Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,289)

Search Parameters:
Keywords = snow model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1172 KB  
Article
Data-Driven Baseline Analysis of Climate Variability at an Antarctic AWS (2020–2024)
by Arpitha Javali Ashok, Shan Faiz, Raja Hashim Ali and Talha Ali Khan
Digital 2025, 5(4), 50; https://doi.org/10.3390/digital5040050 - 2 Oct 2025
Abstract
Climate change in Antarctica has profound global implications, influencing sea level rise, atmospheric circulation, and the Earth’s energy balance. This study presents a data-driven baseline analysis of meteorological observations from a British Antarctic Survey automatic weather station (2020–2024). Temporal and seasonal analyses reveal [...] Read more.
Climate change in Antarctica has profound global implications, influencing sea level rise, atmospheric circulation, and the Earth’s energy balance. This study presents a data-driven baseline analysis of meteorological observations from a British Antarctic Survey automatic weather station (2020–2024). Temporal and seasonal analyses reveal strong insolation-driven variability in temperature, snow depth, and solar radiation, reflecting the extreme polar day–night cycle. Correlation analysis highlights solar radiation, upwelling longwave flux, and snow depth as the most reliable predictors of near-surface temperature, while humidity, pressure, and wind speed contribute minimally. A linear regression baseline and a Random Forest model are evaluated for temperature prediction, with the ensemble approach demonstrating superior accuracy. Although the short data span limits long-term trend attribution, the findings underscore the potential of lightweight, reproducible pipelines for site-specific climate monitoring. All analysis codes are openly available in github, enabling transparency and future methodological extensions to advanced, non-linear models and multi-site datasets. Full article
25 pages, 6901 KB  
Article
Improving Active Support Capability: Optimization and Scheduling of Village-Level Microgrid with Hybrid Energy Storage System Containing Supercapacitors
by Yu-Rong Hu, Jian-Wei Ma, Ling Miao, Jian Zhao, Xiao-Zhao Wei and Jing-Yuan Yin
Eng 2025, 6(10), 253; https://doi.org/10.3390/eng6100253 - 1 Oct 2025
Abstract
With the rapid development of renewable energy and the continuous pursuit of efficient energy utilization, distributed photovoltaic power generation has been widely used in village-level microgrids. As a key platform connecting distributed photovoltaics with users, energy storage systems play an important role in [...] Read more.
With the rapid development of renewable energy and the continuous pursuit of efficient energy utilization, distributed photovoltaic power generation has been widely used in village-level microgrids. As a key platform connecting distributed photovoltaics with users, energy storage systems play an important role in alleviating the imbalance between supply and demand in VMG. However, current energy storage systems rely heavily on lithium batteries, and their frequent charging and discharging processes lead to rapid lifespan decay. To solve this problem, this study proposes a hybrid energy storage system combining supercapacitors and lithium batteries for VMG, and designs a hybrid energy storage scheduling strategy to coordinate the “source–load–storage” resources in the microgrid, effectively cope with power supply fluctuations and slow down the life degradation of lithium batteries. In order to give full play to the active support ability of supercapacitors in suppressing grid voltage and frequency fluctuations, the scheduling optimization goal is set to maximize the sum of the virtual inertia time constants of the supercapacitor. In addition, in order to efficiently solve the high-complexity model, the reason for choosing the snow goose algorithm is that compared with the traditional mathematical programming methods, which are difficult to deal with large-scale uncertain systems, particle swarm optimization, and other meta-heuristic algorithms have insufficient convergence stability in complex nonlinear problems, SGA can balance global exploration and local development capabilities by simulating the migration behavior of snow geese. By improving the convergence effect of SGA and constructing a multi-objective SGA, the effectiveness of the new algorithm, strategy and model is finally verified through three cases, and the loss is reduced by 58.09%, VMG carbon emissions are reduced by 45.56%, and the loss of lithium battery is reduced by 40.49% after active support optimization, and the virtual energy inertia obtained by VMG from supercapacitors during the scheduling cycle reaches a total of 0.1931 s. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

