Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (39,695)

Search Parameters:
Keywords = soil studies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
2809 KB  
Article
Soil Quality Assessment for Sustainable Management: A Minimum Dataset for Long-Term Fertilization in Subtropical Plantations in South China
by Jiani Peng, Qinggong Mao, Senhao Wang, Sichen Mao, Baixin Zhang, Mianhai Zheng, Juan Huang, Jiangming Mo, Xiangping Tan and Wei Zhang
Forests 2025, 16(9), 1435; https://doi.org/10.3390/f16091435 (registering DOI) - 9 Sep 2025
Abstract
Restoration plantations in subtropical regions, often established with fast-growing tree species such as Acacia auriculiformis A. Cunn. ex Benth and Eucalyptus urophylla S. T. Blake, are frequently developed on highly weathered soils characterized by phosphorus deficiency. To investigate strategies for mitigating nutrient imbalances [...] Read more.
Restoration plantations in subtropical regions, often established with fast-growing tree species such as Acacia auriculiformis A. Cunn. ex Benth and Eucalyptus urophylla S. T. Blake, are frequently developed on highly weathered soils characterized by phosphorus deficiency. To investigate strategies for mitigating nutrient imbalances in such ecosystems, a long-term (≥13 years) fertilization experiment was designed. The experiment involved three fertilization regimes: nitrogen fertilizer alone (N), phosphorus fertilizer alone (P), and a combination of nitrogen and phosphorus (NP) fertilizers. The objective of this study was to investigate the effects of long-term fertilization practices on soil quality in subtropical plantations using a soil quality index (SQI). Consequently, all conventional soil physical, chemical, and biological indicators associated with the SQI responses to long-term fertilization treatments were systematically evaluated, and a principal component analysis (PCA) was conducted, along with a literature review, to develop a minimum dataset (MDS) for calculating the SQI. Three physical indicators (silt, clay, and soil water content), three chemical indicators (soil organic carbon, inorganic nitrogen, and total phosphorus), and two biological indicators (microbial biomass carbon and phosphodiesterase enzyme activity) were finally chosen for the MDS from a total dataset (TDS) of eighteen soil indicators. This study shows that the MDS provided a strong representation of the TDS data (R2 = 0.81), and the SQI was positively correlated with litter mass (R2 = 0.37). An analysis of individual soil indicators in the MDS revealed that phosphorus addition through fertilization (P and NP treatments) significantly enhanced the soil phosphorus pool (64–101%) in the subtropical plantation ecosystem. Long-term fertilization did not significantly change the soil quality, as measured using the SQI, in either the Acacia auriculiformis (p = 0.25) or Eucalyptus urophylla (p = 0.45) plantation, and no significant differences were observed between the two plantation types. These findings suggest that the MDS can serve as a quantitative and effective tool for long-term soil quality monitoring during the process of forest sustainable management. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

4544 KB  
Article
Seismic Performance of Long-Span Continuous Rigid-Frame Bridge Equipped with Steel Wire Rope Damper Isolation Bearings
by Xiaoli Liu, Penglei Zhao, Yongzhi Chen, Bin Huang, Zhifeng Wu, Kai Yang and Zijun Weng
Buildings 2025, 15(18), 3249; https://doi.org/10.3390/buildings15183249 (registering DOI) - 9 Sep 2025
Abstract
Aiming to address the seismic vulnerability of long-span continuous rigid-frame bridges in high-intensity seismic zones, this study proposes to use a novel annular steel wire rope damper spherical bearing (SWD-SB) to dissipate the input earthquake energy and reduce the seismic responses. Firstly, the [...] Read more.
Aiming to address the seismic vulnerability of long-span continuous rigid-frame bridges in high-intensity seismic zones, this study proposes to use a novel annular steel wire rope damper spherical bearing (SWD-SB) to dissipate the input earthquake energy and reduce the seismic responses. Firstly, the structural configuration and mechanical model of the new isolation bearing are introduced. Then, based on the dynamic finite element formulation, the equation of motion of a continuous rigid-frame bridge with the new isolation bearings is established, where the soil-structure interaction is considered. In a practical engineering case, the dynamic responses of the Pingchuan Yellow river bridge with the SWD-SB bearings are calculated and analyzed under multi-level earthquakes including the E1 and E2 waves. The results show that, compared with the bidirectional movable pot bearings, the SWD-SB significantly reduces the internal forces and displacement responses at the critical locations of the bridge. Under the E2 earthquake, the peak bending moments at the basement of main piers and at the pile caps are reduced by up to 72.6% and 44.7%, respectively, while the maximum displacement at the top of the main piers decreases by about 34.6%. The overall structural performance remains elastic except the SWD-SB bearings, meeting the two-stage seismic design objective. This paper further analyzes the hysteretic energy dissipation characteristics of the SWD-SB, highlighting its advantages in energy dissipation, deformation coordination, and self-centering capability. The research results demonstrate that the steel wire rope isolation bearings can offer an efficient and durable seismic protection for long-span continuous rigid-frame bridges in high-intensity seismic regions. Full article
Show Figures

