, yet genomic surveillance in Asia, particularly in China, remains limited. This study conducted horizontal genomic surveillance of MPXV in Shenzhen from 2023 to 2024 to characterize the phylogenetic structure, mutational patterns, and adaptive evolution of locally circulating strains. Phylogenetic analysis showed 95.2% of strains belonged to the dominant lineage C.1.1, with 4.8% in lineage E.3, forming three distinct genetic clusters that indicate multiple independent introductions and established local transmission chains. Whole-genome mutational analysis identified 146 single-nucleotide polymorphisms (SNPs), 81.5% of which carried APOBEC3-mediated mutation signatures (TC > TT and GA > AA), reflecting host-driven antiviral editing. Notably, dynamic changes in low-complexity regions (LCRs) were observed, implying potential roles in genome plasticity and adaptive evolution. Functional analysis revealed non-synonymous substitution biases in host-interacting proteins OPG064, OPG145, and OPG210, while replication protein OPG105 remained conserved. Structural modeling identified critical substitutions in OPG002 (S54F), OPG016 (R84K), and OPG036 (R48C) that may enhance immune evasion by modulating TNF-α signaling, NKG2D engagement, and Type I interferon antagonism. These findings illuminate unique MPXV evolutionary dynamics in Shenzhen, emphasizing continuous genomic surveillance for non-endemic outbreak preparedness. Full article
Show Figures

Figure 1

28 pages, 1144 KB  
Review
The Importance of Multifaceted Approach for Accurate and Comprehensive Evaluation of Oxidative Stress Status in Biological Systems
by Borut Poljšak, Polona Jamnik and Irina Milisav
Antioxidants 2025, 14(9), 1083; https://doi.org/10.3390/antiox14091083 - 3 Sep 2025
Viewed by 803
Abstract
Oxidative stress is caused by an imbalance between the formation of reactive oxygen species (ROS) and the activity of antioxidant defense system, which disrupts redox signaling and causes molecular damage. While there are numerous methods to measure oxidative stress, the complex and dynamic [...] Read more.
Oxidative stress is caused by an imbalance between the formation of reactive oxygen species (ROS) and the activity of antioxidant defense system, which disrupts redox signaling and causes molecular damage. While there are numerous methods to measure oxidative stress, the complex and dynamic nature of ROS production and antioxidant reactions requires a multi-faceted approach. Direct methods such as electron spin resonance (ESR) and fluorescent probes measure ROS directly but are limited by the short lifespan of certain species. Indirect methods such as lipid peroxidation markers (e.g., malondialdehyde, MDA), protein oxidation (e.g., carbonyl content), and DNA damage (e.g., 8-oxo-dG) provide information on oxidative damage, but they do not capture the real-time dynamics of ROS. The antioxidant defense system, which includes enzymatic components such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), further complicates assessment, as it responds dynamically to oxidative challenges. Furthermore, the compartmentalized nature of ROS production in organelles and tissues coupled with the temporal variability of oxidative damage and repair underscores the need to integrate multiple assessment methods. This commentary highlights the limitations of using single assays and emphasizes the importance of combining complementary techniques to achieve a comprehensive assessment of oxidative stress. A multi-method approach ensures accurate identification of ROS dynamics, antioxidant responses, and the extent of oxidative damage, providing crucial insights into redox biology and its impact on health and disease. Full article
Show Figures

