Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (646)

Search Parameters:
Keywords = soil bioremediation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2299 KB  
Article
Characterization of Rice Husk-Based Adsorbent for Iodine and Methylene Blue Solutions
by María Lorena Cadme Arévalo, Raisha Lorena Campisi Cadme, Thais Sarah Arreaga Cadme, Ronald Oswaldo Villamar-Torres, Javier Fernández González, José Benavente Herrera, Alda Geijo López, Sesan Abiodun Aransiola and Naga Raju Maddela
Processes 2025, 13(9), 2748; https://doi.org/10.3390/pr13092748 - 28 Aug 2025
Abstract
This study focused on the comprehensive characterization of the adsorbent obtained from rice husk, which was selected for its high adsorption capacity in iodine solution (IS) and methylene blue solution (MBS). This was achieved with adsorbents prepared by a combined treatment involving calcium [...] Read more.
This study focused on the comprehensive characterization of the adsorbent obtained from rice husk, which was selected for its high adsorption capacity in iodine solution (IS) and methylene blue solution (MBS). This was achieved with adsorbents prepared by a combined treatment involving calcium carbonate prior to carbonization and activation with phosphoric acid. Characterization was performed using advanced techniques, such as scanning electron microscopy (SEM), atomic force microscopy (AFM), laser light diffraction and energy-dispersive X-ray spectroscopy (EDS), which allowed for the evaluation of the adsorbent’s microstructure and composition. The results revealed a complex structure of the adsorbents with interconnected pores, which facilitates efficient adsorption in IS and MBS and the standard indicators to evaluate adsorption capacity. The novelty of this study lies in the application of advanced characterization techniques to optimize the adsorbent properties and understand how preparation conditions affect the adsorbent’s microstructure. The characterized adsorbent materials in this study presented great potential for applications in water treatment and industrial processes, offering an economical and environmentally sustainable solution. Promoting the use of rice husks in the production of adsorbents contributes to the circular economy, reducing production costs and environmental pollution. The results suggested that these materials are effective in the removal of pollutants, which make them relevant for practical applications in water and soil bioremediation. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

23 pages, 2605 KB  
Review
Microalgae: Green Engines for Achieving Carbon Sequestration, Circular Economy, and Environmental Sustainability—A Review Based on Last Ten Years of Research
by Md. Muzammal Hoque, Valeria Iannelli, Francesca Padula, Rosa Paola Radice, Biplob Kumar Saha, Giuseppe Martelli, Antonio Scopa and Marios Drosos
Bioengineering 2025, 12(9), 909; https://doi.org/10.3390/bioengineering12090909 - 25 Aug 2025
Viewed by 341
Abstract
Feeding a growing global population requires sustainable, innovative, and cost-effective solutions, especially in light of the environmental damage and nutrient imbalances caused by excessive chemical fertilizer use. Microalgae have gained prominence due to their phylogenetic diversity, physiological adaptability, eco-compatible characteristics, and potential to [...] Read more.
Feeding a growing global population requires sustainable, innovative, and cost-effective solutions, especially in light of the environmental damage and nutrient imbalances caused by excessive chemical fertilizer use. Microalgae have gained prominence due to their phylogenetic diversity, physiological adaptability, eco-compatible characteristics, and potential to support regenerative agriculture and mitigate climate change. Functioning as biofertilizers, biostimulants, and bioremediators, microalgae accelerate nutrient cycling, improve soil aggregation through extracellular polymeric substances (EPSs), and stimulate rhizospheric microbial diversity. Empirical studies demonstrate their ability to increase crop yields by 5–25%, reduce chemical nitrogen inputs by up to 50%, and boost both organic carbon content and enzymatic activity in soils. Their application in saline and degraded lands further promotes resilience and ecological regeneration. Microalgal cultivation platforms offer scalable in situ carbon sequestration, converting atmospheric carbon dioxide (CO2) into biomass with potential downstream vaporization into biofuels, bioplastics, and biochar, aligning with circular economy principles. While the commercial viability of microalgae is challenged by high production costs, technical complexities, and regulatory gaps, recent breakthroughs in cultivation systems, biorefinery integration, and strain optimization highlight promising pathways forward. This review highlights the strategic importance of microalgae in enhancing climate resilience, promoting agricultural sustainability, restoring soil health, and driving global bioeconomic transformation. Full article
(This article belongs to the Special Issue Engineering Microalgal Systems for a Greener Future)
Show Figures