23 pages, 5501 KB  
Article
Development of a Road Surface Conditions Prediction Model for Snow Removal Decision-Making
by Gyeonghoon Ma, Min-Cheol Park, Junchul Kim, Han Jin Oh and Jin-Hoon Jeong
Sustainability 2025, 17(19), 8794; https://doi.org/10.3390/su17198794 - 30 Sep 2025
Abstract
Snowfall and road surface freezing cause traffic disruptions and skidding accidents. When widespread extreme cold events or sudden heavy snowfalls occur, the continuous monitoring and management of extensive road networks until the restoration of traffic operations is constrained by the limited personnel and [...] Read more.
Snowfall and road surface freezing cause traffic disruptions and skidding accidents. When widespread extreme cold events or sudden heavy snowfalls occur, the continuous monitoring and management of extensive road networks until the restoration of traffic operations is constrained by the limited personnel and resources available to road authorities. Consequently, road surface condition prediction models have become increasingly necessary to enable timely and sustainable decision-making. This study proposes a road surface condition prediction model based on CCTV images collected from roadside cameras. Three databases were constructed based on different definitions of moisture-related surface classes, and models with the same architecture were trained and evaluated. The results showed that the best performance was achieved when ice and snow were combined into a single class rather than treated separately. The proposed model was designed with a simplified structure to ensure applicability in practical operations requiring computational efficiency. Compared with transfer learning using deeper and more complex pre-trained models, the proposed model achieved comparable prediction accuracy while requiring less training time and computational resources. These findings demonstrate the reliability and practical utility of the developed model, indicating that its application can support sustainable snow removal decision-making across extensive road networks. Full article
(This article belongs to the Special Issue Disaster Risk Reduction and Sustainability)
Show Figures

Figure 1

18 pages, 15249 KB  
Article
Responses of the East Asian Winter Climate to Global Warming in CMIP6 Models
by Yuxi Jiang, Yutao Chi, Weidong Wang, Wenshan Li, Hui Wang and Jianxiang Sun
Atmosphere 2025, 16(10), 1143; https://doi.org/10.3390/atmos16101143 - 29 Sep 2025
Abstract
Global warming has been altering the East Asian climate at an unprecedented rate since the 20th century. In order to evaluate the changes in the East Asian winter climate (EAWC) and support policy-making for climate mitigation and adaptation strategies, this paper utilizes the [...] Read more.
Global warming has been altering the East Asian climate at an unprecedented rate since the 20th century. In order to evaluate the changes in the East Asian winter climate (EAWC) and support policy-making for climate mitigation and adaptation strategies, this paper utilizes the multimodel ensemble from the Couple Model Intercomparison Project 6 and a temperature threshold method to investigate the EAWC changes during the period 1979–2100. The results show that the EAWC has been undergoing widespread and robust changes in response to global warming. The winter length in East Asia has shortened and will continue shortening owing to later onsets and earlier withdrawals, leading to a drastic contraction in length from 100 days in 1979 to 43 days (27 days) in 2100 under SSP2-4.5 (SSP5-8.5). While most regions of the East Asian continent are projected to become warmer in winter, the Japan and marginal seas of northeastern Asia will face the risks from colder winters with more frequent extreme cold events, accompanied by less precipitation. Meanwhile, the Tibetan Plateau is very likely to have colder winters in the future, though its surface snow amounts will significantly decline. Greenhouse gas (GHG) emissions are found to be responsible for the EAWC changes. GHG traps heat inside the Earth’s atmosphere and notably increases the air temperature; moreover, its force modulates large-scale atmospheric circulation, facilitating an enhanced and northward-positioned Aleutian low together with a weakened Siberian high, East Asian trough, and East Asian jet stream. These two effects work together, resulting in a contracted winter with robust and uneven regional changes in the EAWC. This finding highlights the urgency of curbing GHG emissions and improving forecasts of the EAWC, which are crucial for mitigating their major ecological and social impacts. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

