Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (949)

Search Parameters:
Keywords = sodium salinity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3780 KB  
Article
Acid/Alkali-Resistant Modified MOF-74 Grafted with Polyether Demulsifier for Oil-in-Water Emulsions Under Ambient Conditions
by Bingyu Wang, Wei Guo, Ying Deng, Wenbin Jiao, Linzhu Du, Junhui Yue and Bo Zhang
Polymers 2025, 17(17), 2386; https://doi.org/10.3390/polym17172386 - 31 Aug 2025
Abstract
The effective and rapid separation of oil–water emulsions at room temperature, particularly under harsh environmental conditions like acid–base fluctuations, high salinity, and the coexistence of surfactants, remains a significant challenge in oily wastewater treatment. To address this, a novel amphiphilic demulsifier, MOF-74@SiO2 [...] Read more.
The effective and rapid separation of oil–water emulsions at room temperature, particularly under harsh environmental conditions like acid–base fluctuations, high salinity, and the coexistence of surfactants, remains a significant challenge in oily wastewater treatment. To address this, a novel amphiphilic demulsifier, MOF-74@SiO2-GPTMS grafted ANP (MSG-ANP), was synthesized by first modifying MOF-74@SiO2 (MS) with γ-glycidoxypropyltrimethoxysilane (GPTMS) to create epoxy-functionalized MSG particles, followed by grafting the non-ionic polyether C12–C14 aliphatic polyethylene oxide polyoxypropylene (ANP) onto MSG. Bottle tests demonstrated that MSG-ANP achieved a high demulsification efficiency of 93% within 15 min for oil-in-water emulsions at room temperature. It exhibited excellent environmental tolerance, maintaining efficiencies of 89% at pH 3.0, 82% at pH 11.0, and 95% under high salinity (50,000 mg/L, pH 6.8). Furthermore, MSG-ANP effectively treated surfactant-stabilized emulsions, exceeding 96% efficiency against both cetyltrimethylammonium bromide and sodium dodecyl sulfate after 30 min, outperforming commercial demulsifiers SP-169 and AR-331 by factors of 1.2 and 1.6, respectively. This superior performance stems from synergistic hydrogen bonding (via hydroxyl, ether, ester, Fe-O, and Si-O groups) destabilizing the interfacial film and electrostatic neutralization of coalescing charged droplets. Consequently, MSG-ANP presents a promising solution for rapid, room-temperature demulsification across a wide pH range and under high-salinity conditions. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

20 pages, 3090 KB  
Article
Exploring the Effects of Biochar and Compost on Ameliorating Coastal Saline Soil
by Wenzhi Zhou, Shuo Xing, Yaqi Wu, Rongsong Zou, Suyan Li, Xiangyang Sun and Huaxin Zhang
Agronomy 2025, 15(9), 2093; https://doi.org/10.3390/agronomy15092093 - 30 Aug 2025
Viewed by 129
Abstract
In this study, the effects of biochar and compost on the amelioration of coastal saline soil were investigated through indoor leaching experiments and soil culture experiments. The results revealed that the multivoid structure of biochar and compost, when applied to soil, effectively improved [...] Read more.
In this study, the effects of biochar and compost on the amelioration of coastal saline soil were investigated through indoor leaching experiments and soil culture experiments. The results revealed that the multivoid structure of biochar and compost, when applied to soil, effectively improved soil hydraulic conductivity, promoted the leaching of salt ions, and reduced soil electrical conductivity. Owing to the high pH value of biochar and the lower pH value of compost, the combined application of the two has a complementary effect on improving the pH value of coastal saline soils. The calcium (Ca2+) and magnesium (Mg2+) contained in biochar and compost are exchanged with Na+ adsorbed by soil colloids, which reduces the sodium (Na+) adsorption ratio (SAR) value of the soil. Biochar and compost improve the physical properties of the soil, and the organic matter they contain helps soil particles aggregate with each other and form stable clusters, thus promoting the formation of soil agglomerates, which are conducive to the formation of clusters with a diameter of ≤0.25 mm. Biochar and compost are rich in nutrients, and their application significantly increased the contents of available nutrients and organic matter as well as the activities of urease, phosphatase, and dehydrogenase in saline soils. However, too high of an application rate of biochar increases the soil pH value, and excessive application of compost can lead to greater soil conductivity, which inhibits the activities of soil urease, phosphatase and dehydrogenase. Therefore, rational control of application rates is essential for improving coastal saline soils. Future research should further explore the synergistic effects of biochar and compost in improving soil structure, nutrient effectiveness, and microbial activity to promote their effective application in coastal saline–alkaline soil improvement. Full article
Show Figures