Graphical abstract

16 pages, 1800 KB  
Article
Extracellular Cr(VI) Reduction by the Salt-Tolerant Strain Bacillus safensis BSF-4
by Yilan Liu, Weiping Yu, Tianying Nie, Lu Wang and Yusheng Niu
Microorganisms 2025, 13(8), 1961; https://doi.org/10.3390/microorganisms13081961 - 21 Aug 2025
Viewed by 293
Abstract
Microbial reduction in hexavalent chromium (Cr(VI)) is a well characterized bioremediation strategy, yet the mechanistic diversity among bacterial taxa necessitates detailed investigations into strain-specific pathways. Here, we report the isolation and characterization of Bacillus safensis BSF-4, a halophilic bacterium derived from saline-alkali [...] Read more.
Microbial reduction in hexavalent chromium (Cr(VI)) is a well characterized bioremediation strategy, yet the mechanistic diversity among bacterial taxa necessitates detailed investigations into strain-specific pathways. Here, we report the isolation and characterization of Bacillus safensis BSF-4, a halophilic bacterium derived from saline-alkali soil, which demonstrates efficient Cr(VI) reduction capacity. Physiological assays showed that BSF-4 achieved 89.15% reduction of 20 mg/L Cr(VI) within 72 h, with Cr(III) identified as the primary extracellular end product. Resting cell assays and subcellular fractionation analyses confirmed that Cr(VI) reduction predominantly occurs in the extracellular milieu. X-ray photoelectron spectroscopy (XPS) further revealed soluble Cr(III) complexed with extracellular polymeric substances (EPS). Transcriptomic profiling indicated upregulation of membrane-associated transport systems (facilitating Cr(VI) exclusion) and quorum sensing (QS) pathways (mediating adaptive stress responses). These findings highlight a dual mechanism: (1) extracellular enzymatic reduction mediated by EPS-bound redox proteins, and (2) intracellular detoxification via QS-regulated defense pathways. Collectively, Bacillus safensis BSF-4 exhibits robust Cr(VI) reduction capacity under saline conditions, positioning it as a promising candidate for bioremediation of Cr(VI)-contaminated saline soils and aquatic ecosystems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

14 pages, 1191 KB  
Article
Biodegradation of Zearalenone by a Novel Bacillus Strain X13 Isolated from Volcanic Rock Soil Using the Mycotoxin as the Sole Carbon Source
by Di Meng, Kaizhong Xu, Jinbin Liu and Xiangru Liao
Microorganisms 2025, 13(8), 1954; https://doi.org/10.3390/microorganisms13081954 - 21 Aug 2025
Viewed by 239
Abstract
Zearalenone (ZEN) is a widespread estrogenic mycotoxin that poses serious health risks to both humans and animals through the contamination of cereals and feeds. In this study, a novel Bacillus strain X13 was isolated from volcanic rock soil and demonstrated the unique ability [...] Read more.
Zearalenone (ZEN) is a widespread estrogenic mycotoxin that poses serious health risks to both humans and animals through the contamination of cereals and feeds. In this study, a novel Bacillus strain X13 was isolated from volcanic rock soil and demonstrated the unique ability to utilize ZEN as the sole carbon source for growth and metabolism. Under optimized conditions (37 °C, pH 8.0, and 5% inoculum in M9 minimal medium), strain X13 achieved a ZEN degradation efficiency of 98.57%. LC-MS analysis identified 1-(3,5-dihydroxyphenyl)-6′-hydroxy-1′-undecen-10′-one as the primary degradation product, indicating enzymatic hydrolysis of the lactone ring. Enzymatic assays revealed that the active components were extracellular, proteinaceous, and metal ion-dependent. Furthermore, the strain reduced ZEN content in mold-contaminated corn flour by 74.6%, effectively lowering toxin levels below regulatory limits. These findings suggest that Bacillus sp. X13 is a promising candidate for the bioremediation of ZEN-contaminated agricultural products, with significant potential for application in food and feed detoxification strategies. The robust degradation performance of strain X13 under simulated environmental conditions, combined with its adaptability to agricultural substrates, positions it as a viable solution for large-scale mycotoxin mitigation in the food industry chain, from pre-harvest field management to post-harvest storage processing. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

