Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,687)

Search Parameters:
Keywords = six phases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1760 KB  
Article
Strengths and Weaknesses of Artificial Intelligence in Exploring Asbestos History and Regulations Across Countries
by Alessandro Croce, Francesca Ugo, Annalisa Roveta, Carlotta Bertolina, Caterina Rinaudo, Antonio Maconi and Marinella Bertolotti
Geosciences 2025, 15(10), 395; https://doi.org/10.3390/geosciences15100395 (registering DOI) - 12 Oct 2025
Abstract
 Asbestos, consisting of six natural mineral fibrous silicate phases, was widely utilized in industrial development during the 20th century and has left a global legacy of health, environmental, and regulatory challenges. Its remarkable properties (e.g., heat resistance, sound absorption, and tensile strength) made [...] Read more.
 Asbestos, consisting of six natural mineral fibrous silicate phases, was widely utilized in industrial development during the 20th century and has left a global legacy of health, environmental, and regulatory challenges. Its remarkable properties (e.g., heat resistance, sound absorption, and tensile strength) made it a useful material in numerous applications. However, scientific research revealed its serious health risks in the early 1900s, with growing evidence during the 1960s, and nowadays its role in the development of different diseases (e.g., respiratory diseases, such as lung cancer, mesothelioma, and asbestosis) is well defined. Mapping this complex history requires integrating heterogeneous and often inconsistent information from nearly 200 countries. In this study, we tested the use of generative artificial intelligence (AI) tools as exploratory and comparative instruments to support the collection of asbestos-related data worldwide. Using Google Gemini (version 2.5 flash) and OpenAI ChatGPT (GPT-4-turbo variant), we gathered historical, medical, and regulatory information and then systematically verified and contextualized it with expert analysis. This dual approach allowed us to assess both the global asbestos situation and the reliability, advantages, and limitations of AI-assisted research. Our results highlight how AI can accelerate data collection and provide useful first drafts while underscoring the necessity of human expertise for validation, interpretation, and critical integration. This study, therefore, contributes a dual perspective: a comprehensive overview of the asbestos legacy across countries and a methodological reflection on the opportunities and pitfalls of employing AI in geoscientific and environmental research.  Full article
(This article belongs to the Section Natural Hazards)
19 pages, 425 KB  
Study Protocol
Telehealth Family Psychoeducation for Major Depressive Disorder: A Protocol for Intervention Co-Design and Feasibility Study
by Obumneke Obieche, Jing-Yu (Benjamin) Tan, Sita Sharma, Daniel Bressington and Tao Wang
Nurs. Rep. 2025, 15(10), 364; https://doi.org/10.3390/nursrep15100364 (registering DOI) - 11 Oct 2025
Abstract
Background/Objectives: Limited access to mental health services contributes to poorer outcomes among individuals with mental health conditions, including major depressive disorder (MDD). Nurse-led interventions serve as a strategic model of care to improve mental health service delivery and enhance patient outcomes. This project [...] Read more.
Background/Objectives: Limited access to mental health services contributes to poorer outcomes among individuals with mental health conditions, including major depressive disorder (MDD). Nurse-led interventions serve as a strategic model of care to improve mental health service delivery and enhance patient outcomes. This project aims to co-design a nurse-led telehealth family psychoeducation (FPE) for MDD and primarily assess its feasibility by evaluating the recruitment and retention rates. Methods: A multi-methods study encompassing a co-design phase (Study Phase 1) and a feasibility study (Study Phase 2). Study Phase 1 will involve semi-structured interviews with individuals with MDD and their families or significant others, as well as surveys and focus groups with mental health professionals to develop telehealth FPE for MDD. Study Phase 2 will evaluate the feasibility and acceptability of the intervention, which comprises three biweekly FPE sessions and a six-week follow-up with patient–family dyads using a single-group pre-post design. The primary outcomes comprise the feasibility and acceptability of intervention. Exploratory secondary outcomes include personal recovery, medication necessity beliefs and concerns, antidepressant adherence, and depression severity, measured at baseline, immediately post-intervention, and at 6-week follow-up using validated measures. Data analysis will primarily involve descriptive statistics and thematic analysis. The TIDieR checklist will be followed in reporting the intervention development. Conclusions: Findings from the proposed study will inform the design and protocol for a future randomised trial of telehealth FPE for improving clinical and non-clinical outcomes in MDD. The feasibility study was prospectively registered with the ClinicalTrial.gov on 8 June 2025 (NCT07014241). Full article
(This article belongs to the Section Mental Health Nursing)
Show Figures