Figure 1

15 pages, 3921 KB  
Article
Reducing the Sodium Adsorption Ratio Promotes Cotton Growth and Development by Enhancing Antioxidant Enzyme Activities and the Plant’s Potassium–Sodium Ratio Under Brackish-Water Irrigation
by Yinping Song, Yucai Xie, Chenfan Zhang, Huifeng Ning, Xianbo Zhang, Guang Yang and Hao Liu
Agronomy 2025, 15(9), 2092; https://doi.org/10.3390/agronomy15092092 - 30 Aug 2025
Viewed by 136
Abstract
Reasonable development and utilization of brackish-water resources can alleviate the pressure of freshwater scarcity in dryland areas and safeguard crop growth, but there are significant differences in brackish-water ions in different regions. Thus, exploring the mechanism of brackish-water irrigation considering brackish-water ionic differences [...] Read more.
Reasonable development and utilization of brackish-water resources can alleviate the pressure of freshwater scarcity in dryland areas and safeguard crop growth, but there are significant differences in brackish-water ions in different regions. Thus, exploring the mechanism of brackish-water irrigation considering brackish-water ionic differences on the growth and development of saline and alkaline dryland crops has an important production guidance value. In this study, the ionic differences in irrigated brackish water were characterized by sodium adsorption ratio using under-membrane drip-irrigated cotton as the research object, and three levels of mineralized irrigation water were designed, which were 3 g·L−1 (T3), 5 g·L−1 (T5), and 7 g·L−1 (T7), respectively. Three different levels of sodium adsorption ratio (SAR) were set under each level of mineralization, which were 10 (mmol·L−1)1/2 (S10), 15 (mmol·L−1)1/2 (S15), and 20 (mmol·L−1)1/2 (S20). The local freshwater irrigation was used as a control treatment. The results showed that brackish-water irrigation increased soil salt accumulation and soil water content, induced oxidative damage and disruption of ionic homeostasis in the cells, and decreased leaf photosynthetic rate. Brackish-water irrigation also significantly reduced dry matter mass by 11.04–50.12%. Reduced irrigation water SAR (S10 and S15) enhanced antioxidant enzyme activities such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and reduced malondialdehyde (MDA) content by 14.29% and 9.09%, respectively, compared with high irrigation water SAR (S20). Leaf K+ uptake was increased by 5.29% and 1.57% in S10 and S15, respectively, compared with S20, while Na+ uptake was significantly suppressed. The K+/Na+ ratio increased by 45.07%, which resulted in improved leaf photosynthetic efficiency by 25.25% and 11.91%, and significantly enhanced dry matter accumulation by 24.81% and 11.20%, respectively. In addition, compared with T3S20, the T5S10 treatment reduced the irrigation water SAR. It contributed to a significant increase in SOD, POD, and CAT activities by 30.42%, 60.70%, and 99.20%, respectively, and in plant K+ content and K+/Na+ by 2.48% and 38.85%, respectively, although the irrigation water mineralization increased by 66.67%. Reducing SAR could enhance photosynthesis and dry matter accumulation through the dual regulation of “antioxidant damage + ion homeostasis” in salt-stressed cotton, laying a foundation for the realization of stable and high yields of cotton under brackish-water irrigation, and providing a new perspective for the management of brackish-water resources and the sustainable development of agriculture in Xinjiang and other arid regions. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