26 pages, 2226 KB  
Review
Unveiling the Sustainable and Biological Remediation of Heavy Metals Contaminations in Soils and Water Ecosystems Through Potential Microbes—A Review
by Kallol Das, Md Abdullah Al Masud, Aniruddha Sarker, Ramadan A. Arafa and Margi Patel
Sustainability 2025, 17(16), 7357; https://doi.org/10.3390/su17167357 - 14 Aug 2025
Viewed by 1349
Abstract
This review provides a critical summary of the biological remediation of heavy metals by leveraging the potential of microbes in soils and water ecosystems, highlighting major research findings and practical obstacles. Heavy metals (HMs) pose a severe threat to environmental health due to [...] Read more.
This review provides a critical summary of the biological remediation of heavy metals by leveraging the potential of microbes in soils and water ecosystems, highlighting major research findings and practical obstacles. Heavy metals (HMs) pose a severe threat to environmental health due to their toxicity and persistence, necessitating effective remediation strategies. Biological remediation, especially through microorganisms and enzymatic actions, offers a promising alternative to conventional methods due to its eco-friendly and cost-effective nature. The review discusses various microbes, including bacteria, fungi, and algae known for their metal-binding capacities and transformation abilities. It delves into the mechanisms of bioremediation, such as biosorption, bioaccumulation, and biotransformation, facilitated by microbial enzymes like oxidoreductases and hydrolases that remove or bind the chemical structure of HMs. This paper also explores genetic engineering approaches to enhance microbial efficacy in HMs’ uptake and resistance. Furthermore, the review addresses the significant challenges in scaling bioremediation from a laboratory to the field, such as the complexity of environmental conditions, the presence of mixed contaminants, and the need for system optimization to improve efficiency and sustainability. It also evaluates the current legislative framework governing bioremediation practices, suggesting a need for clearer policies to support the integration of biological methods into mainstream remediation strategies. Conclusively, while microbial and enzymatic remediation presents considerable potential, extensive research is needed to overcome existing hurdles and develop robust, field-applicable systems. This paper calls for a multidisciplinary approach combining microbiology, engineering, and environmental sciences to advance this promising field. Full article
Show Figures

Figure 1

32 pages, 663 KB  
Review
Unraveling the Microbiome–Environmental Change Nexus to Contribute to a More Sustainable World: A Comprehensive Review of Artificial Intelligence Approaches
by Maria Inês Barbosa, Gabriel Silva, Pedro Ribeiro, Eduarda Vieira, André Perrotta, Patrícia Moreira and Pedro Miguel Rodrigues
Sustainability 2025, 17(16), 7209; https://doi.org/10.3390/su17167209 - 9 Aug 2025
Viewed by 432
Abstract
This review aims to explore the literature to assess the potential of artificial intelligence (AI) in environmental monitoring for predicting microbiome dynamics. Recognizing the significance of comprehending microorganism diversity, composition, and ecologically sustainable impact, the review emphasizes the importance of studying how microbiomes [...] Read more.
This review aims to explore the literature to assess the potential of artificial intelligence (AI) in environmental monitoring for predicting microbiome dynamics. Recognizing the significance of comprehending microorganism diversity, composition, and ecologically sustainable impact, the review emphasizes the importance of studying how microbiomes respond to environmental changes to better grasp ecosystem dynamics. This bibliographic search examines how AI (Machine Learning and Deep Learning) approaches are employed to predict changes in microbial diversity and community composition in response to environmental and climate variables, as well as how shifts in the microbiome can, in turn, influence the environment. Our research identified a final sample of 50 papers that highlighted a prevailing concern for aquatic and terrestrial environments, particularly regarding soil health, productivity, and water contamination, and the use of specific microbial markers for detection rather than shotgun metagenomics. The integration of AI in environmental microbiome monitoring directly supports key sustainability goals through optimized resource management, enhanced bioremediation approaches, and early detection of ecosystem disturbances. This study investigates the challenges associated with interpreting the outputs of these algorithms and emphasizes the need for a deeper understanding of microbial physiology and ecological contexts. The study highlights the advantages and disadvantages of different AI methods for predicting environmental microbiomes through a critical review of relevant research publications. Furthermore, it outlines future directions, including exploring uncharted territories and enhancing model interpretability. Full article
Show Figures

