Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,692)

Search Parameters:
Keywords = skeletons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 1548 KB  
Perspective
RGB-D Cameras and Brain–Computer Interfaces for Human Activity Recognition: An Overview
by Grazia Iadarola, Alessandro Mengarelli, Sabrina Iarlori, Andrea Monteriù and Susanna Spinsante
Sensors 2025, 25(20), 6286; https://doi.org/10.3390/s25206286 - 10 Oct 2025
Viewed by 293
Abstract
This paper provides a perspective on the use of RGB-D cameras and non-invasive brain–computer interfaces (BCIs) for human activity recognition (HAR). Then, it explores the potential of integrating both the technologies for active and assisted living. RGB-D cameras can offer monitoring of users [...] Read more.
This paper provides a perspective on the use of RGB-D cameras and non-invasive brain–computer interfaces (BCIs) for human activity recognition (HAR). Then, it explores the potential of integrating both the technologies for active and assisted living. RGB-D cameras can offer monitoring of users in their living environments, preserving their privacy in human activity recognition through depth images and skeleton tracking. Concurrently, non-invasive BCIs can provide access to intent and control of users by decoding neural signals. The synergy between these technologies may allow holistic understanding of both physical context and cognitive state of users, to enhance personalized assistance inside smart homes. The successful deployment in integrating the two technologies needs addressing critical technical hurdles, including computational demands for real-time multi-modal data processing, and user acceptance challenges related to data privacy, security, and BCI illiteracy. Continued interdisciplinary research is essential to realize the full potential of RGB-D cameras and BCIs as AAL solutions, in order to improve the quality of life for independent or impaired people. Full article
(This article belongs to the Special Issue Computer Vision-Based Human Activity Recognition)
Show Figures

Figure 1

31 pages, 15695 KB  
Article
Seismic Performance of Existing Reinforced Concrete L-Shaped Columns Strengthened with Wing Walls
by Weilun Wang, Jiaqi Liao, Zixuan Li, Mingyuan Xie, Changle Fang, Muhammad Abdullah and Mingyang Zhang
Buildings 2025, 15(20), 3645; https://doi.org/10.3390/buildings15203645 - 10 Oct 2025
Viewed by 84
Abstract
In this study, the seismic performance of reinforced concrete (RC) L-shaped columns, strengthened with 100 mm and 150 mm wing walls, was determined using quasi-static tests. A total of nine L-shaped column specimens were designed and tested under cyclic loading. This study found [...] Read more.
In this study, the seismic performance of reinforced concrete (RC) L-shaped columns, strengthened with 100 mm and 150 mm wing walls, was determined using quasi-static tests. A total of nine L-shaped column specimens were designed and tested under cyclic loading. This study found that strengthening with wing walls increased the lateral stiffness and horizontal load bearing capacity of L-shaped columns. Notably, such improvement was found to be more significant under higher axial compression ratios, exhibiting maximum increases of 254% and 194% in load bearing capacity, in the positive and negative loading directions, respectively. Additionally, ductility was influenced by the wing wall length and axial compression ratios. Under a low axial compression ratio, the ductility coefficient first increased and then decreased with an increase in the wall length. Conversely, under a high axial compression ratio, ductility was consistently improved with increasing wall length. Furthermore, finite element (FE) models were established, and they successfully validated the experimental results, such as load–displacement responses, hysteresis behavior, skeleton curves and ultimate bearing capacity. The numerical results further strengthened the significant effect of the wing wall addition on the seismic performance of the L-shaped columns. Based on the results, a lateral capacity calculation formula is developed, providing a reliable method for assessing the seismic performance of the strengthened L-shaped columns. Therefore, the findings of this study present theoretical insights and practical guidance for the seismic retrofitting of existing RC structures with special-shaped columns. Full article
(This article belongs to the Special Issue Strengthening and Rehabilitation of Structures or Buildings)
Show Figures

