Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,289)

Search Parameters:
Keywords = smart contract

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1084 KB  
Article
Adaptive Ensemble Machine Learning Framework for Proactive Blockchain Security
by Babatomiwa Omonayajo, Oluwafemi Ayotunde Oke and Nadire Cavus
Appl. Sci. 2025, 15(19), 10848; https://doi.org/10.3390/app151910848 - 9 Oct 2025
Abstract
Blockchain technology has rapidly evolved beyond cryptocurrencies, underpinning diverse applications such as supply chains, healthcare, and finances, yet its security vulnerabilities remain a critical barrier to safe adoption. However, attackers increasingly exploit weaknesses in consensus protocols, smart contracts, and network layers with threats [...] Read more.
Blockchain technology has rapidly evolved beyond cryptocurrencies, underpinning diverse applications such as supply chains, healthcare, and finances, yet its security vulnerabilities remain a critical barrier to safe adoption. However, attackers increasingly exploit weaknesses in consensus protocols, smart contracts, and network layers with threats such as Denial-of-Chain (DoC) and Black Bird attacks, posing serious challenges to blockchain ecosystems. We conducted anomaly detection using two independent datasets (A and B) generated from simulation attack scenarios including hash rate, Sybil, Eclipse, Finney, and Denial-of-Chain (DoC) attacks. Key blockchain metrics such as hash rate, transaction authorization status, and recorded attack consequences were collected for analysis. We compared both class-balanced and imbalanced datasets, applying Synthetic Minority Oversampling Technique (SMOTE) to improve representation of minority-class samples and enhance performance metrics. Supervised models such as Random Forest, Gradient Boosting, and Logistic Regression consistently outperformed unsupervised models, achieving high F1-scores (0.90), while balancing the training data had only a modest effect. The results are based on simulated environment and should be considered as preliminary until the experiment is performed in a real blockchain environment. Based on identified gaps, we recommend the exploration and development of multifaceted defense approaches that combine prevention, detection, and response to strengthen blockchain resilience. Full article
Show Figures