Figure 1

2008 KB  
Article
Sustainable Biostimulation in Chili Cultivation: Effects of PGPMs and Marine Algal Extracts on the Physiological Performance of Serrano Pepper Crop
by Diana Fernanda García Espinosa, Sandra Pérez-Álvarez, Esteban Sánchez Chávez, Luisa Patricia Uranga-Valencia, Erick Humberto Ochoa-Chaparro, César Marcial Escobedo-Bonilla, Rodolfo Contreras-Martínez and Héctor A. Leyva-Hernández
Sustainability 2025, 17(17), 8090; https://doi.org/10.3390/su17178090 (registering DOI) - 8 Sep 2025
Abstract
(1) Background: The increasing soil and water pollution in agriculture is mainly due to the uncontrolled use of synthetic fertilizers. As the responsibility to adopt sustainable agricultural practices grows, biofertilizers may offer a solution to reduce the use of chemical inputs and improve [...] Read more.
(1) Background: The increasing soil and water pollution in agriculture is mainly due to the uncontrolled use of synthetic fertilizers. As the responsibility to adopt sustainable agricultural practices grows, biofertilizers may offer a solution to reduce the use of chemical inputs and improve crop productivity. This study focused on evaluating the physiological effects of Trichoderma asperellum, Bacillus sp., and seaweed extracts (Ulva lactuca and Solieria spp.) on the cultivation of serrano pepper plants. (2) Methods: Five treatments were carried out: control (T1), T. asperellum (T2), Bacillus sp. (T3), seaweed extract (T4), and their combination (T5). The microbial inoculants were applied to the root zone, while the seaweed extracts were applied to the foliage. Leaf samples were collected at the end of the vegetative phase to evaluate physiological and agronomic traits. (3) Results: The application of T3 significantly increased leaf area (12.34%), biomass (11.91%), and yield (10.7%) while decreasing the SPAD, chlorophyll, and carotenoid contents. T4 resulted in the highest nitrate reductase activity, while T5 resulted in the peak total chlorophyll content. No significant differences were observed in nitrate reductase activity between T4 and the control or in the carotenoid content between T1, T2, T4, and T5. (4) Conclusions: Bacillus sp. demonstrated agronomic benefits despite a decrease in pigments, supporting its application in the sustainable production of peppers. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