Figure 1

25 pages, 7481 KB  
Article
Loop Shaping-Based Attitude Controller Design and Flight Validation for a Fixed-Wing UAV
by Nai-Wen Zhang and Chao-Chung Peng
Drones 2025, 9(10), 697; https://doi.org/10.3390/drones9100697 (registering DOI) - 11 Oct 2025
Abstract
This study presents a loop-shaping methodology for the attitude control of a fixed-wing unmanned aerial vehicle (UAV). The proposed controller design focuses on achieving desired frequency–domain characteristics—such as specified phase and gain margins—to ensure stability and robustness. Unlike many existing approaches that rely [...] Read more.
This study presents a loop-shaping methodology for the attitude control of a fixed-wing unmanned aerial vehicle (UAV). The proposed controller design focuses on achieving desired frequency–domain characteristics—such as specified phase and gain margins—to ensure stability and robustness. Unlike many existing approaches that rely on oversimplified plant models or involve mathematically intensive robust-control formulations, this work develops controllers directly from a high-fidelity six-degree-of-freedom UAV model that captures realistic aerodynamic and actuator dynamics. The loop-shaping procedure translates multi-objective requirements into a transparent, step-by-step workflow by progressively shaping the plant’s open-loop frequency response to match a target transfer function. This provides an intuitive, visual design process that reduces reliance on empirical PID tuning and makes the method accessible for both hobby-scale UAV applications and commercial platforms. The proposed loop-shaping procedure is demonstrated on the pitch inner rate loop of a fixed-wing UAV, with controllers discretized and validated in nonlinear simulations as well as real flight tests. Experimental results show that the method achieves the intended bandwidth and stability margins on the desired design target closely. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

21 pages, 3823 KB  
Article
Bridging World Heritage and Local Heritage: Incorporating the Buffer Zone Concept into Chinese Architectural Heritage Protection
by Ye Cao, Ruobing Han and Zhejun Luo
Buildings 2025, 15(20), 3652; https://doi.org/10.3390/buildings15203652 - 10 Oct 2025
Abstract
Buffer zones are essential for the protection of the Outstanding Universal Value (OUV) of World Heritage properties. In China, to address the limitations of the prevailing “two-line” delineation system for architectural heritage protection, this study introduces the concept of buffer zone as a [...] Read more.
Buffer zones are essential for the protection of the Outstanding Universal Value (OUV) of World Heritage properties. In China, to address the limitations of the prevailing “two-line” delineation system for architectural heritage protection, this study introduces the concept of buffer zone as a new perspective on heritage management. Focusing on the Cao Family Compound—a representative residence of Shanxi Merchants—this research situates the site within a broader cultural network to fully articulate its historical and social values. The methodology unfolds in three phases: (1) comprehensive identification of 47 spatial elements contributing to the compound’s significance, through field investigation, literature review, analysis of historical imagery and architectural drawing, and oral history interview; (2) systematic evaluation of each element’s value contribution to the compound based on six criteria across two dimensions, employing the Analytic Hierarchy Process (AHP) and Weighted Sum Method (WSM); (3) spatial visualization and hierarchical buffer zone delineation conducted via ArcGIS-based data modeling and the Natural Breaks classification method. This integrated approach establishes a holistic and structured framework that bridges architectural heritage with its setting, providing practical guidance for policymakers and conservation practitioners. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Graphical abstract