18 pages, 3920 KB  
Article
17βH-Neriifolin Improves Cardiac Remodeling Through Modulation of Calcium Handling Proteins in the Heart Failure Rat Model
by Rajasegar Anamalley, Yusof Kamisah, Nurhanan Murni Yunos and Satirah Zainalabidin
Biomedicines 2025, 13(9), 2115; https://doi.org/10.3390/biomedicines13092115 - 29 Aug 2025
Viewed by 165
Abstract
Background: Cardiac glycosides such as digoxin have been commonly used for patients with heart failure; however, their toxicity remains a main concern. 17βH-neriifolin (SNA209), a cardiac glycoside compound, has been recently isolated from Ceberra odollum Gaertn and was shown to improve the [...] Read more.
Background: Cardiac glycosides such as digoxin have been commonly used for patients with heart failure; however, their toxicity remains a main concern. 17βH-neriifolin (SNA209), a cardiac glycoside compound, has been recently isolated from Ceberra odollum Gaertn and was shown to improve the heart’s pumping ability in failing hearts ex vivo. Thus, this study aimed to investigate the potential use of SNA209 as a treatment for isoprenaline (ISO)-induced heart failure in rats. Methods: Forty male Wistar rats were randomly divided into five groups. Heart failure was induced by isoprenaline (ISO, 10 mg/kg/s.c) for 14 days daily, followed by SNA209 treatment (5 mg/kg; p.o) for another 14 days daily. Control rats were given saline as a vehicle for ISO and DMSO as a vehicle for SNA209. Results: Systolic and diastolic blood pressure (SBP and DBP) in all ISO-treated groups were significantly increased compared to the control group (p < 0.05), and SNA209 treatment managed to reduce the SBP and DBP. Additionally, SNA209 treatment significantly increased the heart rate and normalized the ECG parameters in ISO-treated rats. Pro-B-type natriuretic peptide and troponin T level, a cardiac injury markers, was remarkably reduced by SNA209 in the ISO-treated group. Cardiac hypertrophy was evident in increased cardiomyocyte size in ISO groups; however, SNA reduced the cardiomyocyte size. The left ventricular developed pressure (LVDP) in ISO treated with SNA209 was significantly raised, indicating a chronotropic effect. Cardiac Na+/K+-ATPase expression of the α1 subunit, sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a), and sodium–calcium exchanger subunit were significantly increased in the SNA treatment groups. Conclusions: The SNA 209 treatment improved cardiac function and structure, likely via modulating intracellular calcium management, so underscoring its potential as an adjuvant therapy for heart failure. Full article
Show Figures

Figure 1

22 pages, 4063 KB  
Article
Assessing Ecological Restoration of Père David’s Deer Habitat Using Soil Quality Index and Bacterial Community Structure
by Yi Zhu, Yuting An, Libo Wang, Jianhui Xue, Kozma Naka and Yongbo Wu
Diversity 2025, 17(9), 594; https://doi.org/10.3390/d17090594 - 24 Aug 2025
Viewed by 360
Abstract
Although significant progress has been made in the conservation of Père David’s deer (Elaphurus davidianus) populations, rapid population growth in coastal wetlands has caused severe habitat degradation. This highlights the urgent challenge of balancing ungulate population dynamics with wetland restoration efforts, [...] Read more.
Although significant progress has been made in the conservation of Père David’s deer (Elaphurus davidianus) populations, rapid population growth in coastal wetlands has caused severe habitat degradation. This highlights the urgent challenge of balancing ungulate population dynamics with wetland restoration efforts, particularly considering the limited data available on post-disturbance ecosystem recovery in these environments. In this study, we evaluated soil quality and bacterial community dynamics at an abandoned feeding site and a nearby control site within the Dafeng Milu National Nature Reserve during 2020–2021. The goal was to provide a theoretical basis for the ecological restoration of Père David’s deer habitat in coastal wetlands. The main findings are as follows: among the measured indicators, bulk density (BD), soil water content (SWC), sodium (Na+), total carbon (TC), total nitrogen (TN), total phosphorus (TP), available potassium (AK), microbial biomass nitrogen (MBN), and the Chao index were selected to form the minimum data set (MDS) for calculating the soil quality index (SQI), effectively reflecting the actual condition of soil quality. Overall, the SQI at the feeding site was lower than that of the control site. Based on the composition of bacterial communities and the functional prediction analysis of bacterial communities in the FAPROTAX database, it is shown that feeding sites are experiencing sustained soil carbon loss, which is clearly caused by the gathering of Père David’s deer. Co-occurring network analyses demonstrated the structure of the bacterial community at the feeding site was decomplexed, and with a lower intensity than the control. In RDA, Na+ is the main soil property that affects bacterial communities. These findings suggest that the control of soil salinity is a primary consideration in the development of Père David’s deer habitat restoration programmes, followed by addressing nitrogen supplementation and carbon sequestration. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Figure 1