Figure 1

27 pages, 8798 KB  
Article
Monotonic Behaviour and Physical Characteristics of Silty Sands with Kaolinite Clay
by Davor Marušić and Vedran Jagodnik
Geotechnics 2025, 5(4), 70; https://doi.org/10.3390/geotechnics5040070 - 9 Oct 2025
Viewed by 76
Abstract
This study investigates the behaviour of dense silty sands with kaolinite clay under static drained/undrained conditions at low confining stress. Conventional laboratory tests assessed the mixtures’ physical properties, but standard void ratio methods proved inadequate for silty sands with kaolinite. Despite targeting 80% [...] Read more.
This study investigates the behaviour of dense silty sands with kaolinite clay under static drained/undrained conditions at low confining stress. Conventional laboratory tests assessed the mixtures’ physical properties, but standard void ratio methods proved inadequate for silty sands with kaolinite. Despite targeting 80% relative density, specimens exhibited loose sand behaviour in both drained and undrained tests. With increasing kaolinite content, conventionally reconstituted mixtures exhibit reduced peak stress ratios up to 10% fines, with little change beyond, while critical ratios generally rise at 25 kPa but remain unchanged or decrease slightly at 50 kPa. Analytical redefinition of minimum/maximum void ratios (based on sand–clay volumetric fractions) improved specimen reconstitution, yielding dense behaviour matching that of the host sand. The alternatively reconstituted mixtures display increasing drained peaks and minor changes in undrained peaks with increasing kaolinite content, with critical ratios increasing markedly at 25 kPa and only slightly at 50 kPa. However, this analytical void ratio determination method is limited to non-expansive, low-plasticity clays. Void ratios in silty sands with clay mineras are influenced by confining stress, drainage, saturation, clay content, and the sand skeleton structure. Unlike pure sands, these mixtures exhibit variable void ratios due to changes in the clay phase under different saturation levels. A new evaluation method is needed that accounts for clay composition, saturation-dependent consistency, and initial sand skeleton configuration to characterise these soils accurately. The findings highlight the limitations of conventional approaches and stress the need for advanced frameworks to model complex soil behaviour in geotechnical applications. Full article
Show Figures

Figure 1

27 pages, 5815 KB  
Article
A Study on the Mechanical Properties of an Asphalt Mixture Skeleton Meso-Structure Based on Computed Tomography Images and the Discrete Element Method
by Hehao Liang, Liwan Shi, Yuechan Wang, Peixian Li and Jiajian Huang
Appl. Sci. 2025, 15(19), 10799; https://doi.org/10.3390/app151910799 - 8 Oct 2025
Viewed by 247
Abstract
Current understanding of the load-transfer mechanism in the skeletal contact state of asphalt mixtures and its influence on macroscopic mechanical properties remains insufficient. This knowledge gap leads to difficulties in accurately predicting the performance of designed mixtures, thereby restricting the service life of [...] Read more.
Current understanding of the load-transfer mechanism in the skeletal contact state of asphalt mixtures and its influence on macroscopic mechanical properties remains insufficient. This knowledge gap leads to difficulties in accurately predicting the performance of designed mixtures, thereby restricting the service life of asphalt pavements and the sustainable development of road engineering. This study investigated the skeletal contact characteristics, coarse aggregate movement, and crack propagation of three asphalt mixture types—Stone Mastic Asphalt (SMA), Asphalt Concrete (AC), and Open-Graded Friction Course (OGFC)—under loading. The methodology incorporated Computed Tomography (CT) technology, a Voronoi diagram-based skeletal contact evaluation method, and discrete element numerical simulation. The research aimed to elucidate the influence mechanisms of different skeletal structures on macroscopic performance and to validate the efficacy of the skeletal contact evaluation method. The findings revealed that under splitting load, the tensile stress contact force chains within the asphalt mixture’s skeleton were predominantly distributed along both sides of the specimen’s central axis. For all three gradations, compressive stress contact force chains (points) accounted for over 65% of the total, indicating that the asphalt mixture skeleton primarily bore and transmitted compressive stresses. The interlocking structure formed by coarse aggregates significantly enhanced the stability of the asphalt mixture skeleton, reduced its displacement under load, and improved the mixture’s resistance to cracking. In the three gradations, shear stress-induced cracks outnumbered those caused by tensile stress, with shear stress cracks accounting for over 55% of the total cracks. This suggests that under splitting load, cracks resulting from shear failure were more prevalent than those from tensile failure. SMA-20 demonstrated the best crack resistance, followed by AC-20, while OGFC-20 performed the poorest. These conclusions are consistent with the results of the Voronoi diagram-based skeletal contact evaluation, confirming the correlation between the contact conditions of the asphalt mixture skeleton and its mechanical performance. Specifically, inadequate skeletal contact leads to a significant deterioration in mechanical properties. The research results elucidate the influence of skeletal contact characteristics with different gradations on both mesoscopic features and macroscopic mechanical behavior, providing a crucial basis for optimizing asphalt mixture design. Full article
Show Figures