Figure 1

15 pages, 613 KB  
Article
Contract-Graph Fusion and Cross-Graph Matching for Smart-Contract Vulnerability Detection
by Xue Liang, Yao Tan, Jun Song and Fan Yang
Appl. Sci. 2025, 15(19), 10844; https://doi.org/10.3390/app151910844 - 9 Oct 2025
Abstract
Smart contracts empower many blockchain applications but are exposed to code-level defects. Existing methods do not scale to the evolving code, do not represent complex control and data flows, and lack granular and calibrated evidence. To address the above concerns, we present an [...] Read more.
Smart contracts empower many blockchain applications but are exposed to code-level defects. Existing methods do not scale to the evolving code, do not represent complex control and data flows, and lack granular and calibrated evidence. To address the above concerns, we present an across-graph corresponding contract-graph method for vulnerability detection: abstract syntax, control flow, and data flow are fused into a typed, directed contract-graph whose nodes are enriched with pre-code embeddings (GraphCodeBERT or CodeT5+). A Graph Matching Network (GMN) with cross-graph attention compares contract-graphs, aligns homologous sub-graphs associated with vulnerabilities, and supports the interpretation of statements at the level of balance between a broad structural coverage and a discriminative pairwise alignment. The evaluation follows a deployment-oriented protocol with thresholds fixed for validation, multi-seed averaging, and a conservative estimate of sensitivity under low-false-positive budgets. On SmartBugs Wild, the method consistently and markedly exceeds strong rule-based and learning baselines and maintains a higher sensitivity to matching false-positive rates; ablations track the gains to multi-graph fusion, pre-trained encoders, and cross-graph matching, stable through seeds. Full article
23 pages, 1112 KB  
Article
Analysis of Blockchain Adoption in Environmental Monitoring Based on Evolutionary Game
by Lili Zhang, Shuolei Hu, Lei Qiao and Kai Zhong
Mathematics 2025, 13(19), 3237; https://doi.org/10.3390/math13193237 - 9 Oct 2025
Abstract
Environmental monitoring is the basis of environmental protection. China’s existing environmental monitoring system has been relatively perfect, but there are still data fraud and other illegal issues. Blockchain technology can well meet the requirements of environmental monitoring, but there are many obstacles in [...] Read more.
Environmental monitoring is the basis of environmental protection. China’s existing environmental monitoring system has been relatively perfect, but there are still data fraud and other illegal issues. Blockchain technology can well meet the requirements of environmental monitoring, but there are many obstacles in its adoption process, so this paper combines the characteristics of blockchain technology to integrate the two stakeholders of government and polluting enterprises into a unified model and introduces parameters related to smart contracts and corruption. The dynamic evolutionary game theory, combined with numerical simulation, is used to explore the behavioral decision-making characteristics and change rules of relevant stakeholders. The results show that there are stable conditions for the three strategies. Compared with the development cost of blockchain, the management cost of blockchain has a greater impact on the strategy choice of polluting enterprises because the income of polluting enterprises adopting blockchain technology can greatly affect the strategy choice of polluting enterprises, and there is a positive correlation between the income and the willingness of polluting enterprises to choose blockchain technology; only the construction cost of blockchain will cause fluctuations in the government’s strategy choice, and other factors will not have a greater impact on the government’s choice. This study provides a useful reference for promoting the adoption of blockchain technology in the field of environmental protection. Full article
21 pages, 1160 KB  
Article
Near Real-Time Ethereum Fraud Detection Using Explainable AI in Blockchain Networks
by Fatih Ertam
Appl. Sci. 2025, 15(19), 10841; https://doi.org/10.3390/app151910841 - 9 Oct 2025
Abstract
Blockchain technologies have profoundly transformed information systems by providing decentralized infrastructures that enhance transparency, security, and traceability. Ethereum, in particular, supports smart contracts and facilitates the development of decentralized finance (DeFi), non-fungible tokens (NFTs), and Web3 applications. However, its openness also enables illicit [...] Read more.
Blockchain technologies have profoundly transformed information systems by providing decentralized infrastructures that enhance transparency, security, and traceability. Ethereum, in particular, supports smart contracts and facilitates the development of decentralized finance (DeFi), non-fungible tokens (NFTs), and Web3 applications. However, its openness also enables illicit activities, including fraud and money laundering, through anonymous wallets. Identifying wallets involved in large transfers or abnormal transactional patterns is therefore critical to ecosystem security. This study proposes an AI-based framework employing XGBoost, LightGBM, and CatBoost to detect suspicious Ethereum wallets, achieving test accuracies between 95.83% and 96.46%. The system provides near real-time predictions for individual or recent wallet addresses using a pre-trained XGBoost model. To improve interpretability, SHAP (SHapley Additive exPlanations) visualizations are integrated, highlighting the contribution of each feature. The results demonstrate the effectiveness of AI-driven methods in monitoring and securing Ethereum transactions against fraudulent activities. Full article
(This article belongs to the Special Issue Artificial Intelligence on the Edge for Industry 4.0)
Show Figures

Figure 1

32 pages, 2305 KB  
Article
SCEditor-Web: Bridging Model-Driven Engineering and Generative AI for Smart Contract Development
by Yassine Ait Hsain, Naziha Laaz and Samir Mbarki
Information 2025, 16(10), 870; https://doi.org/10.3390/info16100870 - 7 Oct 2025
Abstract
Smart contracts are central to blockchain ecosystems, yet their development remains technically demanding, error-prone, and tied to platform-specific programming languages. This paper introduces SCEditor-Web, a web-based modeling environment that combines model-driven engineering (MDE) with generative artificial intelligence (Gen-AI) to simplify contract design and [...] Read more.
Smart contracts are central to blockchain ecosystems, yet their development remains technically demanding, error-prone, and tied to platform-specific programming languages. This paper introduces SCEditor-Web, a web-based modeling environment that combines model-driven engineering (MDE) with generative artificial intelligence (Gen-AI) to simplify contract design and code generation. Developers specify the structural and behavioral aspects of smart contracts through a domain-specific visual language grounded in a formal metamodel. The resulting contract model is exported as structured JSON and transformed into executable, platform-specific code using large language models (LLMs) guided by a tailored prompt engineering process. A prototype implementation was evaluated on Solidity contracts as a proof of concept, using representative use cases. Experiments with state-of-the-art LLMs assessed the generated contracts for compilability, semantic alignment with the contract model, and overall code quality. Results indicate that the visual-to-code workflow reduces manual effort, mitigates common programming errors, and supports developers with varying levels of expertise. The contributions include an abstract smart contract metamodel, a structured prompt generation pipeline, and a web-based platform that bridges high-level modeling with practical multi-language code synthesis. Together, these elements advance the integration of MDE and LLMs, demonstrating a step toward more accessible and reliable smart contract engineering. Full article
(This article belongs to the Special Issue Using Generative Artificial Intelligence Within Software Engineering)
Show Figures