12 pages, 3515 KB  
Article
Development and Application of a Composite Water-Retaining Agent for Ecological Restoration in Arid Mining Areas
by Liugen Zhang, Zhanwen Cao, Zhaojun Yang, Yi Zhang and Jia Guo
Polymers 2025, 17(17), 2268; https://doi.org/10.3390/polym17172268 - 22 Aug 2025
Viewed by 466
Abstract
Ecological restoration in arid coal-mining regions faces extreme challenges due to soil infertility, salinization, and water scarcity. This study addresses these limitations in the Santanghu Shitoumei No. 1 open-pit mine (Xinjiang), where gypsum gray-brown desert soil, minimal rainfall (199 mm/yr), high evaporation (1716 [...] Read more.
Ecological restoration in arid coal-mining regions faces extreme challenges due to soil infertility, salinization, and water scarcity. This study addresses these limitations in the Santanghu Shitoumei No. 1 open-pit mine (Xinjiang), where gypsum gray-brown desert soil, minimal rainfall (199 mm/yr), high evaporation (1716 mm/yr), and persistent gale-force winds exacerbate revegetation efforts. To overcome the high cost, short lifespan, and poor practicality of commercial water-retaining agents, we developed a novel humic acid (HA) and sodium carboxymethyl cellulose (CMC) composite water-absorbing resin (HA-CMC). Optimal synthesis parameters—identified as acrylic acid (AA)–carboxymethyl cellulose (CMC)–humic acid (HA)–Acrylamide (AM)–N,N’-methylene diacrylamide (MBA)–Ammonium persulphate (APS) = 100%:15%:4.5%:25%:0.6%:0.8%—yielded effective crosslinking, confirmed via FTIR and SEM. Performance benchmarking against existing agents demonstrated superior attributes. Field application in the mine’s demonstration area significantly enhanced surface vegetation and soil fertility, confirming the resin’s potential for large-scale soil remediation and ecological restoration in arid mining environments. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

19 pages, 2846 KB  
Article
Synovial Fluid Biomarker Profile After Intra-Articular Administration of Neosaxitoxin in Horses: A Feasibility Study
by Cristóbal Dörner, Néstor Lagos, Lissette Oyaneder, Bruno C. Menarim and Galia Ramírez-Toloza
Animals 2025, 15(16), 2453; https://doi.org/10.3390/ani15162453 - 21 Aug 2025
Viewed by 370
Abstract
Osteoarthritis (OA) is an inflammatory joint disease and the leading cause of musculoskeletal disability affecting human and veterinary patients. New therapeutics halting inflammation while preserving joint homeostasis remain a critical need. Voltage-gated sodium (NaV) channels regulate the pro-inflammatory response of macrophages in the [...] Read more.
Osteoarthritis (OA) is an inflammatory joint disease and the leading cause of musculoskeletal disability affecting human and veterinary patients. New therapeutics halting inflammation while preserving joint homeostasis remain a critical need. Voltage-gated sodium (NaV) channels regulate the pro-inflammatory response of macrophages in the synovium, the central driver of joint homeostasis. Neosaxitoxin (NeoSTX) is a phycotoxin that blocks NaV channels, conferring a unique potential to regulate joint inflammation. This study evaluated the safety of intra-articular administration of NeoSTX in horses. Sixteen horses were allocated into two groups (n = 8/each). One group received one intraarticular dose (20 µg/2 mL of saline) of NeoSTX into one tarsocrural joint, while the control group received 2 mL of saline (0.9% NaCl). No differences were observed between groups for systemic or local signs of inflammation, including objective measures of surface temperature and joint effusion. Concentrations of synovial fluid total nucleated and differential cell counts, total protein, glucose, calcium, and 23 cytokines/chemokines measured throughout this study did not differ between treatment groups. In this short-term study, intra-articular NeoSTX injection was shown to be well tolerated and likely safe. Ongoing studies should elucidate the role of NeoSTX in modulating synovial mechanisms of inflammation and its endogenous resolution. Full article
(This article belongs to the Section Equids)
Show Figures