18 pages, 1916 KB  
Article
Differential Modulation of Maize Silage Odor: Lactiplantibacillus plantarum vs. Lactiplantibacillus buchneri Drive Volatile Compound Change via Strain-Specific Fermentation
by Shuyuan Xue, Jianfeng Wang, Jing Yang, Yunjie Li, Jian He, Jiyu Han, Hongyan Xu, Xun Zhu and Nasi Ai
Agriculture 2025, 15(20), 2109; https://doi.org/10.3390/agriculture15202109 - 10 Oct 2025
Abstract
Volatile organic compounds (VOCs) are critical indicators of the metabolic status of whole-plant maize silage (WPMS). However, the impact of inoculating various strains of fermentation agents on VOC changes has not been systematically explored. This study aimed to determine how inoculation with Lactiplantibacillus [...] Read more.
Volatile organic compounds (VOCs) are critical indicators of the metabolic status of whole-plant maize silage (WPMS). However, the impact of inoculating various strains of fermentation agents on VOC changes has not been systematically explored. This study aimed to determine how inoculation with Lactiplantibacillus plantarum and Lentilactobacillus buchneri modulates the VOC profile and odor of WPMS after 90 days. VOCs were extracted by headspace solid-phase microextraction and analyzed by gas chromatography-mass spectrometry (HS-SPME-GC-MS). Key VOCs were screened using the variable importance in projection (VIP) and substantiated by relative odor activity values (rOAV) and odor descriptions. A total of 82 compounds were identified, including 22 esters, 19 alcohols, 3 acids, 9 aldehydes, 2 ethers, 6 hydrocarbons, 4 ketones, 10 phenols, and 8 terpenoids. L. plantarum enhanced green/fruity odors while strain L. buchneri significantly reduced undesirable phenolic and aldehydic compounds. Six key VOCs influencing the odor of WPMS were selected: 4-ethyl-2-methoxyphenol and benzaldehyde, which contribute smoky, bacon, and bitter almond aromas, and (E)-3-hexen-1-ol, benzyl alcohol, (E, E)-2,4-heptadienal and methyl salicylate, which impart green, fruity, and nutty aromas. These findings highlight the effects and contributions of various strain additives on VOCs in WPMS, providing new theoretical insights for regulating the flavor profile of WPMS. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

17 pages, 807 KB  
Article
Biofloc Technology for Nile Tilapia Fry: Technical and Economic Feasibility, Solids Control, and Stocking Density
by Raphael de Leão Serafini, Bruno Corrêa da Silva, Haluko Massago, Eduardo da Silva and Adolfo Jatobá
Animals 2025, 15(20), 2942; https://doi.org/10.3390/ani15202942 (registering DOI) - 10 Oct 2025
Abstract
This study evaluated the technical and economic feasibility of the biofloc technology (BFT) system during the fry rearing phase of Nile tilapia (Oreochromis niloticus), focusing on suspended solids management, stocking density, and economic performance at a pilot scale. Three trials were [...] Read more.
This study evaluated the technical and economic feasibility of the biofloc technology (BFT) system during the fry rearing phase of Nile tilapia (Oreochromis niloticus), focusing on suspended solids management, stocking density, and economic performance at a pilot scale. Three trials were conducted. The first assessed the effects of four total suspended solids (TSS) ranges (0–200, 200–400, 400–600, and 600–800 mg·L−1) on larval performance and water quality. TSS levels between 200 and 600 mg·L−1 promoted improved water quality and zootechnical performance. The second trial tested five stocking densities (2, 4, 6, 8, and 10 larvae·L−1), evaluating their impact on water quality, survival, and size uniformity. Higher densities negatively affected survival (R2 = 0.84) and final weight (R2 = 0.92), while also increasing solids and nitrogenous compounds, thus impairing performance (p < 0.05). The third trial monitored six production cycles at pilot scale, evaluating zootechnical parameters, sex reversal efficiency, and economic indicators. All cycles showed survival rates above 85%, sex reversal close to 100%, and positive net margins (18.5 to 41.9%), demonstrating the viability of BFT for commercial fry operations. The results emphasize the importance of controlling suspended solids and stocking density to maintain water quality and optimize larval performance. Furthermore, the system proved economically viable, with good feed conversion rates and profitability, even without water exchange. These findings support BFT as a sustainable and efficient alternative for tilapia fry production, offering significant water savings and promising economic returns when properly managed. Full article
Show Figures