33 pages, 10753 KB  
Article
Spectral Analysis of Snow in Bansko, Pirin Mountain, in Different Ranges of the Electromagnetic Spectrum
by Temenuzhka Spasova, Andrey Stoyanov, Adlin Dancheva and Daniela Avetisyan
Remote Sens. 2025, 17(19), 3326; https://doi.org/10.3390/rs17193326 - 28 Sep 2025
Abstract
The study presents a spectral assessment and analysis of various data and methods for snow cover analysis in different ranges of the electromagnetic spectrum through a differentiated approach applied to the territory of Bansko, Pirin Mountain. The aim of the presented research is [...] Read more.
The study presents a spectral assessment and analysis of various data and methods for snow cover analysis in different ranges of the electromagnetic spectrum through a differentiated approach applied to the territory of Bansko, Pirin Mountain. The aim of the presented research is to assess the effectiveness and accuracy of satellite observations together with field (in situ) measurements and to create a model of an integrated methodology. To achieve this goal, several indices, such as land surface temperature (LST), optical indices, Tasseled Cap Transformation (TCT) with wetness component (TCW), High-Resolution (HR) imagery, and Synthetic Aperture Radar (SAR) measurements, were analyzed. The results of the analysis proved that combining satellite and field data through a mobile thermal camera provides an accurate and comprehensive picture of snow conditions in high mountain regions for powder, hard-packed and wet snow. As the most important, there is the verification and validation of the results through the so-called regression analysis of the different data types, through which multiple correlations (over 10) were established, both in data from Sentinel 1SAR, Sentinel 2MSI, Sentinel 3 SLSTR, and PlanetScope. The results showed the effectiveness of optical indices for hard and fresh snow and radar and LST data for wet snow. The results can be used to improve snow surveys, event prediction (e.g., avalanches), and the interpretation of spectral analysis of snow. The study does not aim to perform a temporal analysis; all satellite data is from the temporal period 30 December 2024–5 January 2025. Full article
Show Figures

Figure 1

18 pages, 13697 KB  
Article
A New Anticyclone Identification Method Based on Mask R-CNN Model and Its Application
by Yang Kong, Hao Wu, Ping Xia and Yumin Zhang
Atmosphere 2025, 16(10), 1140; https://doi.org/10.3390/atmos16101140 - 28 Sep 2025
Abstract
In recent decades, frequent cold waves and low-temperature events in mid-to-high latitude Eurasia have severely impacted socioeconomic activities in Northeast China. Accurately identifying anticyclones is essential due to their close relation to cold air activity. This study proposes a new anticyclone identification method [...] Read more.
In recent decades, frequent cold waves and low-temperature events in mid-to-high latitude Eurasia have severely impacted socioeconomic activities in Northeast China. Accurately identifying anticyclones is essential due to their close relation to cold air activity. This study proposes a new anticyclone identification method using the Mask region-based convolutional neural network (Mask R-CNN) model to detect synoptic-scale anticyclones by capturing their two-dimensional structural features and investigating their relationship with snow-ice disasters in Northeast China. It is found that compared with traditional objective identification methods, the new method better captures the overall structural characteristics of anticyclones, significantly improving the description of large-scale, strong anticyclones. Specifically, it incorporates 7.3% of small-scale anticyclones into larger-scale systems. Anticyclones are closely correlated with local cooling and cold air mass changes over Northeast China, with 60% of anticyclones accompanying regional cold air mass accumulation and temperature drops. Two case studies of the rare rain-snow and cold wave events revealed that these events were preceded by the generation and eastward expansion of an upstream anticyclone identified by the new method. This demonstrates that the proposed method can effectively track anticyclones and the evolution of cold high-pressure systems, providing insights into extreme cold events. Full article
Show Figures

Figure 1

36 pages, 9276 KB  
Article
Understanding Landslide Expression in SAR Backscatter Data: Global Study and Disaster Response Application
by Erin Lindsay, Alexandra Jarna Ganerød, Graziella Devoli, Johannes Reiche, Steinar Nordal and Regula Frauenfelder
Remote Sens. 2025, 17(19), 3313; https://doi.org/10.3390/rs17193313 - 27 Sep 2025
Abstract
Cloud cover can delay landslide detection in optical satellite imagery for weeks, complicating disaster response. Synthetic Aperture Radar (SAR) backscatter imagery, which is widely used for monitoring floods and avalanches, remains underutilised for landslide detection due to a limited understanding of landslide signatures [...] Read more.
Cloud cover can delay landslide detection in optical satellite imagery for weeks, complicating disaster response. Synthetic Aperture Radar (SAR) backscatter imagery, which is widely used for monitoring floods and avalanches, remains underutilised for landslide detection due to a limited understanding of landslide signatures in SAR data. We developed a conceptual model of landslide expression in SAR backscatter (σ°) change images through iterative investigation of over 1000 landslides across 30 diverse study areas. Using multi-temporal composites and dense time series Sentinel-1 C-band SAR data, we identified characteristic patterns linked to land cover, terrain, and landslide material. The results showed either increased or decreased backscatter depending on environmental conditions, with reduced visibility in urban or mixed vegetation areas. Detection was also hindered by geometric distortions and snow cover. The diversity of landslide expression illustrates the need to consider local variability and multi-track (ascending and descending) satellite data in designing representative training datasets for automated detection models. The conceptual model was applied to three recent disaster events using the first post-event Sentinel-1 image, successfully identifying previously unknown landslides before optical imagery became available in two cases. This study provides a theoretical foundation for interpreting landslides in SAR imagery and demonstrates its utility for rapid landslide detection. The findings support further exploration of rapid landslides in SAR backscatter data and future development of automated detection models, offering a valuable tool for disaster response. Full article
Show Figures