Figure 1

25 pages, 2734 KB  
Article
Nanoextract of Zataria multiflora Boiss. Enhances Salt Stress Tolerance in Hydroponically Grown Ocimum basilicum L. var. Genovese
by Edris Shabani, Fardin Ghanbari, Afsaneh Azizi, Elham Helalipour and Matteo Caser
Horticulturae 2025, 11(8), 970; https://doi.org/10.3390/horticulturae11080970 - 16 Aug 2025
Viewed by 435
Abstract
In order to investigate the effect of Zataria multiflora Bioss. extract and nanoextract on morphophysiological and phytochemical indices, yield, and essential oil compositions of basil (Ocimum basilicum L. var. Genovese) under salinity stress (0, 25, 50, and 100 mM NaCl), an experiment [...] Read more.
In order to investigate the effect of Zataria multiflora Bioss. extract and nanoextract on morphophysiological and phytochemical indices, yield, and essential oil compositions of basil (Ocimum basilicum L. var. Genovese) under salinity stress (0, 25, 50, and 100 mM NaCl), an experiment was conducted as a split-plot design in a basic block with complete randomization and three replications. In the treatment without salinity, nanoextract increased the shoot fresh weight by 34.28%, and regular extract increased it by 8.35% compared to the 0 NaCl without extract. In the treatment without salinity stress, nanoextract decreased the Na content by 17%, and regular extract decreased it by 5%; nanoextract increased the K content by 22.93%, and regular extract increased it by 9.05% compared to the 0 NaCl without extract, respectively. In all salinity concentrations applied, nanoextract showed lower sodium accumulation and higher potassium accumulation rate than regular extract and treatment without extract at the same salinity concentration. The highest total phenols were observed in the 100 mM salinity treatment in both nanoextract and regular extract of Z. multiflora, followed by the 50 mM salinity treatment—nano extract, with 12.33, 11.17, and 10.01 mg GA g−1 FW, respectively. In the non-saline stress treatment, nanoextract increased the proline content by 125%, and regular extract increased it by 79.16% compared to the 0 NaCl without extract. In the treatment without salinity stress, the nano extract increased the level of PAL enzyme by 16.66% and the regular extract by 8.33% compared to the 0 NaCl without extract. The highest antioxidant activity was observed in the 100 mM salinity treatment in both nano extract and regular extract of Z. multiflora, followed by the 50 mM salinity treatment and nano extract with 31.86, 30.60, and 28.21%, respectively. In this study, the results of essential oil analysis indicated the identification of 39 compounds in which linalool, eugenol, carotenoid, methyl chavicol, A-Humulene, and menthol were identified as the main compounds. Among all treatments, Z. multiflora nanoextract, while moderating the effects of stress, showed the highest efficiency in improving the morphophysiological and biochemical traits and essential oil content and secondary metabolites of O. basilicum L. var. Genovese. Full article
(This article belongs to the Special Issue 10th Anniversary of Horticulturae—Recent Outcomes and Perspectives)
Show Figures

Graphical abstract

18 pages, 1661 KB  
Article
Field-Based Assessment of Soil Salinity and Alkalinity Stress on Growth and Biochemical Responses in Eggplant (Solanum melongena L.)
by Eren Özden, Faruk Tohumcu and Serdar Sarı
Agronomy 2025, 15(8), 1945; https://doi.org/10.3390/agronomy15081945 - 12 Aug 2025
Viewed by 441
Abstract
Soil salinity and sodicity are escalating global threats to agricultural productivity, severely limiting crop yield and quality. In the Igdir Plain of Türkiye, high summer temperatures, minimal precipitation, and a shallow groundwater table have intensified salinity-related challenges, currently affecting one-third of the arable [...] Read more.
Soil salinity and sodicity are escalating global threats to agricultural productivity, severely limiting crop yield and quality. In the Igdir Plain of Türkiye, high summer temperatures, minimal precipitation, and a shallow groundwater table have intensified salinity-related challenges, currently affecting one-third of the arable land. Despite the substantial impact of salinity stress on eggplant (Solanum melongena L.) production, studies addressing plant tolerance mechanisms under real field conditions remain limited. In this study, eggplant was cultivated in eight distinct soil classes under open-field conditions to evaluate the effects of soil salinity and saline-alkalinity on morphological, physiological, and biochemical traits. Increasing soil exchangeable sodium percentage (ESP) and electrical conductivity (ECe) levels significantly suppressed plant height, root length, stem diameter, and leaf area, along with over 90% reductions in shoot and root biomass. Salinity impaired the uptake of essential nutrients (Ca, K, P, and Fe), while promoting toxic Na+ accumulation in leaves. This ionic imbalance induced oxidative stress, as indicated by elevated malondialdehyde (MDA), hydrogen peroxide (H2O2), and antioxidant enzyme activities (SOD, CAT, APX), all of which were strongly correlated with proline accumulation. The results highlight a coordinated plant response under salinity stress but also reveal the insufficiency of natural defense mechanisms under high salinity levels. Unless supported by external interventions to improve stress resilience and ensure productivity, growing eggplant in saline–alkaline soils should be avoided. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