11494 KB  
Article
Influence of Land Use/Land Cover Dynamics on Urban Surface Metrics in Semi-Arid Heritage Cities
by Saurabh Singh, Ram Avtar, Ankush Kumar Jain, Wafa Saleh Alkhuraiji and Mohamed Zhran
Land 2025, 14(9), 1834; https://doi.org/10.3390/land14091834 (registering DOI) - 8 Sep 2025
Abstract
Rapid urbanization in semi-arid heritage cities is accelerating land use/land cover (LULC) transitions, with critical implications for local climate regulation, surface energy balance, and environmental sustainability. This study investigates Jaipur, Jodhpur, and Udaipur (Rajasthan, India) between 2018 and 2024 to assess the influence [...] Read more.
Rapid urbanization in semi-arid heritage cities is accelerating land use/land cover (LULC) transitions, with critical implications for local climate regulation, surface energy balance, and environmental sustainability. This study investigates Jaipur, Jodhpur, and Udaipur (Rajasthan, India) between 2018 and 2024 to assess the influence of spatio-temporal dynamics of LULC on urban surface metrics. Multi-temporal satellite datasets were used to derive the index-based built-up index (IBI), surface urban heat island intensity (SUHI), Albedo, urban thermal field variance index (UTFVI), and bare soil index (BSI). The results reveal substantial built-up expansion—most pronounced in Udaipur (+26.7%)—coupled with vegetation loss (up to −23.8% in Jaipur) and progressive albedo decline (Sen’s slope ≈ −0.002 yr−1). These transformations highlight suppressed surface reflectivity and enhanced heat absorption. A key and novel finding is the emergence of a counter-intuitive surface urban cool island (SUCI) effect, whereby urban cores exhibited daytime cooling and nighttime warming relative to rural surroundings. This anomaly is attributed to the rapid heating and poor nocturnal heat retention of bare, sparsely vegetated rural soils, contrasted with the thermal inertia and shading of urban surfaces. By documenting negative SUHI patterns and explicitly linking them to LULC trajectories, this study advances the understanding of urban climate dynamics in semi-arid contexts. The findings underscore the need for climate-sensitive planning—strengthening peri-urban green belts, regulating impervious expansion, and adopting albedo-enhancing construction materials—while safeguarding cultural heritage. More broadly, the study contributes empirical evidence from climatically vulnerable yet culturally significant cities, offering insights relevant to global SUHI research and sustainable urban development. Full article
1409 KB  
Article
Phytophthora plurivora: A Serious Challenge for English Walnut (Juglans regia) Cultivation in Europe
by Alessandra Benigno, Viola Papini, Federico La Spada, Domenico Rizzo, Santa Olga Cacciola and Salvatore Moricca
Microorganisms 2025, 13(9), 2094; https://doi.org/10.3390/microorganisms13092094 (registering DOI) - 8 Sep 2025
Abstract
English walnut (Juglans regia) is a species that is highly valued for the quality of its wood and the nutritional and nutraceutical properties of its fruit. A severe dieback of J. regia trees was observed recently in orchards located in three [...] Read more.
English walnut (Juglans regia) is a species that is highly valued for the quality of its wood and the nutritional and nutraceutical properties of its fruit. A severe dieback of J. regia trees was observed recently in orchards located in three geographically distinct areas of Tuscany, central Italy. Symptoms included root and collar rot, necrosis of the under-bark tissue, bleeding cankers, stunted growth, and crown dieback. Four Phytophthora species were obtained from 239 isolates found on symptomatic J. regia individuals. They were identified, on the basis of macro-morphological (colony shape and texture), micro-morphometric (shape and size of oogonia, antheridia, oospores, sporangia, and chlamydospores) and molecular (ITS sequencing) characters, as P. gonapodyides, P. cactorum, P. citricola, and P. plurivora. Among these species, P. plurivora was the species isolated with overwhelming frequency from symptomatic tissue and rhizosphere soil, suggesting it to be the putative etiological agent. Pathogenicity assays were conducted on 20 cm long detached J. regia branches for a definitive establishment of disease causation. Severe symptoms (extended necroses) were exhibited by branches infected with P. plurivora, proving its pathogenicity and high virulence on this host. The other Phytophtora species produced negligible necroses around the inoculation site. P. plurivora was recovered from all the investigated orchards, providing evidence that it is quite widespread. This study highlights the growing threat posed by the polyphagous P. plurivora to walnut cultivation and the sustainable business it fuels in Europe, underscoring the need for integrated management strategies to mitigate its economic and ecological impacts. Full article
(This article belongs to the Special Issue Phytopathogens: Detection and Control)
Show Figures