Graphical abstract

16 pages, 2962 KB  
Article
Integrated Hydroclimate Modeling of Non-Stationary Water Balance, Snow Dynamics, and Streamflow Regimes in the Devils Lake Basin Region
by Mahmoud Osman, Prakrut Kansara and Taufique H. Mahmood
Meteorology 2025, 4(4), 27; https://doi.org/10.3390/meteorology4040027 - 26 Sep 2025
Abstract
The hydrology of the transboundary region encompassing the western Red River Basin headwaters, such as Devils Lake Basin (DLB) in North America, is complex and highly sensitive to climate variability, impacting water resources, agriculture, and flood risk. Understanding hydrological shifts in this region [...] Read more.
The hydrology of the transboundary region encompassing the western Red River Basin headwaters, such as Devils Lake Basin (DLB) in North America, is complex and highly sensitive to climate variability, impacting water resources, agriculture, and flood risk. Understanding hydrological shifts in this region is critical, particularly given recent hydroclimatic changes. This study aimed to simulate and analyze key hydrological processes and their evolution from 1981 to 2020 using an integrated modeling approach. We employed the NASA Land Information System (LIS) framework configured with the Noah-MP land surface model and the HyMAP routing model, driven by a combination of reanalysis and observational datasets. Simulations revealed a significant increase in precipitation inputs and consequential positive net water storage trends post-1990, indicating increased water retention within the system. Snow dynamics showed high interannual variability and decadal shifts in average Snow Water Equivalent (SWE). Simulated streamflow exhibited corresponding multi-decadal trends, including increasing flows within a major DLB headwater basin (Mauvais Coulee Basin) during the period of Devils Lake expansion (mid-1990s to ~2011). Furthermore, analysis of decadal average seasonal hydrographs indicated significant shifts post-2000, characterized by earlier and often higher spring peaks and increased baseflows compared to previous decades. While the model captured these trends, validation against observed streamflow highlighted significant challenges in accurately simulating peak flow magnitudes (Nash–Sutcliffe Efficiency = 0.33 at Mauvais Coulee River near Cando). Overall, the results depict a non-stationary hydrological system responding dynamically to hydroclimatic forcing over the past four decades. While the integrated modeling approach provided valuable insights into these changes and their potential drivers, the findings also underscore the need for targeted model improvements, particularly concerning the representation of peak runoff generation processes, to enhance predictive capabilities for water resource management in this vital region. Full article
Show Figures

Figure 1

15 pages, 132684 KB  
Article
Overcoming Variable Illumination in Photovoltaic Snow Monitoring: A Real-Time Robust Drone-Based Deep Learning Approach
by Amna Mazen, Ashraf Saleem, Kamyab Yazdipaz and Ana Dyreson
Energies 2025, 18(19), 5092; https://doi.org/10.3390/en18195092 - 25 Sep 2025
Abstract
Snow accumulation on photovoltaic (PV) panels can cause significant energy losses in cold climates. While drone-based monitoring offers a scalable solution, real-world challenges like varying illumination can hinder accurate snow detection. We previously developed a YOLO-based drone system for snow coverage detection using [...] Read more.
Snow accumulation on photovoltaic (PV) panels can cause significant energy losses in cold climates. While drone-based monitoring offers a scalable solution, real-world challenges like varying illumination can hinder accurate snow detection. We previously developed a YOLO-based drone system for snow coverage detection using a Fixed Thresholding segmentation method to discriminate snow from the solar panel; however, it struggled in challenging lighting conditions. This work addresses those limitations by presenting a reliable drone-based system to accurately estimate the Snow Coverage Percentage (SCP) over PV panels. The system combines a lightweight YOLOv11n-seg deep learning model for panel detection with an adaptive image processing algorithm for snow segmentation. We benchmarked several segmentation models, including MASK R-CNN and the state-of-the-art SAM2 segmentation model. YOLOv11n-seg was selected for its optimal balance of speed and accuracy, achieving 0.99 precision and 0.80 recall. To overcome the unreliability of static thresholding under changing lighting, various dynamic methods were evaluated. Otsu’s algorithm proved most effective, reducing the absolute error of the mean in SCP estimation to just 1.1%, a significant improvement over the 13.78% error from the previous fixed-thresholding approach. The integrated system was successfully validated for real-time performance on live drone video streams, demonstrating a highly accurate and scalable solution for autonomous snow monitoring on PV systems. Full article
(This article belongs to the Special Issue Renewable Energy System Technologies: 3rd Edition)
Show Figures