Figure 1

13 pages, 4661 KB  
Article
The Influence of Interference of Rubber Bushing on the Stiffness Characteristics of Anti-Roll Bar
by Zhidan Fu, Yali Yang, Hao Chen, Yu Zhang, Sha Xu, Shengwei Zhang and Shusheng Lv
Appl. Sci. 2025, 15(19), 10794; https://doi.org/10.3390/app151910794 - 7 Oct 2025
Viewed by 239
Abstract
The Anti-roll Bar is a critical component of the automobile suspension system. The stiffness of the Anti-roll Bar significantly impacts the suspension stiffness and is related to the interference of the rubber bushing. To obtain reasonable Anti-roll Bar stiffness and determine the appropriate [...] Read more.
The Anti-roll Bar is a critical component of the automobile suspension system. The stiffness of the Anti-roll Bar significantly impacts the suspension stiffness and is related to the interference of the rubber bushing. To obtain reasonable Anti-roll Bar stiffness and determine the appropriate amount of rubber bushing interference, a certain type of automotive lateral Anti-roll Bar model was established through ANSYS Workbench finite element analysis for the rubber bushing material using a Mooney–Rivlin two-parameter model simulation. A different amount of interference was set up between the rubber bushing and the various parts of the bushing. The overload simulation was performed to simulate the bushing in an overload state with a different amount of interference between the rubber bushing and the various parts of the bushing. The stresses of the three main parts of the Anti-roll Bar (the clamp, skeleton, and bushing) were analyzed in an overload state. The radial and torsional stiffness values of the Anti-roll Bar are analyzed under the interference state. The influence of interference fit variations in different mating parts on the radial and torsional stiffness of the Anti-roll Bar is studied. It is determined that the stiffness value of the Anti-roll Bar meets the requirements when the interference fit between the bushing and rod is 1 mm, the bushing-plate interference is 2 mm, and the interference fit between the bushing and clamp is 0.6 mm, provided that the strength requirements of each part are met. This study provides important reference significance for designing. Full article
Show Figures

Figure 1

15 pages, 1112 KB  
Article
Synthesis of New Brassinosteroid Analogs with Androstane Skeleton and Heterocyclic Acyl Side Chains: Preliminary Molecular Docking Studies
by Omara Araya, María Núñez, Marco Mellado, Andrés F. Olea and Luis Espinoza-Catalán
Molecules 2025, 30(19), 4011; https://doi.org/10.3390/molecules30194011 - 7 Oct 2025
Viewed by 267
Abstract
Brassinosteroid analogs with heterocyclic rings in the side chain are interesting because important biological activity has been shown by these compounds. Thus, herein, five 23-24-dinorcholane BR analogs with a heterocyclic ester function at C-22 were synthesized and fully characterized by different spectroscopic techniques. [...] Read more.
Brassinosteroid analogs with heterocyclic rings in the side chain are interesting because important biological activity has been shown by these compounds. Thus, herein, five 23-24-dinorcholane BR analogs with a heterocyclic ester function at C-22 were synthesized and fully characterized by different spectroscopic techniques. The acylation reaction at C-22, which is a key synthetic step, was carried out by two different methods, namely acylation with heterocyclic acid chlorides and Steglich esterification reaction. In both cases, the acyl derivatives were obtained with good yields. Additionally, a preliminary molecular docking study of BRI1–BAK1 complexes formed by these analogs and brassinolide was performed to estimate what their biological activity would be. Results indicate that the complex formed by the analog 36, which has an indole group in the side chain, within the active site of BRI1–BAK1 is more stable than that formed by brassinolide. Additionally, molecular docking of a derivative having a benzoate function at C-22 and a F atom in the ortho position, 23, shows a similar pose and interactions at the active site but the highest binding energy. As 23 has shown similar activity to brassinolide in the Rice Lamina Inclination Test, it is expected that 36 will also exhibit similar behavior. Full article
(This article belongs to the Special Issue Heterocyclic Compounds: Synthesis, Application and Theoretical Study)
Show Figures