Figure 1

3286 KB  
Review
Towards Understanding the Factors Shaping the Composition and Function of the Noccaea Microbiome in Metal-Contaminated Environments
by Marjana Regvar, Valentina Bočaj, Jure Mravlje, Teja Pelko, Matevž Likar, Paula Pongrac and Katarina Vogel-Mikuš
Int. J. Mol. Sci. 2025, 26(17), 8748; https://doi.org/10.3390/ijms26178748 (registering DOI) - 8 Sep 2025
Abstract
Noccaea species (formerly Thlaspi) are Brassicaceae plants renowned for their capacity to hyperaccumulate zinc (Zn), cadmium (Cd), and nickel (Ni), which has made them model systems in studies of metal tolerance, phytoremediation, and plant adaptation to extreme environments. While their physiological and [...] Read more.
Noccaea species (formerly Thlaspi) are Brassicaceae plants renowned for their capacity to hyperaccumulate zinc (Zn), cadmium (Cd), and nickel (Ni), which has made them model systems in studies of metal tolerance, phytoremediation, and plant adaptation to extreme environments. While their physiological and genetic responses to metal stress are relatively well characterised, the extent to which these traits influence microbiome composition and function remains largely unexplored. These species possess compact genomes shaped by ancient whole-genome duplications and rearrangements, and such genomic traits may influence microbial recruitment through changes in secondary metabolism, elemental composition, and tissue architecture. Here, we synthesise the current findings on how genome size, metal hyperaccumulation, structural adaptations, and glucosinolate diversity affect microbial communities in Noccaea roots and leaves. We review evidence from bioimaging, molecular profiling, and physiological studies, highlighting interactions with bacteria and fungi adapted to metalliferous soils. At present, the leaf microbiome of Noccaea species remains underexplored. Analyses of root microbiome, however, reveal a consistent taxonomic core dominated by Actinobacteria and Proteobacteria among bacterial communities and Ascomycetes, predominantly Dothideomycetes and Leotiomycetes among fungi. Collectively, these findings suggest that metal-adapted microbes provide several plant-beneficial functions, including metal detoxification, nutrient cycling, growth promotion, and enhanced metal extraction in association with dark septate endophytes. By contrast, the status of mycorrhizal associations in Noccaea remains debated and unresolved, although evidence points to functional colonisation by selected fungal taxa. These insights indicate that multiple plant traits interact to shape microbiome assembly and activity in Noccaea species. Understanding these dynamics offers new perspectives on plant–microbe co-adaptation, ecological resilience, and the optimisation of microbiome-assisted strategies for sustainable phytoremediation. Full article
(This article belongs to the Special Issue Molecular Advances in Understanding Plant-Microbe Interactions)
Show Figures