Figure 1

22 pages, 5876 KB  
Article
Development of a Methodology Used to Predict the Wheel–Surface Friction Coefficient in Challenging Climatic Conditions
by Viktor V. Petin, Andrey V. Keller, Sergey S. Shadrin, Daria A. Makarova and Yury M. Furletov
Future Transp. 2025, 5(4), 129; https://doi.org/10.3390/futuretransp5040129 - 23 Sep 2025
Viewed by 113
Abstract
This paper presents a novel methodology for predicting the tire–road friction coefficient in real-time under challenging climatic conditions based on a fuzzy logic inference system. The core innovation of the proposed approach lies in the integration and probabilistic weighting of a diverse set [...] Read more.
This paper presents a novel methodology for predicting the tire–road friction coefficient in real-time under challenging climatic conditions based on a fuzzy logic inference system. The core innovation of the proposed approach lies in the integration and probabilistic weighting of a diverse set of input data, which includes signals from ambient temperature and precipitation intensity sensors, activation events of the anti-lock braking system (ABS) and electronic stability control (ESP), windshield wiper operation modes, and road marking recognition via a front-facing camera. This multi-sensor data fusion strategy significantly enhances prediction accuracy compared to traditional methods that rely on limited data sources (e.g., temperature and precipitation alone), especially in transient or non-uniform road conditions such as compacted snow or shortly after rainfall. The reliability of the fuzzy-logic-based predictor was experimentally validated through extensive road tests on dry asphalt, wet asphalt, and wet basalt (simulating packed snow). The results demonstrate a high degree of convergence between predicted and actual values, with a maximum modeling error of less than 10% across all tested scenarios. The developed methodology provides a robust and adaptive solution for enhancing the performance of Advanced Driver Assistance Systems (ADASs), particularly Automatic Emergency Braking (AEB), by enabling more accurate braking distance calculations. Full article
Show Figures

Figure 1

24 pages, 2782 KB  
Article
Optimization of Electricity–Carbon Coordinated Scheduling Process for Virtual Power Plants Based on an Improved Snow Ablation Optimizer Algorithm
by Haiji Wang, Ming Zeng, Xueying Lu, Zhijian Chen and Jiankun Hu
Processes 2025, 13(9), 3027; https://doi.org/10.3390/pr13093027 - 22 Sep 2025
Viewed by 149
Abstract
Given the strong coupling between electricity flow and carbon flow, promoting the low-carbon transformation of the energy sector is a crucial measure to actively responding to climate challenges. As a pivotal hub linking the electricity market with the carbon market, promoting electricity–carbon coordinated [...] Read more.
Given the strong coupling between electricity flow and carbon flow, promoting the low-carbon transformation of the energy sector is a crucial measure to actively responding to climate challenges. As a pivotal hub linking the electricity market with the carbon market, promoting electricity–carbon coordinated scheduling of Virtual Power Plants (VPPs) is of great significance in expediting the energy transition process. Based on the introduction of carbon potential, this manuscript constructs a VPP electricity–carbon coordinated scheduling model that incorporates various typical elements, including renewable energy units and demand response. Furthermore, this paper utilizes Brain Storm Optimization (BSO) to improve the Snow Ablation Optimizer (SAO) algorithm and applies the improved algorithm to solve the model developed in this manuscript. Finally, an analysis was conducted using a small-scale VPP project in eastern China, and the results are the following: Firstly, the SAO improved by BSO demonstrates a significant enhancement in solution efficiency. In particular, for the cases presented in this manuscript, the algorithm’s convergence speed increased by 42.85%. Secondly, under the multi-market conditions and with real-time carbon potential, VPPs will possess greater flexibility in scheduling optimization and stronger incentives to fully explore their emission reduction potential through collaborative electricity–carbon scheduling, thereby improving both economic and environmental performance. However, constrained by factors such as the currently low carbon price level, the extent of improvement in VPPs’ performance under real-time carbon potential, compared to fixed carbon potential, remains relatively limited, with a 1.07% increase in economic benefits and a 2.63% reduction in carbon emissions. Thirdly, an increase in carbon prices can incentivize VPPs to continuously tap into their emission reduction potential, but beyond a certain threshold (120 CNY/t in this case study), the marginal contribution of further carbon price increases to emission reductions will progressively decline. Specifically, for every 20-yuan increase in the carbon price, the carbon emission reduction rate of VPPs drops below 1%. Full article
Show Figures