15 pages, 1339 KB  
Article
Efficacy of Lactobacillus rhamnosus and Its Metabolites to Mitigate the Risk of Foodborne Pathogens in Hydroponic Nutrient Solution
by Esther Oginni, Robin Choudhury and Veerachandra Yemmireddy
Microorganisms 2025, 13(8), 1858; https://doi.org/10.3390/microorganisms13081858 - 8 Aug 2025
Viewed by 235
Abstract
Hydroponic nutrient solution (HNS) has been established as an ideal conduit for pathogen contamination and proliferation. This study evaluated the efficacy of lactic acid bacteria and their metabolites in mitigating the risk of foodborne pathogens in HNS when compared to conventional chemical treatments. [...] Read more.
Hydroponic nutrient solution (HNS) has been established as an ideal conduit for pathogen contamination and proliferation. This study evaluated the efficacy of lactic acid bacteria and their metabolites in mitigating the risk of foodborne pathogens in HNS when compared to conventional chemical treatments. Hoagland’s HNS were prepared according to the manufacturer’s instructions and inoculated with Salmonella Typhimurium, Escherichia coli 0157:H7, and Listeria innocua at 105 CFU/mL cell concentration. These nutrient solutions were subjected to treatment with various concentrations of Lactobacillus rhamnosus live cells, a cell-free extract (CFE) of L. rhamnosus metabolites, sodium hypochlorite and peroxyacetic acid at 22 ± 1 °C for up to 96 h using appropriate controls. The survived cells were enumerated on respective selective media at regular intervals. Additionally, the impact of these treatments on lettuce growth and the physico-chemical properties of HNS, such as pH, electrical conductivity, salinity, total dissolved solids, and % lactic acid content, were determined over 21 days using standard procedures. Both S. Typhimurium and E. coli O157: H7, when in combination with L. rhamnosus, remained stable in HNS over a 96 h period, while L. innocua showed a 3-log reduction. Whereas CFE treatment of HNS showed a significant reduction in Salmonella and E. coli O157: H7 (both undetectable after 96 h; LOD: <1 log CFU/mL). Interestingly, L. innocua levels remained stable after CFE treatment. PAA treatments at 12 mg/L notably reduced Salmonella and L. innocua growth, but not E. coli O157:H7. Lettuce plants in untreated control were significantly taller and heavier compared to those treated with CFE. These findings highlight the potential of biological interventions while emphasizing their limitations in hydroponic systems for pathogen control. Full article
(This article belongs to the Special Issue Feature Papers in Food Microbiology)
Show Figures

Figure 1

14 pages, 1993 KB  
Article
Supplementation of Calcium Through Seed Enrichment Technique Enhances Germinability and Early Growth of Timothy (Phleum pratense L.) Under Salinity Conditions
by Masahiro Akimoto and Li Ma
Agronomy 2025, 15(8), 1905; https://doi.org/10.3390/agronomy15081905 - 7 Aug 2025
Viewed by 415
Abstract
Calcium ameliorates salt-related growth defects in plants. The objective of this study was to determine whether supplying calcium through a seed enrichment technique enhances the germinability and early growth of timothy (Phleum pratense L.) under saline conditions. For seed enrichment, timothy seeds [...] Read more.
Calcium ameliorates salt-related growth defects in plants. The objective of this study was to determine whether supplying calcium through a seed enrichment technique enhances the germinability and early growth of timothy (Phleum pratense L.) under saline conditions. For seed enrichment, timothy seeds were soaked in CaCl2 solutions at concentrations of 50 mM or 100 mM for 24 h at room temperature. Seeds treated with distilled water served as the control. Under distilled water conditions, germination rates among the seeds showed minimal variation, approximately 95% on average. However, in a 200 mM NaCl environment, the germination rate of the control seeds significantly decreased to 25%, while the germination rates of the Ca-enriched seeds remained high, exceeding 86%. Additionally, the Ca-enriched seeds germinated more quickly than the control seeds. When plants were grown with distilled water, the total dry matter weights did not differ significantly among the treatment types. However, under salt stress with 100 mM NaCl, the plants derived from Ca-enriched seeds thrived and exhibited higher dry matter weights compared to the control plants. The Ca-enriched seeds contained more soluble sugars and demonstrated higher catalase activity than the control seeds, and their corresponding plants accumulated less sodium under salt stress compared to the control plants. Seed enrichment is an effective technique for supplying calcium to timothy, and a concentration of 50 mM of CaCl2 in the treatment solution is sufficient to achieve salt tolerance. Full article
Show Figures