Figure 1

1832 KB  
Article
Numerical Study of Moisture Transfer and Methane Emission in Earthen Final Covers: Effects of Ambient Conditions
by Tao Wu, Song Feng, Cheng Chen, Guannian Chen and Zhangjing Zhang
Atmosphere 2025, 16(9), 1058; https://doi.org/10.3390/atmos16091058 (registering DOI) - 8 Sep 2025
Abstract
Earthen final covers (EFCs) are widely used to mitigate environmental impacts from landfills, particularly in controlling methane emissions and groundwater contamination. In this study, a one-dimensional numerical model was built to simulate the interactions of liquid water, water vapor, landfill gas, and heat, [...] Read more.
Earthen final covers (EFCs) are widely used to mitigate environmental impacts from landfills, particularly in controlling methane emissions and groundwater contamination. In this study, a one-dimensional numerical model was built to simulate the interactions of liquid water, water vapor, landfill gas, and heat, incorporating the biochemical process of methane oxidation. Parametric studies revealed that both atmospheric and waste temperatures significantly influence the soil temperature and evaporation, thereby affecting methane oxidation. Oxidation efficiency increased from 8.7% to 55.3% as atmospheric temperature rose from 5 °C to 35 °C. High waste temperatures enhanced oxidation by up to 2.9 times under cold conditions. An increase in atmospheric pressure (950–990 mbar) promoted oxygen diffusion into the cover and improved oxidation efficiency from 0.8% to 77.1%. Atmospheric relative humidity also played a critical role by affecting surface evaporation, with higher humidity promoting better water retention but limiting oxygen diffusion. The methane oxidation performance of the cover declined by 12.0% to 68.5% compared to pre-rainfall conditions. Rainfall temporarily inhibited oxidation due to moisture-induced oxygen limitation, with partial recovery after rainfall ceased. This study provided valuable insights into the complex interactions between ambient conditions and EFC performance, contributing to the optimization of landfill cover designs and methane mitigation strategies. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
4549 KB  
Article
Dual Role of Tenebrio molitor Frass in Sustainable Agriculture: Effects on Free-Living Nematodes and Suppression of Meloidogyne incognita
by Evgenia Rizou, Nikolaos Monokrousos, Triantafyllia Kardami, Georgia V. Baliota, Christos I. Rumbos, Christos G. Athanassiou, Nikolaos Tsiropoulos and Nikoletta Ntalli
BioTech 2025, 14(3), 71; https://doi.org/10.3390/biotech14030071 (registering DOI) - 8 Sep 2025
Abstract
Insect-derived frass is gaining attention as a circular bioeconomy product with fertilizing and pest-suppressive potential. This study investigates Tenebrio molitor frass as a soil amendment for promoting beneficial nematodes and suppressing Meloidogyne incognita. A 40-day pot experiment on clay loam soil tested [...] Read more.
Insect-derived frass is gaining attention as a circular bioeconomy product with fertilizing and pest-suppressive potential. This study investigates Tenebrio molitor frass as a soil amendment for promoting beneficial nematodes and suppressing Meloidogyne incognita. A 40-day pot experiment on clay loam soil tested with six inputs: raw and heat-treated frass (0.5%, 1% w/w), Melia azedarach fruit powder (1.6%), and an untreated control. Soil nematode communities were assessed at 5 and 40 days after application (DAA), and nematicidal activity was evaluated in vitro. Raw frass at 1% induced a rapid response from free-living nematodes at 5 DAA, with increased abundance of bacterivorous taxa such as Rhabditis and Acrobeloides, alongside a higher Enrichment Index (EI), indicating short-term nutrient availability. At 40 DAA, only 1% raw frass consistently supported more cp-1 bacterivores and slightly increased Shannon diversity. Network analysis revealed more connected, modular structures in raw frass treatments, suggesting enhanced food web complexity. However, omnivore and predator effects were limited. Raw frass extracts caused over 80% paralysis of Meloidogyne incognita juveniles within 24 h, significantly outperforming heat-treated frass and Melia extracts. T. molitor frass moderately stimulates opportunistic nematodes and provides strong nematicidal effects, supporting its potential as a multifunctional input for sustainable soil management. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

22219 KB  
Article
Modelling the Spatial Distribution of Soil Organic Carbon Using Machine Learning and Remote Sensing in Nevado de Toluca, Mexico
by Carmine Fusaro, Yohanna Sarria-Guzmán, Francisco Erik González-Jiménez, Manuel Saba, Oscar E. Coronado-Hernández and Carlos Castrillón-Ortíz
Geomatics 2025, 5(3), 43; https://doi.org/10.3390/geomatics5030043 (registering DOI) - 8 Sep 2025
Abstract
Accurate soil organic carbon (SOC) estimation is critical for assessing ecosystem services, carbon budgets, and informing sustainable land management, particularly in ecologically sensitive mountainous regions. This study focuses on modelling the spatial distribution of SOC within the heterogeneous volcanic landscape of the Nevado [...] Read more.
Accurate soil organic carbon (SOC) estimation is critical for assessing ecosystem services, carbon budgets, and informing sustainable land management, particularly in ecologically sensitive mountainous regions. This study focuses on modelling the spatial distribution of SOC within the heterogeneous volcanic landscape of the Nevado de Toluca (NdT), central Mexico, an area spanning 535.9 km2 and characterised by diverse land uses, altitudinal gradients, and climatic regimes. Using 29 machine learning algorithms, we evaluated the predictive capacity of three key variables: land use, elevation, and the Normalised Difference Vegetation Index (NDVI) derived from satellite imagery. Complementary analyses were performed using the Bare Soil Index (BSI) and the Modified Soil-Adjusted Vegetation Index 2 (MSAVI2) to assess their relative performance. Among the tested models, the Quadratic Support Vector Machine (SVM) using NDVI, elevation, and land use emerged as the top-performing model, achieving a coefficient of determination (R2) of 0.84, indicating excellent predictive accuracy. Notably, 14 models surpassed the R2 threshold of 0.80 when using NDVI and BSI as predictor variables, whereas MSAVI2-based models consistently underperformed (R2 < 0.78). Validation plots demonstrated strong agreement between observed and predicted SOC values, confirming the robustness of the best-performing models. This research highlights the effectiveness of integrating multispectral remote sensing indices with advanced machine learning frameworks for SOC estimation in mountainous volcanic ecosystems Full article
Show Figures