Figure 1

15 pages, 577 KB  
Article
Blockchain-Enabled GDPR Compliance Enforcement for IIoT Data Access
by Amina Isazade, Ali Malik and Mohammed B. Alshawki
J. Cybersecur. Priv. 2025, 5(4), 84; https://doi.org/10.3390/jcp5040084 - 3 Oct 2025
Viewed by 268
Abstract
The General Data Protection Regulation (GDPR) imposes additional demands and obligations on service providers that handle and process personal data. In this paper, we examine how advanced cryptographic techniques can be employed to develop a privacy-preserving solution for ensuring GDPR compliance in Industrial [...] Read more.
The General Data Protection Regulation (GDPR) imposes additional demands and obligations on service providers that handle and process personal data. In this paper, we examine how advanced cryptographic techniques can be employed to develop a privacy-preserving solution for ensuring GDPR compliance in Industrial Internet of Things (IIoT) systems. The primary objective is to ensure that sensitive data from IIoT devices is encrypted and accessible only to authorized entities, in accordance with Article 32 of the GDPR. The proposed system combines Decentralized Attribute-Based Encryption (DABE) with smart contracts on a blockchain to create a decentralized way of managing access to IIoT systems. The proposed system is used in an IIoT use case where industrial sensors collect operational data that is encrypted according to DABE. The encrypted data is stored in the IPFS decentralized storage system. The access policy and IPFS hash are stored in the blockchain’s smart contracts, allowing only authorized and compliant entities to retrieve the data based on matching attributes. This decentralized system ensures that information is stored encrypted and secure until it is retrieved by legitimate entities, whose access rights are automatically enforced by smart contracts. The implementation and evaluation of the proposed system have been analyzed and discussed, showing the promising achievement of the proposed system. Full article
(This article belongs to the Special Issue Data Protection and Privacy)
Show Figures

Figure 1

31 pages, 1144 KB  
Systematic Review
Smart Contracts, Blockchain, and Health Policies: Past, Present, and Future
by Kenan Kaan Kurt, Meral Timurtaş, Sevcan Pınar, Fatih Ozaydin and Serkan Türkeli
Information 2025, 16(10), 853; https://doi.org/10.3390/info16100853 - 2 Oct 2025
Viewed by 488
Abstract
The integration of blockchain technology into healthcare systems has emerged as a technical solution for enhancing data security, protecting privacy, and improving interoperability. Blockchain-based smart contracts offer reliability, transparency, and efficiency in healthcare services, making them a focal point of many studies. However, [...] Read more.
The integration of blockchain technology into healthcare systems has emerged as a technical solution for enhancing data security, protecting privacy, and improving interoperability. Blockchain-based smart contracts offer reliability, transparency, and efficiency in healthcare services, making them a focal point of many studies. However, challenges such as scalability, regulatory compliance, and interoperability continue to limit their widespread adoption. This study conducts a comprehensive literature review to assess blockchain-driven health data management, focusing on the classification of blockchain-based smart contracts in health policy and the health protocols and standards applicable to blockchain-based smart contracts. This review includes 80 core studies published between 2019 and 2025, identified through searches in PubMed, Scopus, and Web of Science using the PRISMA method. Risk of bias and methodological quality were assessed using the Joanna Briggs Institute tool. The findings highlight the potential of blockchain-enabled smart contracts in health policy management, emphasizing their advantages, limitations, and implementation challenges. Additionally, the research underscores their transformative impact on digital health policies in ensuring data integrity, enhancing patient autonomy, and fostering a more resilient healthcare ecosystem. Recent advancements in quantum technologies are also considered as they present both novel opportunities and emerging threats to the future security and design of healthcare blockchain systems. Full article
Show Figures