Figure 1

23 pages, 5437 KB  
Article
Hierarchical Deep Learning for Abnormality Classification in Mouse Skeleton Using Multiview X-Ray Images: Convolutional Autoencoders Versus ConvNeXt
by Muhammad M. Jawaid, Rasneer S. Bains, Sara Wells and James M. Brown
J. Imaging 2025, 11(10), 348; https://doi.org/10.3390/jimaging11100348 - 7 Oct 2025
Viewed by 215
Abstract
Single-view-based anomaly detection approaches present challenges due to the lack of context, particularly for multi-label problems. In this work, we demonstrate the efficacy of using multiview image data for improved classification using a hierarchical learning approach. Using 170,958 images from the International Mouse [...] Read more.
Single-view-based anomaly detection approaches present challenges due to the lack of context, particularly for multi-label problems. In this work, we demonstrate the efficacy of using multiview image data for improved classification using a hierarchical learning approach. Using 170,958 images from the International Mouse Phenotyping Consortium (IMPC) repository, a specimen-wise multiview dataset comprising 54,046 specimens was curated. Next, two hierarchical classification frameworks were developed by customizing ConvNeXT and a convolutional autoencoder (CAE) as CNN backbones, respectively. The customized architectures were trained at three hierarchy levels with increasing anatomical granularity, enabling specialized layers to learn progressively more detailed features. At the top level (L1), multiview (MV) classification performed about the same as single views, with a high mean AUC of 0.95. However, using MV images in the hierarchical model greatly improved classification at levels 2 and 3. The model showed consistently higher average AUC scores with MV compared to single views such as dorsoventral or lateral. For example, at Level 2 (L2), the model divided abnormal cases into three subclasses, achieving AUCs of 0.65 for DV, 0.76 for LV, and 0.87 for MV. Then, at Level 3 (L3), it further divided these into ten specific abnormalities, with AUCs of 0.54 for DV, 0.59 for LV, and 0.82 for MV. A similar performance was achieved by the CAE-driven architecture, with mean AUCs of 0.87, 0.88, and 0.89 at Level 2 (L2) and 0.74, 0.78, and 0.81 at Level 3 (L3), respectively, for DV, LV, and MV views. The overall results demonstrate the advantage of multiview image data coupled with hierarchical learning for skeletal abnormality detection in a multi-label context. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Figure 1

13 pages, 2501 KB  
Article
Molecular Design of Benzothiadiazole-Fused Tetrathiafulvalene Derivatives for OFET Gas Sensors: A Computational Study
by Xiuru Xu and Changfa Huang
Sensors 2025, 25(19), 6190; https://doi.org/10.3390/s25196190 - 6 Oct 2025
Viewed by 211
Abstract
Due to their unique advantages—such as small size, easy integration, flexible wearability, low power consumption, high sensitivity, and material designability—organic field-effect transistor (OFET) gas sensors have significant application potential in fields such as environmental detection, smart healthcare, robotics, and artificial intelligence. Benzothiadiazole fused [...] Read more.
Due to their unique advantages—such as small size, easy integration, flexible wearability, low power consumption, high sensitivity, and material designability—organic field-effect transistor (OFET) gas sensors have significant application potential in fields such as environmental detection, smart healthcare, robotics, and artificial intelligence. Benzothiadiazole fused tetrathiafulvalenes (TTF) are promising organic semiconductor candidates due to their abundant S atoms and planar π-π conjugation skeletons. We designed a series of derivatives by side-chain modification, and conducted systematic computations on TTF derivatives, including reported and newly designed materials, to analyze how geometric factors affect the charge transport properties of materials at the PBE0/6-311G(d,p) level. The frontier molecular orbitals (FMOs) and reorganization energy indicate that the designed derivatives are promising candidates for organic semiconductor sensing materials. Furthermore, theoretical calculations reveal that the designed TTF derivatives are sensitive to gases like NH3, H2S, and SO2, indicating organic field-effect transistors (OFETs) with gas-sensing functions. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