Figure 1

25 pages, 2434 KB  
Article
Recreational Performance Evaluation of Urban Forests: Spatial, Socio-Cultural, and Public Health-Related Perspectives
by Zeynep Pirselimoğlu Batman and Elvan Ender Altay
Int. J. Environ. Res. Public Health 2025, 22(9), 1401; https://doi.org/10.3390/ijerph22091401 (registering DOI) - 8 Sep 2025
Abstract
Urban forests are natural habitat areas within urban ecosystems that enhance physical, mental, and social well-being. By integrating natural and cultural values into the urban landscape, these areas offer individuals opportunities to interact with nature and engage in various recreational activities. Recreational activities [...] Read more.
Urban forests are natural habitat areas within urban ecosystems that enhance physical, mental, and social well-being. By integrating natural and cultural values into the urban landscape, these areas offer individuals opportunities to interact with nature and engage in various recreational activities. Recreational activities increase physical activity levels, help reduce stress, strengthen mental health, and foster social interaction, thereby significantly protecting and improving public health. This study aims to evaluate the recreational performance of urban forests—an essential component of the urban ecosystem—through a multidimensional approach. In this context, ecological (topography, vegetation, water resources, soil structure, climate), physical (accessibility, infrastructure, area size), social (activity diversity, usage intensity, community events), and cultural (landscape values, urban identity, conservation status of cultural landscapes) factors were considered as key indicators. Bursa Atatürk Urban Forest was selected as the study area, and the methodology integrated SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis with weighted multi-criteria decision-making techniques. In addition, the qualitative data obtained were supported by statistical analysis methods to reveal the relationships among the criteria quantitatively. Through this holistic approach, the recreational performance of the urban forest was evaluated scientifically, leading to the conclusion that the area’s strengths should be preserved, its weaknesses improved, and its cultural landscape values managed sustainably. The study provides a valuable decision-support framework capable of guiding strategic planning for the future. Full article
Show Figures

Figure 1

27 pages, 3704 KB  
Review
Radionuclide Tracing in Global Soil Erosion Studies: A Bibliometric and Systematic Review
by Yinhong Huang, Yong Yuan, Yang Xue, Jinjin Guo, Wen Zeng, Yajuan Chen and Kun Chen
Water 2025, 17(17), 2652; https://doi.org/10.3390/w17172652 (registering DOI) - 8 Sep 2025
Abstract
Radionuclide tracer technology, as a state-of-the-art tool for quantifying and monitoring soil erosion processes, has attracted much attention in global sustainable land management research in recent years. However, existing studies are fragmented in methodological applications, lack systematic knowledge integration and interdisciplinary perspectives, and [...] Read more.
Radionuclide tracer technology, as a state-of-the-art tool for quantifying and monitoring soil erosion processes, has attracted much attention in global sustainable land management research in recent years. However, existing studies are fragmented in methodological applications, lack systematic knowledge integration and interdisciplinary perspectives, and lack global research trends and dynamic evolution of key themes. This study integrates Bibliometrix, VOSviewer, and CiteSpace to conduct bibliometric and knowledge mapping analysis of 1692 documents (2000–2023) in the Web of Science Core Collection, focusing on the overall developmental trends, thematic evolution, and progress of convergence and innovation. The main findings of the study are as follows: (1) China, the United States, and the United Kingdom are in a “three-legged race” at the national level, with China focusing on technological application innovation, the United States on theoretical breakthroughs, and the United Kingdom contributing significantly to methodological research; (2) “soil erosion” and “137Cs” continue to be the core themes, while “climate change” and “human impact” on soil erosion and its reflection in radionuclide tracing became the focus of attention; and (3) multi-scale radionuclide tracing (watershed, slope), multi-method synergy (radionuclide tracing combined with RS, GIS, AI), and the integration of advanced measurement and control technologies (PGS, ARS) have become cutting-edge trends in soil erosion monitoring and control. This study provides three prospective research directions—the construction of a global soil erosion database, the policy transformation mechanism of the SDG interface, and the iterative optimization of multi-radionuclide tracer technology, which will provide scientific guidance for the realization of the sustainable management of soil erosion and the goal of zero growth of land degradation globally. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation, 2nd Edition)
Show Figures