Figure 1

39 pages, 5203 KB  
Technical Note
EMR-Chain: Decentralized Electronic Medical Record Exchange System
by Ching-Hsi Tseng, Yu-Heng Hsieh, Heng-Yi Lin and Shyan-Ming Yuan
Technologies 2025, 13(10), 446; https://doi.org/10.3390/technologies13100446 - 1 Oct 2025
Viewed by 310
Abstract
Current systems for exchanging medical records struggle with efficiency and privacy issues. While establishing the Electronic Medical Record Exchange Center (EEC) in 2012 was intended to alleviate these issues, its centralized structure has brought about new attack vectors, such as performance bottlenecks, single [...] Read more.
Current systems for exchanging medical records struggle with efficiency and privacy issues. While establishing the Electronic Medical Record Exchange Center (EEC) in 2012 was intended to alleviate these issues, its centralized structure has brought about new attack vectors, such as performance bottlenecks, single points of failure, and an absence of patient consent over their data. Methods: This paper describes a novel EMR Gateway system that uses blockchain technology to exchange electronic medical records electronically, overcome the limitations of current centralized systems for sharing EMR, and leverage decentralization to enhance resilience, data privacy, and patient autonomy. Our proposed system is built on two interconnected blockchains: a Decentralized Identity Blockchain (DID-Chain) based on Ethereum for managing user identities via smart contracts, and an Electronic Medical Record Blockchain (EMR-Chain) implemented on Hyperledger Fabric to handle medical record indexes and fine-grained access control. To address the dual requirements of cross-platform data exchange and patient privacy, the system was developed based on the Fast Healthcare Interoperability Resources (FHIR) standard, incorporating stringent de-identification protocols. Our system is built using the FHIR standard. Think of it as a common language that lets different healthcare systems talk to each other without confusion. Plus, we are very serious about patient privacy and remove all personal details from the data to keep it confidential. When we tested its performance, the system handled things well. It can take in about 40 transactions every second and pull out data faster, at around 49 per second. To give you some perspective, this is far more than what the average hospital in Taiwan dealt with back in 2018. This shows our system is very solid and more than ready to handle even bigger workloads in the future. Full article
Show Figures

Figure 1

21 pages, 527 KB  
Article
Block-CITE: A Blockchain-Based Crowdsourcing Interactive Trust Evaluation
by Jiaxing Li, Lin Jiang, Haoxian Liang, Tao Peng, Shaowei Wang and Huanchun Wei
AI 2025, 6(10), 245; https://doi.org/10.3390/ai6100245 - 1 Oct 2025
Viewed by 229
Abstract
Industrial trademark examination enables users to apply for and manage their trademarks efficiently, promoting industrial and commercial economic development. However, there still exist many challenges, e.g., how to customize a blockchain-based crowdsourcing method for interactive trust evaluation, how to decentralize the functionalities of [...] Read more.
Industrial trademark examination enables users to apply for and manage their trademarks efficiently, promoting industrial and commercial economic development. However, there still exist many challenges, e.g., how to customize a blockchain-based crowdsourcing method for interactive trust evaluation, how to decentralize the functionalities of a centralized entity to nodes in a blockchain network instead of removing the entity directly, how to design a protocol for the method and prove its security, etc. In order to overcome these challenges, in this paper, we propose the Blockchain-based Crowdsourcing Interactive Trust Evaluation (Block-CITE for short) method to improve the efficiency and security of the current industrial trademark management schemes. Specifically, Block-CITE adopts a dual-blockchain structure and a crowdsourcing technique to record operations and store relevant data in a decentralized way. Furthermore, Block-CITE customizes a protocol for blockchain-based crowdsourced industrial trademark examination and algorithms of smart contracts to run the protocol automatically. In addition, Block-CITE analyzes the threat model and proves the security of the protocol. Security analysis shows that Block-CITE is able to defend against the malicious entities and attacks in the blockchain network. Experimental analysis shows that Block-CITE has a higher transaction throughput and lower network latency and storage overhead than the baseline methods. Full article
Show Figures