Figure 1

12 pages, 1349 KB  
Article
Effect of the Ankle–Foot Orthosis Dorsiflexion Angle on Gait Kinematics in Individuals with Hemiparetic Stroke
by Hiroshi Hosokawa, Fumiaki Tamiya, Ren Fujii, Ryu Ishimoto, Masahiko Mukaino and Yohei Otaka
Bioengineering 2025, 12(10), 1091; https://doi.org/10.3390/bioengineering12101091 - 10 Oct 2025
Viewed by 27
Abstract
Ankle-foot orthoses (AFOs) are widely used to improve gait; nonetheless, it remains unclear how specific settings, particularly the dorsiflexion angle, affect gait kinematics in individuals with stroke. This study investigated the effect of different AFO dorsiflexion angles on gait kinematics in ambulatory adults [...] Read more.
Ankle-foot orthoses (AFOs) are widely used to improve gait; nonetheless, it remains unclear how specific settings, particularly the dorsiflexion angle, affect gait kinematics in individuals with stroke. This study investigated the effect of different AFO dorsiflexion angles on gait kinematics in ambulatory adults with hemiparesis. Twenty-six individuals with post-stroke hemiparesis walked on a treadmill while wearing the same type of AFO at four ankle dorsiflexion angles: 0°, 5°, 10°, and 15°. Temporal-spatial variables, joint angles, and toe clearance and its components were quantified using three-dimensional analysis. The double-stance time before the paretic swing shortened significantly with increasing dorsiflexion angle, whereas the mean stride time and length did not significantly change. During the swing phase, increased AFO dorsiflexion was associated with reduced maximal knee flexion, in addition to its direct effect on ankle angles. The absolute toe clearance height was unaffected by the AFO settings; however, the contribution of ankle dorsiflexion to limb shortening increased stepwise from 0° to 15°, and the hip elevation and compensatory movement ratio declined. In conclusion, increasing the AFO dorsiflexion angle significantly altered gait kinematics, with distal ankle mechanics replacing inefficient hip compensation and reducing double-stance time. Full article
(This article belongs to the Section Biomechanics and Sports Medicine)
Show Figures

Figure 1

13 pages, 354 KB  
Article
Holographic Thermodynamics of Higher-Dimensional AdS Black Holes with CFT Rescaling
by Yahya Ladghami and Taoufik Ouali
Universe 2025, 11(10), 337; https://doi.org/10.3390/universe11100337 - 10 Oct 2025
Viewed by 28
Abstract
In this paper, we study the thermodynamic behavior of charged AdS black holes in higher-dimensional spacetimes within the framework of conformal holographic extended thermodynamics. This formalism is based on a novel AdS/CFT dictionary in which the conformal rescaling factor of the boundary conformal [...] Read more.
In this paper, we study the thermodynamic behavior of charged AdS black holes in higher-dimensional spacetimes within the framework of conformal holographic extended thermodynamics. This formalism is based on a novel AdS/CFT dictionary in which the conformal rescaling factor of the boundary conformal field theory (CFT) is treated as a thermodynamic parameter, while Newton’s constant is held fixed and the AdS radius is allowed to vary. We explore how variations in the CFT state, represented by its central charge, influence the bulk thermodynamics, phase structure, and stability of black holes in five and six dimensions. Our analysis reveals the emergence of Van der Waals-like phase transitions, critical phenomena governed by the central charge. Additionally, we find that the thermodynamic behavior of AdS black holes is affected by the dimensionality of the bulk spacetime, as we compare higher-dimensional black holes to lower-dimensional ones, such as the BTZ black holes. These findings provide new insights into the role of boundary degrees of freedom in shaping the thermodynamics of gravitational systems via holography. Full article
Show Figures