Figure 1

35 pages, 1831 KB  
Review
Pesticide Degradation: Impacts on Soil Fertility and Nutrient Cycling
by Muhammad Yasir, Abul Hossain and Anubhav Pratap-Singh
Environments 2025, 12(8), 272; https://doi.org/10.3390/environments12080272 - 7 Aug 2025
Viewed by 1225
Abstract
The widespread use of pesticides in modern agriculture has significantly enhanced food production by managing pests and diseases; however, their degradation in soil can lead to unintended consequences for soil fertility and nutrient cycling. This review explores the mechanisms of pesticide degradation, both [...] Read more.
The widespread use of pesticides in modern agriculture has significantly enhanced food production by managing pests and diseases; however, their degradation in soil can lead to unintended consequences for soil fertility and nutrient cycling. This review explores the mechanisms of pesticide degradation, both abiotic and biotic, and the soil factors influencing these processes. It critically examines how degradation products impact soil microbial communities, organic matter decomposition, and key nutrient cycles, including nitrogen, phosphorus, potassium, and micronutrients. This review highlights emerging evidence linking pesticide residues with altered enzymatic activity, disrupted microbial populations, and reduced nutrient bioavailability, potentially compromising soil structure, water retention, and long-term productivity. Additionally, it discusses the broader environmental and agricultural implications, including decreased crop yields, biodiversity loss, and groundwater contamination. Sustainable management strategies such as bioremediation, the use of biochar, eco-friendly pesticides, and integrated pest management (IPM) are evaluated for mitigating these adverse effects. Finally, this review outlines future research directions emphasizing long-term studies, biotechnology innovations, and predictive modeling to support resilient agroecosystems. Understanding the intricate relationship between pesticide degradation and soil health is crucial to ensuring sustainable agriculture and food security. Full article
(This article belongs to the Special Issue Coping with Climate Change: Fate of Nutrients and Pollutants in Soil)
Show Figures

Figure 1

31 pages, 698 KB  
Review
Mechanistic Role of Heavy Metals in Driving Antimicrobial Resistance: From Rhizosphere to Phyllosphere
by Rahul Kumar, Tanja P. Vasić, Sanja P. Živković, Periyasamy Panneerselvam, Gustavo Santoyo, Sergio de los Santos Villalobos, Adeyemi Nurudeen Olatunbosun, Aditi Pandit, Leonard Koolman, Debasis Mitra and Pankaj Gautam
Appl. Microbiol. 2025, 5(3), 79; https://doi.org/10.3390/applmicrobiol5030079 - 4 Aug 2025
Viewed by 452
Abstract
Heavy metal pollution represents a pervasive environmental challenge that significantly exacerbates the ever-increasing crisis of antimicrobial resistance and the capacity of microorganisms to endure and proliferate despite antibiotic interventions. This review examines the intricate relationship between heavy metals and AMR, with an emphasis [...] Read more.
Heavy metal pollution represents a pervasive environmental challenge that significantly exacerbates the ever-increasing crisis of antimicrobial resistance and the capacity of microorganisms to endure and proliferate despite antibiotic interventions. This review examines the intricate relationship between heavy metals and AMR, with an emphasis on the underlying molecular mechanisms and ecological ramifications. Common environmental metals, including arsenic, mercury, cadmium, and lead, exert substantial selective pressures on microbial communities. These induce oxidative stress and DNA damage, potentially leading to mutations that enhance antibiotic resistance. Key microbial responses include the overexpression of efflux pumps that expel both metals and antibiotics, production of detoxifying enzymes, and formation of protective biofilms, all of which contribute to the emergence of multidrug-resistant strains. In the soil environment, particularly the rhizosphere, heavy metals disrupt plant–microbe interactions by inhibiting beneficial organisms, such as rhizobacteria, mycorrhizal fungi, and actinomycetes, thereby impairing nutrient cycling and plant health. Nonetheless, certain microbial consortia can tolerate and detoxify heavy metals through sequestration and biotransformation, rendering them valuable for bioremediation. Advances in biotechnology, including gene editing and the development of engineered metal-resistant microbes, offer promising solutions for mitigating the spread of metal-driven AMR and restoring ecological balance. By understanding the interplay between metal pollution and microbial resistance, we can more effectively devise strategies for environmental protection and public health. Full article
Show Figures