18 pages, 7182 KB  
Article
Mechanical Evaluation of Topologically Optimized Shin Pads with Advanced Composite Materials: Assessment of the Impact Properties Utilizing Finite Element Analysis
by Ioannis Filippos Kyriakidis, Nikolaos Kladovasilakis, Eleftheria Maria Pechlivani and Konstantinos Tsongas
Computation 2025, 13(10), 236; https://doi.org/10.3390/computation13100236 - 5 Oct 2025
Viewed by 314
Abstract
In this paper, the evaluation of the mechanical performance of novel, designed topologically optimized shin pads with advanced materials will be conducted with the aid of Finite Element Analysis (FEA) to assess the endurance of the final structure on impact phenomena extracted from [...] Read more.
In this paper, the evaluation of the mechanical performance of novel, designed topologically optimized shin pads with advanced materials will be conducted with the aid of Finite Element Analysis (FEA) to assess the endurance of the final structure on impact phenomena extracted from actual real-life data acquired from contact sports. The main focus of the developed prototype is to have high-enough energy absorption capabilities and vibration isolation properties, crucial for the development of trustworthy protective equipment. The insertion of advanced materials with controlled weight fractions and lattice geometries aims to strategically improve those properties and provide tailored characteristics similar to the actual human skeleton. The final design is expected to be used as standalone protective equipment for athletes or as a protective shield for the development of human lower limb prosthetics. In this context, computational investigation of the dynamic mechanical response was conducted by replicating a real-life phenomenon of the impact during a contact sport in a median condition of a stud kick impact and an extreme case scenario to assess the dynamic response under shock-absorption conditions and the final design’s structural integrity by taking into consideration the injury prevention capabilities. The results demonstrate that the proposed lattice geometries positively influence the injury prevention capabilities by converting a severe injury to light one, especially in the gyroid structure where the prototype presented a unified pattern of stress distribution and a higher reduction in the transmitted force. The incorporation of the PA-12 matrix reinforced with the reused ground tire rubber results in a structure with high enough overall strength and crucial modifications on the absorption and damping capabilities vital for the integrity under dynamic conditions. Full article
(This article belongs to the Special Issue Advanced Topology Optimization: Methods and Applications)
Show Figures