Figure 1

12 pages, 2218 KB  
Article
The Effects of Muscle Fatigue on Lower Extremity Biomechanics During the Three-Step Layup Jump and Drop Landing in Male Recreational Basketball Players
by Li Jin and Brandon Yang
Biomechanics 2025, 5(4), 81; https://doi.org/10.3390/biomechanics5040081 - 10 Oct 2025
Viewed by 58
Abstract
Background/Objectives: Understanding how muscle fatigue contributes to musculoskeletal injuries is critical in sports science. Although joint biomechanics during landing under fatigue has been studied before, limited research has focused on the layup phase under fatigue. This study examined the effects of fatigue [...] Read more.
Background/Objectives: Understanding how muscle fatigue contributes to musculoskeletal injuries is critical in sports science. Although joint biomechanics during landing under fatigue has been studied before, limited research has focused on the layup phase under fatigue. This study examined the effects of fatigue on ankle, knee, and hip-joint biomechanics during layup and landing. We hypothesized that fatigue would increase peak vertical ground reaction force (GRF), peak knee extension angle, and peak joint moments. Methods: Fourteen healthy male participants performed 3-step layups and drop landings using their dominant leg on force plates. The fatigue protocol consisted of squat jumps, step-ups, and repeated countermovement jumps (CMJs), with fatigue defined as three consecutive CMJs below 80% of the participant’s pre-established maximum jump height. After a fatigue protocol, they repeated the tasks. Kinematic data were collected using an eight-camera Vicon system (100 Hz), and GRF data were recorded with two AMTI force plates (1000 Hz). Thirty-six reflective markers were placed on lower-limb anatomical landmarks, and data were processed using Visual 3D. Paired t-tests (α = 0.05) were conducted using SPSS (V26.0) to compare pre- and post-fatigue outcomes. Results: Significant increases were found in peak GRF during landing (pre: 3.41 ± 0.81 BW [Body Weight], post: 3.95 ± 1.05 BW, p = 0.036), and peak negative hip joint work during landing (pre: 0.34 ± 0.18 J/kg, post: 0.66 ± 0.43 J/kg, p = 0.025). Conclusions: These findings indicate that fatigue may alter landing mechanics, reflected in increased ground reaction forces and negative hip joint work. These preliminary findings should be interpreted cautiously, and future studies with larger samples and additional neuromuscular measures under sport-specific conditions are needed to improve ecological validity. Full article
Show Figures

Figure 1

10 pages, 2893 KB  
Technical Note
Cement-Augmented Screw Fixation for Unreconstructible Acetabular Posterior Wall Fractures: A Technical Note
by Jihyo Hwang, Ho won Lee, Yonghyun Yoon and King Hei Stanley Lam
Life 2025, 15(10), 1573; https://doi.org/10.3390/life15101573 - 9 Oct 2025
Viewed by 127
Abstract
The management of severely comminuted acetabular posterior wall fractures in young, active patients presents a significant surgical challenge. When anatomical open reduction and internal fixation (ORIF) is not feasible, primary total hip arthroplasty (THA) is often considered but is a suboptimal solution due [...] Read more.
The management of severely comminuted acetabular posterior wall fractures in young, active patients presents a significant surgical challenge. When anatomical open reduction and internal fixation (ORIF) is not feasible, primary total hip arthroplasty (THA) is often considered but is a suboptimal solution due to concerns over long-term implant survivorship and the inevitability of revision surgery. This single-patient technical note presents a novel joint-preserving technique for managing unreconstructible acetabular posterior wall fractures using with cement-augmented screw fixation via the Kocher–Langenbeck approach. A 28-year-old male sustained a left posterior hip dislocation with a comminuted acetabular posterior wall fracture involving >30% of the articular surface, alongside a tibial shaft fracture, following a high-energy motorcycle collision. Intraoperative assessment confirmed the posterior wall was unreconstructible, with six non-viable osteochondral fragments. A joint-preserving salvage procedure was performed. After debridement, a stable metallic framework was created using three screws anchored in the posterior column. Polymethylmethacrylate (PMMA) bone cement was then applied over this framework in its doughy phase, meticulously contoured to reconstruct the articular surface. The hip was reduced, and the tibia was fixed with an intramedullary nail. The patient was mobilized with weight-bearing as tolerated on postoperative day 3. At the 21-month follow-up, the patient reported no pain during daily activities and only mild discomfort during deep squatting. Radiographic and CT evaluations demonstrated a stable hip joint, concentric reduction, well-maintained joint space, and no evidence of implant loosening or osteolysis. Level of Evidence: V (Technical Note/single-patient Case report). For unreconstructible, comminuted fractures of the non-weight-bearing portion of the acetabular posterior wall in young patients, cement-augmented screw fixation offers a viable joint-preserving alternative to primary THA. This technique provides immediate stability, facilitates early mobilization, and preserves bone stock. While long-term outcomes require further study, this case demonstrates excellent functional and radiographic results at 21 months, presenting a promising new option for managing these complex injuries. Full article
(This article belongs to the Special Issue Advanced Strategies in Fracture Treatments)
Show Figures