Figure 1

36 pages, 2113 KB  
Article
Self-Sovereign Identities and Content Provenance: VeriTrust—A Blockchain-Based Framework for Fake News Detection
by Maruf Farhan, Usman Butt, Rejwan Bin Sulaiman and Mansour Alraja
Future Internet 2025, 17(10), 448; https://doi.org/10.3390/fi17100448 - 30 Sep 2025
Viewed by 468
Abstract
The widespread circulation of digital misinformation exposes a critical shortcoming in prevailing detection strategies, namely, the absence of robust mechanisms to confirm the origin and authenticity of online content. This study addresses this by introducing VeriTrust, a conceptual and provenance-centric framework designed to [...] Read more.
The widespread circulation of digital misinformation exposes a critical shortcoming in prevailing detection strategies, namely, the absence of robust mechanisms to confirm the origin and authenticity of online content. This study addresses this by introducing VeriTrust, a conceptual and provenance-centric framework designed to establish content-level trust by integrating Self-Sovereign Identity (SSI), blockchain-based anchoring, and AI-assisted decentralized verification. The proposed system is designed to operate through three key components: (1) issuing Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs) through Hyperledger Aries and Indy; (2) anchoring cryptographic hashes of content metadata to an Ethereum-compatible blockchain using Merkle trees and smart contracts; and (3) enabling a community-led verification model enhanced by federated learning with future extensibility toward zero-knowledge proof techniques. Theoretical projections, derived from established performance benchmarks, suggest the framework offers low latency and high scalability for content anchoring and minimal on-chain transaction fees. It also prioritizes user privacy by ensuring no on-chain exposure of personal data. VeriTrust redefines misinformation mitigation by shifting from reactive content-based classification to proactive provenance-based verification, forming a verifiable link between digital content and its creator. VeriTrust, while currently at the conceptual and theoretical validation stage, holds promise for enhancing transparency, accountability, and resilience against misinformation attacks across journalism, academia, and online platforms. Full article
(This article belongs to the Special Issue AI and Blockchain: Synergies, Challenges, and Innovations)
Show Figures

Figure 1

29 pages, 2431 KB  
Article
Enhancing IoT-LLN Security with IbiboRPLChain Solution: A Blockchain-Based Authentication Method
by Joshua T. Ibibo, Josiah E. Balota, Tariq Alwada'n and Olugbenga O. Akinade
Appl. Sci. 2025, 15(19), 10557; https://doi.org/10.3390/app151910557 - 29 Sep 2025
Viewed by 625
Abstract
The security of Internet of Things (IoT)–Low-Power and Lossy Networks (LLNs) is crucial for their widespread adoption in various applications. The standard routing protocol for IoT-LLNs, IPv6 Routing Protocol over Low-Power and Lossy Networks (RPL), is susceptible to insider attacks, such as the [...] Read more.
The security of Internet of Things (IoT)–Low-Power and Lossy Networks (LLNs) is crucial for their widespread adoption in various applications. The standard routing protocol for IoT-LLNs, IPv6 Routing Protocol over Low-Power and Lossy Networks (RPL), is susceptible to insider attacks, such as the version number attack (VNA), decreased rank attack (DRA), and increased rank attack (IRA). These attacks can significantly impact network performance and resource consumption. To address these security concerns, we propose the IbiboRPLChain Solution, a secure blockchain-based authentication method for RPL nodes. The proposed solution introduces an additional blockchain layer to the RPL architecture, enabling secure authentication of communication links between the routing layer and the sensor layer. The IbiboRPLChain Solution utilises smart contracts to trigger immediate authentication upon detecting routing attacks initiated by malicious nodes in an IoT-LLN environment. The evaluation of the proposed solution demonstrates its superior performance in mitigating insider attacks and enhancing IoT-LLN security compared to existing methods. The proposed solution effectively mitigates insider attacks by employing blockchain technology to authenticate communication links between routing and sensor nodes. This prevents malicious nodes from manipulating routing information and disrupting network operations. Additionally, the solution enhances IoT-LLN security by utilising smart contracts to trigger immediate authentication upon detecting suspicious activity, ensuring prompt action against potential threats. The findings of this research have significant implications for the development and deployment of secure IoT-LLNs. Full article
Show Figures