Graphical abstract

19 pages, 1050 KB  
Article
Fungal Communities in Soils Contaminated with Persistent Organic Pollutants: Adaptation and Potential for Mycoremediation
by Lazaro Alexis Pedroso Guzman, Lukáš Mach, Jiřina Marešová, Jan Wipler, Petr Doležal, Jiřina Száková and Pavel Tlustoš
Appl. Sci. 2025, 15(15), 8607; https://doi.org/10.3390/app15158607 - 4 Aug 2025
Viewed by 361
Abstract
The main objective of this study was to select indigenous fungal species suitable for the potential mycoremediation of the soils polluted by organic pollutants. As a sampling area, Litvínov City (North Bohemia, Czech Republic) was selected. The city is characterized by intensive coal [...] Read more.
The main objective of this study was to select indigenous fungal species suitable for the potential mycoremediation of the soils polluted by organic pollutants. As a sampling area, Litvínov City (North Bohemia, Czech Republic) was selected. The city is characterized by intensive coal mining, coal processing, and the chemical industry, predominantly petrochemistry. The elevated contents of persistent organic pollutants (POPs) such as polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were identified in urban soils due to the long-term industrial pollution. The results confirmed elevated contents of PAHs in all the analyzed soil samples with high variability ranging between 0.5 and 23.3 mg/kg regardless of the position of the sampling area on the city map. PCBs and PCDD/Fs exceeded the detection limits in the soil at the sampling points, and several hotspots were revealed at some locations. All the sampling points contained a diverse community of saprotrophic and mycorrhizal fungi, as determined according to abundant basidiomycetes. Fungal species with a confirmed ability to degrade organic pollutants were found, such as species representing the genera Agaricus from the Agaricaceae family, Coprinopsis from the Psathyrellaceae family, Hymenogaster from the Hymenogasteraceae family, and Pluteus from the Pluteaceae family. These species are accustomed to particular soil conditions as well as the elevated contents of the POPs in them. Therefore, these species could be taken into account when developing potential bioremediation measures to apply in the most polluted areas, and their biodegradation ability should be elucidated in further research. The results of this study contribute to the investigation of the potential use of fungal species for mycoremediation of the areas polluted by a wide spectrum of organic pollutants. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