Figure 1

24 pages, 2134 KB  
Article
Smart Risk Assessment and Adaptive Control Strategy Selection for Human–Robot Collaboration in Industry 5.0: An Intelligent Multi-Criteria Decision-Making Approach
by Ertugrul Ayyildiz, Tolga Kudret Karaca, Melike Cari, Bahar Yalcin Kavus and Nezir Aydin
Processes 2025, 13(10), 3206; https://doi.org/10.3390/pr13103206 - 9 Oct 2025
Viewed by 232
Abstract
The emergence of Industry 5.0 brings a paradigm shift towards collaborative environments where humans and intelligent robots work side-by-side, enabling personalized, flexible, and resilient manufacturing. However, integrating humans and robots introduces new operational and safety risks that require proactive and adaptive control strategies. [...] Read more.
The emergence of Industry 5.0 brings a paradigm shift towards collaborative environments where humans and intelligent robots work side-by-side, enabling personalized, flexible, and resilient manufacturing. However, integrating humans and robots introduces new operational and safety risks that require proactive and adaptive control strategies. This study proposes an intelligent multi-criteria decision-making framework for smart risk assessment and the selection of optimal adaptive control strategies in human–robot collaborative manufacturing settings. The proposed framework integrates advanced risk analytics, real-time data processing, and expert knowledge to evaluate alternative control strategies, such as real-time wearable sensor integration, vision-based dynamic safety zones, AI-driven behavior prediction models, haptic feedback, and self-learning adaptive robot algorithms. A cross-disciplinary panel of ten experts structures six main and eighteen sub-criteria spanning safety, adaptability, ergonomics, reliability, performance, and cost, with response time and implementation/maintenance costs modeled as cost types. Safety receives the most significant weight; the most influential sub-criteria are collision avoidance efficiency, return on investment (ROI), and emergency response capability. The framework preserves linguistic semantics from elicitation to aggregation and provides a transparent, uncertainty-aware tool for selecting and phasing adaptive control strategies in Industry 5.0 collaborative cells. Full article
Show Figures

Figure 1

22 pages, 8129 KB  
Article
A Low-Frequency Component Filtering Method for Heave Acceleration Signal of Marine Ship
by Dejian Sun, Xiong Hu, Chongyang Han and Xinqiang Chen
J. Mar. Sci. Eng. 2025, 13(10), 1919; https://doi.org/10.3390/jmse13101919 - 6 Oct 2025
Viewed by 198
Abstract
The motion of ships in the ocean follows six degrees of freedom, and accurately measuring this motion is crucial for improving marine engineering operations. Among the six degree-of-freedom movement of ships, the change in ship heave freedom has the worst impact on offshore [...] Read more.
The motion of ships in the ocean follows six degrees of freedom, and accurately measuring this motion is crucial for improving marine engineering operations. Among the six degree-of-freedom movement of ships, the change in ship heave freedom has the worst impact on offshore lifting operations. At present, the most common method for measuring heave displacement is by integrating heave acceleration twice. The heave motion of ships belongs to low-frequency motion, but the low-frequency band range is often easily overlooked. This paper first analyzes the wave spectrum to determine the dominant frequency range of ship heave motion under typical wind speeds, which is found to be between 0.22 Hz and 0.45 Hz. The accuracy of low-frequency ship heave displacement signals largely depends on the heave acceleration signal, and filtering acceleration signals in the low-frequency range is particularly difficult. To address this challenge, this paper proposes a low-frequency component filtering method for heave acceleration signal of marine ships, which effectively avoids the phase and peak-to-peak errors introduced by traditional filters. This method further improves the filtering performance of acceleration signals in the 0.2 Hz to 0.5 Hz low-frequency range and can provide the crane driver with a motion reference for the heave of the ship when the ship is performing lifting operations. Full article
Show Figures