Figure 1

25 pages, 3709 KB  
Article
Utilization of Tunnel Muck-Derived Recycled Granite Aggregates in Surface-Layer Asphalt Mixtures via Hybridization with Basalt
by Yuqi Zhou, Weiwei Liu, Yanxia Nie and Zongwu Chen
Materials 2025, 18(19), 4611; https://doi.org/10.3390/ma18194611 - 5 Oct 2025
Viewed by 341
Abstract
This study explored the feasibility of utilizing tunnel muck-derived recycled granite aggregates (RGAs) in surface-layer asphalt mixtures via hybrid with basalt aggregates. Firstly, RGAs, including coarse aggregates (RGCAs) and fine aggregates (RGFAs), were prepared using a production method integrated with multi-cleaning technology. Then, [...] Read more.
This study explored the feasibility of utilizing tunnel muck-derived recycled granite aggregates (RGAs) in surface-layer asphalt mixtures via hybrid with basalt aggregates. Firstly, RGAs, including coarse aggregates (RGCAs) and fine aggregates (RGFAs), were prepared using a production method integrated with multi-cleaning technology. Then, the material properties of RGAs and RGA–basalt hybrid aggregates with varying RGA volume proportions were investigated. Finally, asphalt mixtures with these hybrid aggregates were designed and their engineering performance was evaluated. Basalt aggregates and their corresponding asphalt mixture served as the control group. Results suggest that since RGAs are rich in quartz and their SiO2 content is as high as 70.88%, they are acidic aggregates. Employing multi-cleaning technology is a guaranteed method of obtaining RGAs with low mud content. The main conventional technical indexes of RGAs and all hybrid aggregates with 40–70% RGA volume proportions meet the requirements of Chinese technical specifications. Asphalt mixtures incorporating RGAs exhibit slightly higher voids in the mineral aggregates (VMAs) than the control group, indicating that RGAs modify the interlocking skeleton and contact states of aggregates. Blending RGAs with basalt to form hybrid aggregates is an effective way to achieve full-gradation utilization of tunnel muck-derived RGAs in the surface-layer asphalt mixtures. Without additional enhancement measures, a 40% RGA volume proportion in hybrid aggregates is recommended. For a higher RGA recycling rate, combining RGAs with cement is advised, maintaining 70% RGA volume proportion and 50% cement content of total filler volume. When external basalt aggregates are transported over a distance of 50–200 km, applying these schemes to local asphalt pavement surface layers can achieve at least 26.56% aggregate cost savings. Full article
Show Figures

Figure 1

17 pages, 3115 KB  
Article
Leakage-Proof and High-Conductivity Composite Phase Change Material Using Low-Melting-Point-Alloy-Encapsulated Copper Foam/Paraffin for Superior Thermal Homogeneity in Lithium-Ion Battery Modules
by Shengzhi He, Jiajun Zhao, Dongxu Ouyang and Mingyi Chen
Materials 2025, 18(19), 4604; https://doi.org/10.3390/ma18194604 - 4 Oct 2025
Viewed by 474
Abstract
Ensuring thermal stability is a major concern in lithium-ion battery systems. Although phase change materials (PCMs) provide a passive approach for temperature regulation, they are limited by poor heat conduction and potential leakage during phase transitions. This study develops a novel composite PCM [...] Read more.
Ensuring thermal stability is a major concern in lithium-ion battery systems. Although phase change materials (PCMs) provide a passive approach for temperature regulation, they are limited by poor heat conduction and potential leakage during phase transitions. This study develops a novel composite PCM (CPCM) using paraffin (PA) as the matrix, copper foam (CF) as a conductive skeleton (10–30 pores per inch, PPI), and a low-melting-point alloy (LMA) as an encapsulant to prevent leakage. The effects of CF pore size on thermal conductivity, impregnation ratio, and leakage resistance were systematically investigated. Results show that CPCM with 10 PPI CF achieved the highest thermal conductivity (4.42 W·m−1·K−1), while LMA encapsulation effectively eliminated leakage. The thermal management performance was evaluated on both a single 18,650 LIB cell and a 2S2P module during rate discharging at 1C, 2C, and 3C. For the module at 3C, the 10 PPI CPCM significantly lowered the maximum temperature from 75.9 °C to 44.6 °C and critically reduced the maximum temperature difference between cells from 10.2 °C to a safe level of 1.2 °C, significantly improving temperature uniformity. This work provides a high-conductivity and leakage-proof CPCM solution based on LMA-encapsulated CF/PA for enhanced thermal safety and uniformity in LIB modules. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