25 pages, 3789 KB  
Article
Rhizobium’s Reductase for Chromium Detoxification, Heavy Metal Resistance, and Artificial Neural Network-Based Predictive Modeling
by Mohammad Oves, Majed Ahmed Al-Shaeri, Huda A. Qari and Mohd Shahnawaz Khan
Catalysts 2025, 15(8), 726; https://doi.org/10.3390/catal15080726 - 30 Jul 2025
Viewed by 411
Abstract
This study analyzed the heavy metal tolerance and chromium reduction and the potential of plant growth to promote Rhizobium sp. OS-1. By genetic makeup, the Rhizobium strain is nitrogen-fixing and phosphate-solubilizing in metal-contaminated agricultural soil. Among the Rhizobium group, bacterial strain OS-1 showed [...] Read more.
This study analyzed the heavy metal tolerance and chromium reduction and the potential of plant growth to promote Rhizobium sp. OS-1. By genetic makeup, the Rhizobium strain is nitrogen-fixing and phosphate-solubilizing in metal-contaminated agricultural soil. Among the Rhizobium group, bacterial strain OS-1 showed a significant tolerance to heavy metals, particularly chromium (900 µg/mL), zinc (700 µg/mL), and copper. In the initial investigation, the bacteria strains were morphologically short-rod, Gram-negative, appeared as light pink colonies on media plates, and were biochemically positive for catalase reaction and the ability to ferment glucose, sucrose, and mannitol. Further, bacterial genomic DNA was isolated and amplified with the 16SrRNA gene and sequencing; the obtained 16S rRNA sequence achieved accession no. HE663761.1 from the NCBI GenBank, and it was confirmed that the strain belongs to the Rhizobium genus by phylogenetic analysis. The strain’s performance was best for high hexavalent chromium [Cr(VI)] reduction at 7–8 pH and a temperature of 30 °C, resulting in a total decrease in 96 h. Additionally, the adsorption isotherm Freundlich and Langmuir models fit best for this study, revealing a large biosorption capacity, with Cr(VI) having the highest affinity. Further bacterial chromium reduction was confirmed by an enzymatic test of nitro reductase and chromate reductase activity in bacterial extract. Further, from the metal biosorption study, an Artificial Neural Network (ANN) model was built to assess the metal reduction capability, considering the variables of pH, temperature, incubation duration, and initial metal concentration. The model attained an excellent expected accuracy (R2 > 0.90). With these features, this bacterial strain is excellent for bioremediation and use for industrial purposes and agricultural sustainability in metal-contaminated agricultural fields. Full article
Show Figures

Figure 1

20 pages, 4025 KB  
Article
Genomic Analysis of Cadmium-Resistant and Plant Growth-Promoting Burkholderia alba Isolated from Plant Rhizosphere
by Luyao Feng, Xin Liu, Nan Wang, Zhuli Shi, Yu Wang, Jianpeng Jia, Zhufeng Shi, Te Pu and Peiwen Yang
Agronomy 2025, 15(8), 1780; https://doi.org/10.3390/agronomy15081780 - 24 Jul 2025
Viewed by 460
Abstract
Reducing the application of chemical fertilizers and remediating heavy metal pollution in soil are important directions in current agricultural research. Utilizing the plant-growth-promoting and remediation capabilities of bacteria can provide more environmentally friendly assistance to agricultural production. In this study, the Burkholderia alba [...] Read more.
Reducing the application of chemical fertilizers and remediating heavy metal pollution in soil are important directions in current agricultural research. Utilizing the plant-growth-promoting and remediation capabilities of bacteria can provide more environmentally friendly assistance to agricultural production. In this study, the Burkholderia alba YIM B08401 strain was isolated and identified from rhizospheric soil, subjected to whole-genome sequencing and analysis, and its Cd2+ adsorption efficiency and characteristics were confirmed using multiple experimental methods, including atomic absorption spectrometry (AAS), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS). The results showed that the genome of strain YIM B08401 has a total length of 7,322,157 bp, a GC content of 66.39%, and predicts 6504 protein-coding sequences. It contains abundant functional genes related to nutrient conversion (phosphate solubilization, sulfur metabolism, zinc solubilization, siderophore production), plant hormone regulation (indole-3-acetic acid secretion, ACC deaminase production), phenolic acid degradation, root colonization, heavy metal tolerance, pathogen antagonism, and the production of antagonistic secondary metabolites. Additionally, strain YIM B08401 can specifically bind to Cd2+ through various functional groups on the cell surface, such as C-O-C, P=O, and O-H, enabling biosorption. In conclusion, strain YIM B08401 is an excellent strain with plant-growth-promoting, disease-resistant, and bioremediation capabilities, warranting further development as a biofertilizer for agricultural applications to promote green and sustainable agricultural development. Full article
Show Figures