Figure 1

21 pages, 3488 KB  
Article
Effects of Continuous Saline Water Irrigation on Soil Salinization Characteristics and Dryland Jujube Tree
by Qiao Zhao, Mingliang Xin, Pengrui Ai and Yingjie Ma
Agronomy 2025, 15(8), 1898; https://doi.org/10.3390/agronomy15081898 - 7 Aug 2025
Viewed by 387
Abstract
The sustainable utilization of saline water resources represents an effective strategy for alleviating water scarcity in arid regions. However, the mechanisms by which prolonged saline water irrigation influences soil salinization and dryland crop growth are not yet fully understood. This study examined the [...] Read more.
The sustainable utilization of saline water resources represents an effective strategy for alleviating water scarcity in arid regions. However, the mechanisms by which prolonged saline water irrigation influences soil salinization and dryland crop growth are not yet fully understood. This study examined the effects of six irrigation water salinity levels (CK: 0.87 g·L−1, S1: 2 g·L−1, S2: 4 g·L−1, S3: 6 g·L−1, S4: 8 g·L−1, S5: 10 g·L−1) on soil salinization dynamics and jujube growth during a three-year field experiment (2020–2022). The results showed that soil salinity within the 0–1 m profile significantly increased with rising irrigation water salinity and prolonged irrigation duration, with the 0–0.4 m layer accounting for 50.27–74.95% of the total salt accumulation. A distinct unimodal salt distribution was observed in the 0.3–0.6 m soil zone, with the salinity peak shifting downward from 0.4 to 0.5 m over time. Meanwhile, soil pH and sodium adsorption ratio (SAR) increased steadily over the study period. The dominant hydrochemical type shifted from SO42−-Ca2+·Mg2+ to Cl-Na+·Mg2+. Crop performance exhibited a nonlinear response to irrigation salinity levels. Low salinity (2 g·L−1) significantly enhanced plant height, stem diameter, leaf area index (LAI), vitamin C content, and yield, with improvements of up to 12.11%, 3.96%, 16.67%, 16.24%, and 16.52% in the early years. However, prolonged exposure to saline irrigation led to significant declines in both plant growth and water productivity (WP) by 2022. Under high-salinity conditions (S5), yield decreased by 16.75%, while WP declined by more than 30%. To comprehensively evaluate the trade-off between economic effects and soil environment, the entropy weight TOPSIS method was employed to identify S1 as the optimal irrigation treatment for the 2020–2021 period and control (CK) as the optimal treatment for 2022. Through fitting analysis, the optimal irrigation water salinity levels over 3 years were determined to be 2.75 g·L−1, 2.49 g·L−1, and 0.87 g·L−1, respectively. These findings suggest that short-term irrigation of jujube trees with saline water at concentrations ≤ 3 g·L−1 is agronomically feasible. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

13 pages, 1859 KB  
Article
Suspension Fertilizers Based on Waste Organic Matter from Peanut Oil Extraction By-Products
by Sainan Xiang, Baoshen Li and Yang Lyu
Agronomy 2025, 15(8), 1885; https://doi.org/10.3390/agronomy15081885 - 5 Aug 2025
Viewed by 427
Abstract
The use of chemical fertilizers has significantly increased crop yields but has also led to soil problems such as nutrient imbalance and salinization. In response, organic fertilizers have emerged as a crucial component for sustainable agricultural development. This study was designed to develop [...] Read more.
The use of chemical fertilizers has significantly increased crop yields but has also led to soil problems such as nutrient imbalance and salinization. In response, organic fertilizers have emerged as a crucial component for sustainable agricultural development. This study was designed to develop an easily applicable organic suspension fertilizer using peanut bran, the primary by-product of peanut oil extraction, as the main raw material. Fourier-transform infrared (FTIR) analysis revealed that 80 °C is the optimal heating temperature for forming a stable peanut-bran suspension. A comprehensive experimental investigation was conducted to evaluate the effects of different peanut bran addition levels, stabilizers, emulsifiers, and suspending agents on the stability of suspension fertilizers. The results identified the optimal suspension fertilizer formulation as comprising 20% peanut bran, 0.5% sodium bentonite, 0.1% monoglyceride, 0.2% sucrose ester, 0.02% carrageenan, and 0.3% xanthan gum. This formulation ensures good stability and fluidity of the suspension fertilizer while maintaining a low cost of 0.134 USD·kg−1. The findings provide a scalable technological framework for valorizing agro-industrial waste into high-performance organic fertilizers. Full article
Show Figures