Figure 1

21 pages, 2365 KB  
Article
BIONIB: Blockchain-Based IoT Using Novelty Index in Bridge Health Monitoring
by Divija Swetha Gadiraju, Ryan McMaster, Saeed Eftekhar Azam and Deepak Khazanchi
Appl. Sci. 2025, 15(19), 10542; https://doi.org/10.3390/app151910542 - 29 Sep 2025
Viewed by 226
Abstract
Bridge health monitoring is critical for infrastructure safety, especially with the growing deployment of IoT sensors. This work addresses the challenge of securely storing large volumes of sensor data and extracting actionable insights for timely damage detection. We propose BIONIB, a novel framework [...] Read more.
Bridge health monitoring is critical for infrastructure safety, especially with the growing deployment of IoT sensors. This work addresses the challenge of securely storing large volumes of sensor data and extracting actionable insights for timely damage detection. We propose BIONIB, a novel framework that combines an unsupervised machine learning approach called the Novelty Index (NI) with a scalable blockchain platform (EOSIO) for secure, real-time monitoring of bridges. BIONIB leverages EOSIO’s smart contracts for efficient, programmable, and secure data management across distributed sensor nodes. Experiments on real-world bridge sensor data under varying loads, climatic conditions, and health states demonstrate BIONIB’s practical effectiveness. Key findings include CPU utilization below 40% across scenarios, a twofold increase in storage efficiency, and acceptable latency degradation, which is not critical in this domain. Our comparative analysis suggests that BIONIB fills a unique niche by coupling NI-based detection with a decentralized architecture, offering real-time alerts and transparent, verifiable records across sensor nodes. Full article
(This article belongs to the Special Issue Vibration Monitoring and Control of the Built Environment)
Show Figures

Figure 1

24 pages, 1641 KB  
Article
Intellectual Property Protection Through Blockchain: Introducing the Novel SmartRegistry-IP for Secure Digital Ownership
by Abeer S. Al-Humaimeedy
Future Internet 2025, 17(10), 444; https://doi.org/10.3390/fi17100444 - 29 Sep 2025
Viewed by 249
Abstract
The rise of digital content has made the need for reliable and practical intellectual property (IP) management systems more critical than ever. Most traditional IP systems are prone to issues such as delays, inefficiency, and data security breaches. This paper introduces SmartRegistry-IP, a [...] Read more.
The rise of digital content has made the need for reliable and practical intellectual property (IP) management systems more critical than ever. Most traditional IP systems are prone to issues such as delays, inefficiency, and data security breaches. This paper introduces SmartRegistry-IP, a system developed to simplify the registration, licensing, and transfer of intellectual property assets in a secure and scalable decentralized environment. By utilizing the InterPlanetary File System (IPFS) for decentralized storage, SmartRegistry-IP achieves a low storage latency of 300 milliseconds, outperforming both cloud storage (500 ms) and local storage (700 ms). The system also supports a high transaction throughput of 120 transactions per second. Through the use of smart contracts, licensing agreements are automatically and securely enforced, reducing the need for intermediaries and lowering operational costs. Additionally, the proof-of-work process verifies all transactions, ensuring higher security and maintaining data consistency. The platform integrates an intuitive graphical user interface that enables seamless asset uploads, license management, and analytics visualization in real time. SmartRegistry-IP demonstrates superior efficiency compared to traditional systems, achieving a blockchain delay of 300 ms, which is half the latency of standard systems, averaging 600 ms. According to this study, adopting SmartRegistry-IP provides IP organizations with enhanced security and transparent management, ensuring they can overcome operational challenges regardless of their size. As a result, the use of blockchain for intellectual property management is expected to increase, helping maintain precise records and reducing time spent on online copyright registration. Full article
Show Figures