Figure 1

20 pages, 1612 KB  
Review
Phytoremediation Potential of Silicon-Treated Brassica juncea L. in Mining-Affected Water and Soil Composites in South Africa: A Review
by Kamogelo Katlego Motshumi, Awonke Mbangi, Elmarie Van Der Watt and Zenzile Peter Khetsha
Agriculture 2025, 15(15), 1582; https://doi.org/10.3390/agriculture15151582 - 23 Jul 2025
Viewed by 490
Abstract
Heavy metal pollution due to mining activities poses a significant threat to agricultural production, ecosystem health, and food security in South Africa. This review integrates current knowledge on the use of mustard spinach (Brassica juncea (L.) Czern.) for the bioremediation of polluted [...] Read more.
Heavy metal pollution due to mining activities poses a significant threat to agricultural production, ecosystem health, and food security in South Africa. This review integrates current knowledge on the use of mustard spinach (Brassica juncea (L.) Czern.) for the bioremediation of polluted water and soil, focusing on enhancing phytoremediation efficiency through the use of silicon-based biostimulant treatments. Mustard spinach is known for its capacity to accumulate and tolerate high levels of toxic metals, such as Pb, Cd, and Hg, owing to its strong physiological and biochemical defense mechanisms, including metal chelation, antioxidant activity, and osmotic adjustment. However, phytoremediation potential is often constrained by the negative impact of heavy metal stress on plant growth. Recent studies have shown that silicon-based biostimulants can alleviate metal toxicity by reducing metal bioavailability, increasing metal immobilization, and improving the antioxidative capacity and growth of plants. Combining silicon amendments with mustard spinach cultivation is a promising, eco-friendly approach to the remediation of mining-impacted soils and waters, potentially restoring agricultural productivity and reducing health risks to the resident populations. This review elucidates the multifaceted mechanisms by which silicon-enhanced phytoremediation operates, including soil chemistry modification, metal sequestration, antioxidant defense, and physiological resilience, while highlighting the practical, field-applicable benefits of this combined approach. Furthermore, it identifies urgent research priorities, such as field validation and the optimization of silicon application methods. Full article
(This article belongs to the Special Issue The Role of Silicon in Improving Crop Growth Under Abiotic Stress)
Show Figures

Figure 1

24 pages, 5241 KB  
Review
Global Environmental Geochemistry and Molecular Speciation of Heavy Metals in Soils and Groundwater from Abandoned Smelting Sites: Analysis of the Contamination Dynamics and Remediation Alternatives in Karst Settings
by Hang Xu, Qiao Han, Muhammad Adnan, Mengfei Li, Mingshi Wang, Mingya Wang, Fengcheng Jiang and Xixi Feng
Toxics 2025, 13(7), 608; https://doi.org/10.3390/toxics13070608 - 21 Jul 2025
Viewed by 758
Abstract
Abandoned smelting sites in karst terrain pose a serious environmental problem due to the complex relationship between specific hydrogeological elements and heavy metal contamination. This review combines work from across the globe to consider how karst-specific features (i.e., rapid underground drainage, high permeability, [...] Read more.
Abandoned smelting sites in karst terrain pose a serious environmental problem due to the complex relationship between specific hydrogeological elements and heavy metal contamination. This review combines work from across the globe to consider how karst-specific features (i.e., rapid underground drainage, high permeability, and carbonate mineralogy) influence the mobility, speciation, and bioavailability of “metallic” pollutants, such as Pb, Cd, Zn, and As. In some areas, such as Guizhou (China), the Cd content in the surface soil is as high as 23.36 mg/kg, indicating a regional risk. Molecular-scale analysis, such as synchrotron-based XAS, can elucidate the speciation forms that underlie toxicity and remediation potential. Additionally, we emphasize discrepancies between karst in Asia, Europe, and North America and synthesize cross-regional contamination events. The risk evaluation is complicated, particularly when dynamic flow systems and spatial heterogeneity are permanent, and deep models like DI-NCPI are required as a matter of course. The remediation is still dependent on the site; however, some technologies, such as phytoremediation, biosorption, and bioremediation, are promising if suitable geochemical and microbial conditions are present. This review presents a framework for integrating molecular data and hydrogeological concepts to inform the management of risk and sustainable remediation of legacy metal pollution in karst. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