Figure 1

10 pages, 235 KB  
Article
Smoking and Alcohol During Pregnancy: Effects on Fetal and Neonatal Health—A Pilot Study
by Martina Derme, Marco Fiore, Maria Grazia Piccioni, Marika Denotti, Valentina D’Ambrosio, Silvia Francati, Ilenia Mappa and Giuseppe Rizzo
J. Clin. Med. 2025, 14(19), 7023; https://doi.org/10.3390/jcm14197023 - 3 Oct 2025
Viewed by 360
Abstract
Background/Objectives: Alcohol and smoking during pregnancy may be associated with several complications, but the underlying mechanism is still unclear. The aim of this study was to evaluate the role of oxidative stress induced by smoking and alcohol during pregnancy and their effects [...] Read more.
Background/Objectives: Alcohol and smoking during pregnancy may be associated with several complications, but the underlying mechanism is still unclear. The aim of this study was to evaluate the role of oxidative stress induced by smoking and alcohol during pregnancy and their effects on fetal and neonatal outcomes. Material and methods: We considered pregnant women at term. Validated questionnaires were used to investigate smoking and alcohol habits. Ultrasound was performed to evaluate fetal weight, amniotic fluid index, and maternal-fetal Doppler velocimetry. At the time of delivery, we collected a tuft of maternal hair, maternal venous blood, and cord blood. In these samplings we determined in phase I nicotine, cotinine, and ethyl glucuronide on the maternal keratin matrix with the gas chromatography-mass spectrometry technique. In phase II, the Free Oxygen Radicals Test (FORT) and Free Oxygen Radical Defense (FORD) test were used to assess circulating reactive oxygen species (ROS). Results: 119 pregnant patients were enrolled (n = 62 for smoking and n = 57 for alcohol). Twenty-six patients (42%) out of 62 were active smokers. Three patients (5%) out of 57 were alcoholic consumers. Mean neonatal weight and mean placental weight were significantly lower for active smokers (p = 0.0001). The neonatal weight was in the 1st–2nd percentile for all alcohol abusers. Considering two subgroups (n = 10 non-smokers and n = 10 smokers) for ROS determination, a statistically significant higher oxidative stress in the blood of smoking patients was evidenced (p < 0.0001). In cord blood the differences were not statistically significant (p = 0.2216). Conclusions: Fetal growth restriction was present in the group of active smokers and in patients with alcohol abuse. Oxidative stress was higher in smoking patients than in non-smokers. However, in cord blood, FORT was negative in all cases, suggesting a protective mechanism in utero. Given the limited sample size, the results obtained are preliminary and require future studies. Full article
(This article belongs to the Special Issue Clinical Updates on Prenatal Diagnosis)
16 pages, 6405 KB  
Article
Striking at Survivin: YM-155 Inhibits High-Risk Neuroblastoma Growth and Enhances Chemosensitivity
by Danielle C. Rouse, Rameswari Chilamakuri and Saurabh Agarwal
Cancers 2025, 17(19), 3221; https://doi.org/10.3390/cancers17193221 - 2 Oct 2025
Viewed by 343
Abstract
Background/Objectives: Neuroblastoma (NB) is an aggressive pediatric malignancy that accounts for nearly 15% of all childhood cancer-related deaths, with high-risk cases showing a poor 20% prognosis and limited response to current therapies. Survivin, encoded by the BIRC5 gene, is an anti-apoptotic protein frequently [...] Read more.
Background/Objectives: Neuroblastoma (NB) is an aggressive pediatric malignancy that accounts for nearly 15% of all childhood cancer-related deaths, with high-risk cases showing a poor 20% prognosis and limited response to current therapies. Survivin, encoded by the BIRC5 gene, is an anti-apoptotic protein frequently overexpressed in NB and linked to treatment resistance and unfavorable clinical outcomes. Methods and Results: An analysis of 1235 NB patient datasets revealed a significant association between elevated BIRC5 expression and reduced overall and event-free survival, highlighting survivin as an important therapeutic target in NB. To explore this strategy, we evaluated the efficacy of YM-155, a small-molecule survivin inhibitor, across multiple NB cell lines. YM-155 displayed potent cytotoxic activity in six NB cell lines with IC50 values ranging from 8 to 212 nM and significantly inhibited colony formation and 3D spheroid growth in a dose-dependent manner. Mechanistic analyses revealed that YM-155 downregulated survivin at both mRNA and protein levels, induced apoptosis by about 2–7-fold, and caused G0/G1 phase cell cycle arrest. Moreover, YM-155 treatment enhanced p53 expression, suggesting reactivation of tumor suppressor pathways. Notably, combining YM-155 and the chemotherapeutic agent etoposide resulted in synergistic inhibition of NB growth with ED75 values ranging from 0.17 to 1, compared to either agent alone. In the xenograft mouse model, YM-155 inhibited tumor burden in contrast to controls by about 3-fold, and without any notable toxic effects in vivo. Conclusion: Overall, our findings identify YM-155 as a promising therapeutic agent for high-risk NB by directly targeting survivin and enhancing chemosensitivity. These results support continued preclinical development of survivin inhibitors as part of rational combination strategies in pediatric cancer treatment. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Malignant Nervous System Cancers)
Show Figures