Figure 1

31 pages, 4144 KB  
Article
An ISAO-DBCNN-BiLSTM Model for Sustainable Furnace Temperature Optimization in Municipal Solid Waste Incineration
by Jinxiang Pian, Xiaoyi Liu and Jian Tang
Sustainability 2025, 17(18), 8457; https://doi.org/10.3390/su17188457 - 20 Sep 2025
Viewed by 274
Abstract
With increasing urbanization and population growth, the volume of municipal solid waste (MSW) continues to rise. Efficient and environmentally responsible waste processing has become a core issue in sustainable development. Incineration plays a key role in reducing landfill usage and recovering energy from [...] Read more.
With increasing urbanization and population growth, the volume of municipal solid waste (MSW) continues to rise. Efficient and environmentally responsible waste processing has become a core issue in sustainable development. Incineration plays a key role in reducing landfill usage and recovering energy from waste, contributing to circular economy initiatives. However, fluctuations in furnace temperature significantly affect combustion efficiency and emissions, undermining the environmental benefits of incineration. To address these challenges under dynamic operational conditions, this paper proposes a hybrid model combining an Improved Snow Ablation Optimizer (ISAO), Dual-Branch Convolutional Neural Network (DBCNN), and Bidirectional Long Short-Term Memory (BiLSTM). The model extracts dynamic features from control and condition variables and incorporates time series characteristics for accurate temperature prediction, thereby enhancing the overall efficiency of the incineration process. ISAO integrates Lévy flight, differential mutation, and elitism strategies to optimize parameters, contributing to better energy recovery and reduced emissions. Experimental results on real MSWI data demonstrate that the proposed method achieves high prediction accuracy and adaptability under varying operating conditions, showcasing its robustness and application potential in promoting sustainable waste management practices. By improving combustion efficiency and minimizing environmental impact, this model aligns with global sustainability goals, supporting a more efficient, eco-friendly waste-to-energy process. Full article
Show Figures

Figure 1

20 pages, 2915 KB  
Article
From Lab to Launchpad: A Modular Transport Incubator for Controlled Thermal and Power Conditions of Spaceflight Payloads
by Sebastian Feles, Ilse Marie Holbeck and Jens Hauslage
Instruments 2025, 9(3), 21; https://doi.org/10.3390/instruments9030021 - 18 Sep 2025
Viewed by 295
Abstract
Maintaining physiologically controlled conditions during the transport of biological experiments remains a long-standing but under-addressed challenge in spaceflight operations. Pre-launch thermal or mechanical stress induce artefacts that compromise the interpretation of biological responses to space conditions. Existing transport systems are limited to basic [...] Read more.
Maintaining physiologically controlled conditions during the transport of biological experiments remains a long-standing but under-addressed challenge in spaceflight operations. Pre-launch thermal or mechanical stress induce artefacts that compromise the interpretation of biological responses to space conditions. Existing transport systems are limited to basic heating of small sample containers and lack the capability to power and protect full experimental hardware during mission-critical phases. A modular transport incubator was developed and validated that combines active thermal regulation, battery-buffered power management, and mechanical protection in a compact, field-deployable platform. It enables autonomous environmental conditioning of complex biological payloads and continuous operation of integrated scientific instruments during ground-based transport and recovery. Validation included controlled experiments under sub-zero ambient temperatures, demonstrating rapid warm-up, stable thermal regulation, and uninterrupted autonomous performance. A steady-state finite difference thermal model was experimentally validated across 21 boundary conditions, enabling predictive power requirement estimation for mission planning. Field deployments during multiple MAPHEUS® sounding rocket campaigns confirmed functional robustness under wind, snow, and airborne recovery scenarios. The system closes a critical infrastructure gap in spaceflight logistics. Its validated performance, modular architecture, and proven operational readiness establish it as an enabling platform for standardized, reproducible ground handling of biological payloads and experiment hardware. Full article
Show Figures