37 pages, 3892 KB  
Review
Sustainable Remediation Strategies and Technologies of Per- and Polyfluoroalkyl Substances (PFAS)-Contaminated Soils: A Critical Review
by Rosario Napoli, Filippo Fazzino, Federico G. A. Vagliasindi and Pietro P. Falciglia
Sustainability 2025, 17(14), 6635; https://doi.org/10.3390/su17146635 - 21 Jul 2025
Viewed by 1171
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been reported to contaminate soil as a result of improper management of waste, wastewater, landfill leachate, biosolids, and a large and indiscriminate use of aqueous film-forming foams (AFFF), posing potential risks to human health. However, their high [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) have been reported to contaminate soil as a result of improper management of waste, wastewater, landfill leachate, biosolids, and a large and indiscriminate use of aqueous film-forming foams (AFFF), posing potential risks to human health. However, their high chemical and thermal stability pose a great challenge for remediation. As a result, there is an increasing interest in identifying and optimizing very effective and sustainable technologies for PFAS removal. This review summarizes both traditional and innovative remediation strategies and technologies for PFAS-contaminated soils. Unlike existing literature, which primarily focuses on the effectiveness of PFAS remediation, this review critically discusses several techniques (based on PFAS immobilization, mobilization and extraction, and destruction) with a deep focus on their sustainability and scalability. PFAS destruction technologies demonstrate the highest removal efficiencies; however, thermal treatments face sustainability challenges due to high energy demands and potential formation of harmful by-products, while mechanical treatments have rarely been explored at full scale. PFAS immobilization techniques are less costly than destruction methods, but issues related to the regeneration/disposal of spent sorbents should be still addressed and more long-term studies conducted. PFAS mobilization techniques such as soil washing/flushing are hindered by the generation of PFAS-laden wastewater requiring further treatments, while phytoremediation is limited to small- or medium-scale experiments. Finally, bioremediation would be the cheapest and least impactful alternative, though its efficacy remains uncertain and demonstrated under simplified lab-scale conditions. Future research should prioritize pilot- and full-scale studies under realistic conditions, alongside comprehensive assessments of environmental impacts and economic feasibility. Full article
Show Figures

Figure 1

19 pages, 2271 KB  
Article
Possible Use in Soil Bioremediation of the Bacterial Strain Bacillus Sphaericus NM-1 Capable of Simultaneously Degrading Promethrin and Acetochlor
by Yue Cheng, Qian Fu, Junjia Xu, Xinhua Niu, Lin Liu, Jiaqi Wang, Jingwen Quan, Qingyue Yu, Baoyan Chi, Haitao Li and Rongmei Liu
Microorganisms 2025, 13(7), 1698; https://doi.org/10.3390/microorganisms13071698 - 19 Jul 2025
Viewed by 390
Abstract
Prometryn and acetochlor are herbicides used to control weeds in farmlands and other areas. They enter the soil through direct application, residual accumulation in crops, and atmospheric deposition. The pollution of their residues in the environment has attracted people’s attention. Bioremediation is one [...] Read more.
Prometryn and acetochlor are herbicides used to control weeds in farmlands and other areas. They enter the soil through direct application, residual accumulation in crops, and atmospheric deposition. The pollution of their residues in the environment has attracted people’s attention. Bioremediation is one of the main methods to solve such problems. In this study, the effects of prometryn and acetochlor-degrading strain NM-1 on soil enzymes, soil microbial communities, and physiological indexes of soybean seedlings during soil remediation were studied, and the relationship between them was discussed. The results showed that 81.54% of prometryn (50 mg·L−1) and 89.47% of acetochlor (50 mg·L−1) were degraded within 15 days after NM-1 inoculation in soil. NM-1 positively affected soil enzyme activities and soil microbial communities, and the abundance of beneficial bacteria in soil increased. More importantly, the inoculation of strain NM-1 under prometryn and acetochlor stress significantly increased plant height, root length, root volume, water content, chlorophyll concentration, and root activity of soybean. The results of these studies showed that the NM-1 strain showed significant potential in bioremediation in order to provide technical support for solving the problem of prometryn and acetochlor pollution. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

Back to TopTop