20 pages, 4451 KB  
Article
Skeleton-Guided Diffusion for Font Generation
by Li Zhao, Shan Dong, Jiayi Liu, Xijin Zhang, Xiaojiao Gao and Xiaojun Wu
Electronics 2025, 14(19), 3932; https://doi.org/10.3390/electronics14193932 - 3 Oct 2025
Viewed by 176
Abstract
Generating non-standard fonts, such as running script (e.g., XingShu), poses significant challenges due to their high stroke continuity, structural flexibility, and stylistic diversity, which traditional component-based prior knowledge methods struggle to model effectively. While diffusion models excel at capturing continuous feature spaces and [...] Read more.
Generating non-standard fonts, such as running script (e.g., XingShu), poses significant challenges due to their high stroke continuity, structural flexibility, and stylistic diversity, which traditional component-based prior knowledge methods struggle to model effectively. While diffusion models excel at capturing continuous feature spaces and stroke variations through iterative denoising, they face critical limitations: (1) style leakage, where large stylistic differences lead to inconsistent outputs due to noise interference; (2) structural distortion, caused by the absence of explicit structural guidance, resulting in broken strokes or deformed glyphs; and (3) style confusion, where similar font styles are inadequately distinguished, producing ambiguous results. To address these issues, we propose a novel skeleton-guided diffusion model with three key innovations: (1) a skeleton-constrained style rendering module that enforces semantic alignment and balanced energy constraints to amplify critical skeletal features, mitigating style leakage and ensuring stylistic consistency; (2) a cross-scale skeleton preservation module that integrates multi-scale glyph skeleton information through cross-dimensional interactions, effectively modeling macro-level layouts and micro-level stroke details to prevent structural distortions; (3) a contrastive style refinement module that leverages skeleton decomposition and recombination strategies, coupled with contrastive learning on positive and negative samples, to establish robust style representations and disambiguate similar styles. Extensive experiments on diverse font datasets demonstrate that our approach significantly improves the generation quality, achieving superior style fidelity, structural integrity, and style differentiation compared to state-of-the-art diffusion-based font generation methods. Full article
Show Figures

Figure 1

11 pages, 1669 KB  
Article
From Filamentous Bulking to Utilization: Formation Mechanisms of Filamentous Biofilms and Construction of Stabilized Systems
by Tao Song, Ji Li and Xiaolei Zhang
Water 2025, 17(19), 2885; https://doi.org/10.3390/w17192885 - 3 Oct 2025
Viewed by 328
Abstract
Sludge bulking in wastewater treatment is often caused by massive filamentous bacteria. This study aimed to turn such bacteria into a stable system dominated by filamentous biofilms (FBs) by using a continuous flow reactor (CFR) fed with simulated domestic wastewater; to address FBs’ [...] Read more.
Sludge bulking in wastewater treatment is often caused by massive filamentous bacteria. This study aimed to turn such bacteria into a stable system dominated by filamentous biofilms (FBs) by using a continuous flow reactor (CFR) fed with simulated domestic wastewater; to address FBs’ poor solid–liquid separation and uncontrollable sludge retention time (SRT), string carriers were added, SRT was controlled at 30 days, and parameters like mixed liquid suspended solids (MLSS) and sludge volume index (SVI) were monitored. Results showed filamentous Sphaerotilus (68–93% of FBs) self-aggregated as FBs’ reticular skeleton (loose, porous, stable, max 8 cm) with non-filamentous bacteria anchoring; FBs achieved >80% COD/NH4+-N removal despite low MLSS (<1000 mg/L) and SVI > 350 mL/g. The application of carriers increased the proportion of non-filamentous microorganisms to over 80%, reduced SVI to 150–400 mL/g, and increased MLSS to over 2700 mg/L, enabling stable operation. This study challenges the traditional negative perception of filamentous bacteria and opens new prospects for wastewater treatment technology. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