Figure 1

23 pages, 3884 KB  
Article
Innovative Dual-Function Heated Pavement System Using Hollow Steel Pipe for Sustainable De-Icing
by Sangwoo Park, Hizb Ullah, Annas Fiaz Abbasi, Hangseok Choi and Seokjae Lee
Sustainability 2025, 17(18), 8331; https://doi.org/10.3390/su17188331 - 17 Sep 2025
Viewed by 274
Abstract
Winter road safety is threatened by black ice, while traditional de-icing methods, such as chemical spreading and electrically heated pavement systems, raise concerns about environmental impact and economic costs. This study proposed a hydronic heated pavement system utilizing geothermal energy (HHPS-G)-integrated concrete pavement [...] Read more.
Winter road safety is threatened by black ice, while traditional de-icing methods, such as chemical spreading and electrically heated pavement systems, raise concerns about environmental impact and economic costs. This study proposed a hydronic heated pavement system utilizing geothermal energy (HHPS-G)-integrated concrete pavement that ensures environmental sustainability and structural stability. The design utilizes hollow steel pipes as both reinforcement and heat exchange conduits, thereby eliminating the need for separate high-density polyethylene (HDPE) pipes. To enhance upward heat transfer, bottom-ash concrete was introduced as an alternative to conventional insulation, providing thermal insulation and structural strength. A validated numerical model was developed to compare the de-icing and snow-melting performance of different pipe types. The results show that hollow steel pipes reduced the time to reach 0 °C on the concrete pavement surface by 30.86% and improved heat flux by 10.19% compared to HDPE. The depth of pipe installation significantly influenced performance: positioning the pipes near the surface achieved the fastest heating (up to 70.11% faster), while mid-depth placement, recommended for structural integrity, still provided substantial thermal benefits. Variations in insulation thermal conductivity below 1 W/m·K had little effect, whereas replacing the base layer with bottom-ash concrete provided both insulation and strength without the need for separate insulation layers. Full article
(This article belongs to the Special Issue Sustainable Urban Mobility, Transport Infrastructures and Services)
Show Figures

Figure 1

18 pages, 3041 KB  
Article
Spatio-Temporal Dynamics of Wetland Ecosystem and Its Driving Factors in the Qinghai–Tibet Plateau
by Haoyuan Zheng and Yinghui Guan
Water 2025, 17(18), 2746; https://doi.org/10.3390/w17182746 - 17 Sep 2025
Viewed by 399
Abstract
Globally, wetlands have suffered severe degradation due to natural environmental changes and human activities. The wetlands on the Qinghai–Tibet Plateau (QTP) play a unique and critical ecological role, making it essential to understand their spatiotemporal dynamics and driving forces for effective conservation. Based [...] Read more.
Globally, wetlands have suffered severe degradation due to natural environmental changes and human activities. The wetlands on the Qinghai–Tibet Plateau (QTP) play a unique and critical ecological role, making it essential to understand their spatiotemporal dynamics and driving forces for effective conservation. Based on multi-source remote sensing data and Partial Least Squares Structural Equation Modeling (PLS-SEM), this study comprehensively quantified the spatiotemporal changes in wetlands and their key driving factors on the QTP from 1990 to 2020. The results show a net increase in total wetland area (including both natural and artificial wetlands) of approximately 538.72 km2 per year over the 30-year period. Spatially, wetland expansion was most pronounced in the central–western and northern parts of the plateau, primarily driven by the conversion of grasslands, barren lands, and snow/ice cover, while localized degradation persisted in eastern regions. The PLS-SEM demonstrated an excellent fit (R2 = 0.962) and identified human activities—such as ecological restoration policies and infrastructure development—as the dominant direct driver of wetland expansion (path coefficient = 0.918). Climate change, improved vegetation cover, and cryospheric loss also contributed positively to wetland gains (path coefficients = 0.056, 0.044, and 0.138, respectively). This study provides a transferable framework for understanding complex wetland dynamics and their drivers in alpine regions under global environmental change, which is crucial for designing more effective wetland conservation strategies. Full article
(This article belongs to the Special Issue Impact of Climate Change on Water and Soil Erosion)
Show Figures

Figure 1

Back to TopTop