Figure 1

18 pages, 5056 KB  
Article
The First Whole Genome Sequence and Methylation Profile of Gerronema lapidescens QL01
by Yanming Qiao, Zhiyuan Jia, Yuying Liu, Na Zhang, Chun Luo, Lina Meng, Yajie Cheng, Minglei Li, Xiuchao Xie and Jianzhao Qi
J. Fungi 2025, 11(9), 647; https://doi.org/10.3390/jof11090647 - 1 Sep 2025
Viewed by 539
Abstract
Gerronema lapidescens (Lei Wan), a valued medicinal basidiomycete traditionally employed for antiparasitic and digestive ailments, faces severe conservation threats due to unsustainable wild harvesting and the absence of reliable cultivation protocols. To address this crisis and unlock its pharmacotherapeutic potential, we present the [...] Read more.
Gerronema lapidescens (Lei Wan), a valued medicinal basidiomycete traditionally employed for antiparasitic and digestive ailments, faces severe conservation threats due to unsustainable wild harvesting and the absence of reliable cultivation protocols. To address this crisis and unlock its pharmacotherapeutic potential, we present the first chromosome-scale genome assembly and comprehensive methylome profile for the wild strain G. lapidescens QL01, domesticated from the Qinling Mountains. A multi-platform sequencing strategy (Illumina and PacBio HiFi) yielded a high-quality 82.23 Mb assembly anchored to 11 chromosomes, exhibiting high completeness (98.4% BUSCO) and 46.03% GC content. Annotation predicted 15,847 protein-coding genes, with 81.12% functionally assigned. Genome-wide analysis identified 8.46 million high-confidence single-nucleotide polymorphisms (SNPs). Notably, methylation profiling revealed 3.25 million methylation events, with elevated densities on chromosomes 4, 9, and 10, suggesting roles in gene silencing and environmental adaptation. Phylogenomic analyses clarified the evolutionary status of G. lapidescens, whilst gene family evolution indicated moderate dynamics reflecting niche adaptation. Carbohydrate-Active enzymes (CAZymes) analysis identified 521 enzymes, including 211 Glycoside Hydrolases (GHs), consistent with organic matter degradation. Additionally, 3279 SSRs were catalogued as molecular markers. This foundational resource elucidates G. lapidescens’s genetic architecture, epigenetic regulation, evolutionary history, and enzymatic toolkit, underpinning future research into medicinal compound biosynthesis, environmental adaptation, germplasm conservation, and sustainable cultivation. Full article
Show Figures

Figure 1

36 pages, 11682 KB  
Article
Isoliquiritigenin as a Neuronal Radiation Mitigant: Mitigating Radiation-Induced Anhedonia Tendency Targeting Grik3/Grm8/Grin3a via Integrated Proteomics and AI-Driven Discovery
by Boyang Li, Suqian Cheng, Han Zhang and Bo Li
Pharmaceuticals 2025, 18(9), 1307; https://doi.org/10.3390/ph18091307 - 30 Aug 2025
Viewed by 516
Abstract
Background/Objectives: Radiotherapy can cause severe and irreversible brain damage, including cognitive impairment, increased dementia risk, debilitating depression, and other neuropsychiatric disorders. Current radioprotective drugs face limitations, such as single-target inefficacy or manufacturing hurdles. Isoliquiritigenin (ISL), a natural flavonoid derived from licorice root, [...] Read more.
Background/Objectives: Radiotherapy can cause severe and irreversible brain damage, including cognitive impairment, increased dementia risk, debilitating depression, and other neuropsychiatric disorders. Current radioprotective drugs face limitations, such as single-target inefficacy or manufacturing hurdles. Isoliquiritigenin (ISL), a natural flavonoid derived from licorice root, exhibits broad bioactivities. It exhibits anti-inflammatory, anti-cancer, immunoregulatory, hepatoprotective, and cardioprotective activities. This study aimed to elucidate ISL’s neuronal radiation mitigation effects and key targets. Methods: In vitro and in vivo models of radiation-induced neuronal injury were established. ISL’s bioactivities were evaluated through cellular cytotoxicity assays, LDH release, ROS, ATP, glutamate, and GSH levels. In vivo, ISL’s radiation mitigation effect was evaluated with sucrose preference test, IL-β level, histopathological analysis, and Golgi-Cox staining analysis. Proteomics, pathway enrichment, and ensemble models (four machine learning models, weighted gene co-expression network, protein–protein interaction) identified core targets. Molecular docking and dynamic simulations validated ISL’s binding stability with key targets. Results: ISL attenuated radiation-induced cellular cytotoxicity, reduced LDH/ROS, restored ATP, elevated GSH, and mitigated glutamate accumulation. In rats, ISL alleviated anhedonia-like phenotypes and hippocampal synaptic loss. ISL also significantly suppressed radiation-induced neuroinflammation, as evidenced by reduced levels of the pro-inflammatory cytokine IL-1β. Proteomic analysis revealed that ISL’s main protective pathways included the synaptic vesicle cycle, glutamatergic synapse, MAPK signaling pathway, SNARE interactions in vesicular transport, insulin signaling pathway, and insulin secretion. Grm8, Grik3, and Grin3a were identified as key targets using the integrated models. The expression of these targets was upregulated post-radiation and restored by ISL. Molecular docking and dynamic simulations indicated that ISL showed stable binding to these receptors compared to native ligands. Conclusions: ISL demonstrates multi-scale radiation mitigation activities in vitro and in vivo by modulating synaptic and inflammatory pathways, with glutamate receptors as core targets. This work nominates ISL as an important natural product for mitigating radiotherapy-induced neural damage. Full article
Show Figures

Figure 1

Back to TopTop