25 pages, 8960 KB  
Article
Analysis on Durability of Bentonite Slurry–Steel Slag Foam Concrete Under Wet–Dry Cycles
by Guosheng Xiang, Feiyang Shao, Hongri Zhang, Yunze Bai, Yuan Fang, Youjun Li, Ling Li and Yang Ming
Buildings 2025, 15(19), 3550; https://doi.org/10.3390/buildings15193550 - 2 Oct 2025
Viewed by 355
Abstract
Wet–dry cycles are a key factor aggravating the durability degradation of foam concrete. To address this issue, this study prepared bentonite slurry–steel slag foam concrete (with steel slag and cement as main raw materials, and bentonite slurry as admixture) using the physical foaming [...] Read more.
Wet–dry cycles are a key factor aggravating the durability degradation of foam concrete. To address this issue, this study prepared bentonite slurry–steel slag foam concrete (with steel slag and cement as main raw materials, and bentonite slurry as admixture) using the physical foaming method. Based on 7-day unconfined compressive strength tests with different mix proportions, the optimal mix proportion was determined as follows: mass ratio of bentonite to water 1:15, steel slag content 10%, and mass fraction of bentonite slurry 5%. Based on this optimal mix proportion, dry–wet cycle tests were carried out in both water and salt solution environments to systematically analyze the improvement effect of steel slag and bentonite slurry on the durability of foam concrete. The results show the following: steel slag can act as fine aggregate to play a skeleton role; after fully mixing with cement paste, it wraps the outer wall of foam, which not only reduces foam breakage but also inhibits the formation of large pores inside the specimen; bentonite slurry can densify the interface transition zone, improve the toughness of foam concrete, and inhibit the initiation and propagation of matrix cracks during the dry–wet cycle process; the composite addition of the two can significantly enhance the water erosion resistance and salt solution erosion resistance of foam concrete. The dry–wet cycle in the salt solution environment causes more severe erosion damage to foam concrete. The main reason is that, after chloride ions invade the cement matrix, they erode hydration products and generate expansive substances, thereby aggravating the matrix damage. Scanning Electron Microscopy (SEM) analysis shows that, whether in water environment or salt solution environment, the fractal dimension of foam concrete decreased slightly with an increasing number of wet–dry cycle times. Based on fractal theory, this study established a compressive strength–porosity prediction model and a dense concrete compressive strength–dry–wet cycle times prediction model, and both models were validated against experimental data from other researchers. The research results can provide technical support for the development of durable foam concrete in harsh environments and the high-value utilization of steel slag solid waste, and are applicable to civil engineering lightweight porous material application scenarios requiring resistance to dry–wet cycle erosion, such as wall bodies and subgrade filling. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 10846 KB  
Article
Mineralogical and Mechanical Characterization of Concrete Blocks for Artificial Reefs: A Comparative Study with Natural Coral Skeletons
by Mykel Fernandes de Sousa, Cláudio Dybas da Natividade, Marçal Rosas Florentino Lima Filho, Sandro Marden Torres, Alexsandro José Virgínio dos Santos, Rochanna Alves Silva da Rocha, Glauco Fonsêca Henriques, Karina Massei and Wesley Maciel de Souza
J. Mar. Sci. Eng. 2025, 13(10), 1886; https://doi.org/10.3390/jmse13101886 - 1 Oct 2025
Viewed by 389
Abstract
Coral reefs are very important ecosystems for the planet, offering ecological and socio-economic benefits. However, they are under threat due to anthropogenic factors and environmental changes. This study assesses the feasibility of weathered Portland cement concrete as a material for marine artificial reefs [...] Read more.
Coral reefs are very important ecosystems for the planet, offering ecological and socio-economic benefits. However, they are under threat due to anthropogenic factors and environmental changes. This study assesses the feasibility of weathered Portland cement concrete as a material for marine artificial reefs by comparing its physicochemical and mechanical properties with those of natural coral skeletons from the coast of Paraíba, Brazil. Analyses included microstructural and physical characterization, compressive strength and ultrasonic pulse velocity tests, as well as pH monitoring. The results indicated that weathered concrete exhibits mineralogical similarity to corals, with the presence of carbonate phases and portlandite absent due to advanced carbonation. The compressive strength of the concrete (27.6 MPa) was significantly higher than that of the coral samples (1–6 MPa), while the porosity of the corals (34–41%) exceeded that of the concrete (14%). The alkaline nature of the concrete (pH 9.7) remained stable. Although differences in physical and mechanical properties are evident, the values are within the ranges reported for cementitious materials in marine applications. Mineralogical similarities between coral skeletons and concrete support its potential as a functional analog in artificial reefs, while adjustments in geometry and porosity are suggested to enhance ecological compatibility. Full article
Show Figures

Figure 1

Back to TopTop