Figure 1

17 pages, 1992 KB  
Article
Probabilistic Framework for Ground Movement Induced by Shield Tunnelling in Soft Soil Based on Gap Parameter
by Wenyu Yang, Lan Cui, Hemeng Tan and Luqi Wang
Appl. Sci. 2025, 15(17), 9835; https://doi.org/10.3390/app15179835 (registering DOI) - 8 Sep 2025
Abstract
Numerical simulation and machine learning-based methods are frequently adopted when performing ground movement probabilistic analyses, considering the various uncertainties during shield tunnelling. However, numerical simulation takes time, while machine learning lacks interpretation somehow. New methods fully reflecting mechanisms and taking advantage of field [...] Read more.
Numerical simulation and machine learning-based methods are frequently adopted when performing ground movement probabilistic analyses, considering the various uncertainties during shield tunnelling. However, numerical simulation takes time, while machine learning lacks interpretation somehow. New methods fully reflecting mechanisms and taking advantage of field data should be proposed and applied in probabilistic analysis. This study proposes a probabilistic framework from the mechanism and data aspect based on the GAP parameter. Solutions for three components of the GAP parameter are first improved through different methods. Coupling the uncertainty of the input parameters, a probabilistic framework estimating the risks from both mechanistic and data insights is then established. Furthermore, the spatial variability in soft soil is considered in the framework by calculating the equivalent parameters. Through an analysis of a practical case, the results show that the measured data can fall within the 95% confidence interval of the predicted displacement samples. The median of the predicted samples is highly consistent with the measured value, and by considering the spatial variability in soil, the results can be more accurate. As a result, the proposed probabilistic framework is verified as practically applicable when predicting ground movement while considering multiple uncertainties. Full article
Show Figures