Figure 1

25 pages, 2472 KB  
Article
JudicBlock: Judicial Evidence Preservation Scheme Based on Blockchain Technology
by Tapasi Bhattacharjee, Amalendu Singha Mahapatra, Debashis De and Asmita Chowdhury
Blockchains 2025, 3(4), 11; https://doi.org/10.3390/blockchains3040011 - 26 Sep 2025
Viewed by 194
Abstract
The electronic judicial evidence preservation systems face various challenges including regulatory control, data exchange, poor credibility, etc. To address these issues, a blockchain-based judicial evidence preservation framework, JudicBlock, is proposed in the present study. It combines the scalability of the Interplanetary File System [...] Read more.
The electronic judicial evidence preservation systems face various challenges including regulatory control, data exchange, poor credibility, etc. To address these issues, a blockchain-based judicial evidence preservation framework, JudicBlock, is proposed in the present study. It combines the scalability of the Interplanetary File System with the transparency and security of public blockchain. By decentralizing data management and using cryptographic integrity, the system ensures reliable chronological tracking of investigative changes. Unlike traditional approaches, JudicBlock incorporates smart contracts and advanced consensus mechanisms to enforce strict access controls with secure collaboration among the stakeholders. The simulation results show that JudicBlock provides better results over traditional ELR (electronic law records) storage schemes in terms of mining cost, query fetching time, block processing IPFS (Interplanetary file systems) throughput, etc. At a USD 6 mining cost, it appends an average of 23,601 transactions. For 25 blocks, the average query fetching time is 0.852 ms with the cache support of 32 KB. The proposed scheme achieves an average ELR uploading latency improvement of 6.79% over traditional schemes. The results indicate the efficacy of the proposed scheme over the conventional schemes. Full article
Show Figures

Figure 1

28 pages, 3255 KB  
Article
Design of an Intellectual Property Rights Certification System Based on a Consortium Blockchain
by Yifan Chu, Xiaoyang Zhou, Mingxin Lu, Chengfu Dong, Zhenyan Qin and Hua Wang
Electronics 2025, 14(19), 3788; https://doi.org/10.3390/electronics14193788 - 24 Sep 2025
Viewed by 268
Abstract
Under the background of economic globalization and the rapid development of the knowledge economy, a large number of intellectual property achievements in China need to flow efficiently in order to give full play to their value; however, the traditional method of rights confirmation [...] Read more.
Under the background of economic globalization and the rapid development of the knowledge economy, a large number of intellectual property achievements in China need to flow efficiently in order to give full play to their value; however, the traditional method of rights confirmation has problems, such as complicated operation, low efficiency, high cost, etc., and its practicability is limited. For this reason, this paper aims to construct an efficient intellectual property rights confirmation system by utilizing the characteristics of non-repudiation, non-tampering, traceability and distribution of the consortium chain. By designing smart contracts for user login and registration, rights confirmation, and transaction; combining with the Chameleon Signature algorithm to guarantee transaction security; and ensuring integration with the IPFS to improve the efficiency of file storage, this research develops an IPR confirmation system based on the consortium chain. This system was ultimately successfully deployed and tested, verifying that it operates with good efficiency and correctly realizes the expected functions. The findings show that the proposed system can effectively simplify the operation, provide reliable credentials, guarantee security and storage efficiency, and provide a feasible solution for intellectual property rights. Full article
(This article belongs to the Special Issue Novel Methods Applied to Security and Privacy Problems, Volume II)
Show Figures

Figure 1

Back to TopTop