Figure 1

19 pages, 7853 KB  
Article
Pre-Transport Salt Baths Mitigate Physiological Stress and Tissue Damage in Channel Catfish (Ictalurus punctatus) Fingerlings: Evidence from Multi-Biomarker Assessment and Histopathology
by Guowei Huang, Haohua Li, Juguang Wang, Tao Liao, Liang Qiu, Guangquan Xiong, Lan Wang, Chan Bai and Yu Zhang
Animals 2025, 15(15), 2249; https://doi.org/10.3390/ani15152249 - 31 Jul 2025
Viewed by 264
Abstract
Effective transport strategies are critical for the survival and welfare of juvenile Ictalurus punctatus, but the effects of pre-transport salt bath treatments remain uncertain. In this study, we systematically evaluated the effects of pre-transport salt bath acclimation at 0‰ (S1), 1‰ (S2), [...] Read more.
Effective transport strategies are critical for the survival and welfare of juvenile Ictalurus punctatus, but the effects of pre-transport salt bath treatments remain uncertain. In this study, we systematically evaluated the effects of pre-transport salt bath acclimation at 0‰ (S1), 1‰ (S2), 5‰ (S3), and 9‰ (S4) salinity for 30 min on stress resilience and recovery in fingerlings during 12 h of simulated transport and 24 h of recovery. All fish survived, but total ammonia nitrogen (TAN) increased, and pH decreased in all groups, except S3, which showed significantly lower TAN and higher pH (p < 0.05). The S3 and S4 groups showed attenuated increases in serum cortisol and glucose, with S3 exhibiting the fastest return to baseline levels and stable serum sodium and potassium levels. Liver antioxidant enzyme activities in group S3 remained stable, with the lowest malondialdehyde (MDA) accumulation. Integrated biomarker response (IBR) and histological analyses demonstrated that S3 had the lowest systemic stress and tissue damage, whereas S1 and S4 displayed marked cellular disruption. These results indicate that a 5‰ salt bath applied prior to transport may improve water quality, mitigate stress responses, and preserve tissue integrity in juvenile channel catfish. Further studies are needed to confirm these findings in other species and under commercial transport conditions. Full article
Show Figures

Figure 1

17 pages, 4007 KB  
Article
Variations in Soil Salt Ions and Salinization Degree in Shallow Groundwater Areas During the Freeze–Thaw Period
by Chao Han, Qiang Meng, Junfeng Chen, Lihong Cui, Jing Xue, Hongwu Liu and Rong Yan
Water 2025, 17(15), 2234; https://doi.org/10.3390/w17152234 - 26 Jul 2025
Viewed by 676
Abstract
In shallow groundwater areas, the freeze–thaw process can easily exacerbate soil salinization. The variations and migrations of Na+, K+, Ca2+, Mg2+, Cl, SO42−, and HCO3 at the depth [...] Read more.
In shallow groundwater areas, the freeze–thaw process can easily exacerbate soil salinization. The variations and migrations of Na+, K+, Ca2+, Mg2+, Cl, SO42−, and HCO3 at the depth of 0–100 cm under shallow groundwater depth (2.63–2.87 m) during the freeze–thaw period were analyzed. And a multi-index comprehensive evaluation method based on factor analysis was employed to investigate the soil salinization degree. The results show that K+, Mg2+, and HCO3 exhibited surface enrichment during the freeze–thaw period, while Na+, Cl, and SO42− accumulated in the frozen layer during the freezing stage. However, there is no surface enrichment of Ca2+. During the freezing stage, Mg2+ and Cl exhibited the strongest migration capabilities among cations and anions, respectively. During the thawing stage, K+ and HCO3 were the cation and anion with the highest ionic migration capabilities, respectively. Total salinity (TS), Cl, SO42−, HCO3, Na+, K+, Mg2+, and residual sodium carbonate (RSC) were identified as the dominant factors influencing the salinization degree during the freeze–thaw period. During the freezing stage, soil salt ions predominantly migrated from the unfrozen to the frozen layer, and the salinization degree in the frozen layer increased with the development of the frozen layer. In the thawing stage, soil salt ions migrated upward from the thawing front, and the salinization degree at the depth of 0–30 cm increased. This study provides insights for the prevention and control of soil salinization in arid regions. Full article
(This article belongs to the Special Issue Advances in Soil Water Dynamics Research)
Show Figures

Figure 1

Back to TopTop