Graphical abstract

19 pages, 895 KB  
Article
Academic and Socio-Emotional Experiences of a Twice-Exceptional Student
by Davut Açar and Muhammet Davut Gül
Behav. Sci. 2025, 15(10), 1349; https://doi.org/10.3390/bs15101349 - 2 Oct 2025
Viewed by 428
Abstract
Twice-exceptional students, who are both gifted and present with characteristics of neurodiversity such as Autism Spectrum Disorder (ASD), possess distinctive academic and socio-emotional needs that necessitate individualized educational strategies. This qualitative case study explores the academic and socio-emotional experiences of Murat, an eighth-grade [...] Read more.
Twice-exceptional students, who are both gifted and present with characteristics of neurodiversity such as Autism Spectrum Disorder (ASD), possess distinctive academic and socio-emotional needs that necessitate individualized educational strategies. This qualitative case study explores the academic and socio-emotional experiences of Murat, an eighth-grade learner identified as gifted and diagnosed with ASD, from the perspectives of the student himself, his mother, and his teachers. Data were collected through semi-structured interviews and analyzed using Braun and Clarke’s six-phase reflexive thematic analysis. The findings revealed that Murat achieved success in mathematics and science, particularly within enriched, strength-oriented environments that accommodated his sensory sensitivities. Despite challenges in social skills and group participation, he benefited considerably from teacher scaffolding and interactive pedagogies. His mother’s active engagement and strong family–school collaboration emerged as pivotal factors in his developmental progress. This study extends beyond individual challenges to highlight the potential strengths that arise from by the intersection of neurodiversity and giftedness. Additionally, it contributes to the limited body of literature exploring how the notion of twice-exceptionality manifests within underrepresented educational contexts. Future research could investigate diverse socio-cultural contexts and develop strategies to enhance teacher preparation and family engagement in supporting gifted learners with ASD. Full article
(This article belongs to the Section Educational Psychology)
Show Figures

Figure 1

Back to TopTop