Figure 1

20 pages, 8060 KB  
Article
Spatial Targeting and Budget-Adaptive Optimization of Best Management Practices for Cost-Effective Nitrogen Reduction
by Yunkai Fan, Huazhi Zhang, Bing Yu, Ming Cong and Zhuohang Xin
Water 2025, 17(17), 2651; https://doi.org/10.3390/w17172651 (registering DOI) - 8 Sep 2025
Abstract
This study developed a Soil and Water Assessment Tool (SWAT) model for the Fuzhou River Basin in China to quantify the spatial distribution, sources, and reduction potential of total nitrogen (TN) load. We comprehensively evaluated the effectiveness of eight Best Management Practices (BMPs) [...] Read more.
This study developed a Soil and Water Assessment Tool (SWAT) model for the Fuzhou River Basin in China to quantify the spatial distribution, sources, and reduction potential of total nitrogen (TN) load. We comprehensively evaluated the effectiveness of eight Best Management Practices (BMPs) and 186 combinations thereof in reducing TN load. Our analysis demonstrated that adding more BMPs did not yield proportionally additive benefits but instead led to reduced cost-effectiveness (CE) once the number of BMPs exceeded three. Targeting BMPs to Critical Source Areas (CSAs) increased CE by an average of 15.6% compared to watershed-wide application, although the environmental benefit (EB) was lower (22.0% versus 32.8% on average). We identified a critical budget threshold of 70 million CNY. Below this threshold, CSA-targeting optimized BMPs delivered the most cost-effective TN reductions (123.0 kg/104 CNY per year). However, with a sufficient budget exceeding this threshold, our findings support implementing BMPs throughout the entire watershed, which maximized the TN reduction rate to over 40%. Overall, our findings highlight that spatial targeting and budget-adaptive implementation of BMPs are essential for maximizing both economic efficiency and environmental benefits, providing a practical decision approach for nutrient management in river basins. Full article
(This article belongs to the Section Water Quality and Contamination)
30 pages, 2882 KB  
Article
Fatty Acids in Lumbricidae as Biomarkers of In Situ Metals Exposure
by Aleksandra Garbacz, Danuta Kowalczyk-Pecka and Weronika Kursa
Sustainability 2025, 17(17), 8076; https://doi.org/10.3390/su17178076 (registering DOI) - 8 Sep 2025
Abstract
Hard coal mining activity generates post-mining waste (waste rock). Waste rock is deposited in the environment in large quantities for reclamation of agricultural land. In this study, waste rock was treated as a potential source of metal pollutants. The research material (waste rock, [...] Read more.
Hard coal mining activity generates post-mining waste (waste rock). Waste rock is deposited in the environment in large quantities for reclamation of agricultural land. In this study, waste rock was treated as a potential source of metal pollutants. The research material (waste rock, soil, plant roots, and Lumbricidae earthworms) was obtained from sites that had been reclaimed using waste rock as well as sites without waste rock. From each site, 30 individuals (n = 30) were collected, divided into five groups, 6 individuals each. Within the group, individuals were analyzed collectively. The study tested whether selected metals (Cr, Ni, Cd, Ba, Pb, Zn, and Cu) are present in waste rock and whether they can be transferred to the soil, plant root systems, and representatives of Lumbricidae, which are important bioindicators and a source of biomarkers. Particular attention was focused on the assessment of the effects of metals deposited in situ on fatty acids in representatives of Lumbricidae and on selecting a set of fatty acids that can be used as biomarkers of physiological effects, including oxidative stress. A panel of biomarker fatty acids was used, which included a panel of 17 biomarker fatty acids from 35 fatty acids analyzed. To confirm or disprove the usefulness of the biomarker fatty acid panel in earthworms, superoxide dismutase (SOD), catalase (CAT), and thiobarbituric acid reactive substances (TBARS) were determined. The study enabled an effective comparison of reference locations with locations potentially burdened with anthropogenic sediment. The results indicate that selected metals present in the waste rock are transferred to the soil, plant root systems, and soil organisms such as Lumbricidae. Selected metals affected the lipid metabolism of Lumbricidae as stressors, leading to changes in the composition and oxidation of fatty acids. The effect on the physiological state of Lumbricidae depended on the duration of the deposit and the type of use (field, meadow, wasteland) of the land with the waste rock deposit. In earthworms obtained from sites with waste rock deposits, higher contents of biomarker saturated fatty acids and biomarker monounsaturated fatty acids and lower contents of biomarker polyunsaturated fatty acids were found compared to earthworms obtained from sites without waste rock deposits. Only Pb (lead) showed a statistically significant correlation with all analyzed parameters in earthworms obtained from sites with waste rock deposits. The results have significant practical implications for environmental protection management. The proposed set of biomarker fatty acids in Lumbricidae can be used to assess the impact of pollutants and environmental monitoring. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

27 pages, 2932 KB  
Article
Increasing the Ecological Efficiency of Monocrystalline Photovoltaic Power Plants by Management Their Life Cycle Assessment
by Adam Idzikowski, Patryk Leda, Izabela Piasecka, Tomasz Cierlicki and Magdalena Mazur
Energies 2025, 18(17), 4775; https://doi.org/10.3390/en18174775 - 8 Sep 2025
Abstract
This study’s objectives were to evaluate the life cycle of a 2 MW solar power plant in northern Poland and provide suggestions for enhancing this kind of installation’s environmental performance. Eight years of operating data were examined under the assumption that 2000 MWh [...] Read more.
This study’s objectives were to evaluate the life cycle of a 2 MW solar power plant in northern Poland and provide suggestions for enhancing this kind of installation’s environmental performance. Eight years of operating data were examined under the assumption that 2000 MWh of energy was produced annually on average. The evaluation took into account two waste management scenarios—landfill and recycling—and was carried out in accordance with the ReCiPe 2016 methodology. Human health and water resource usage had the most environmental effects (7.08 × 105 Pt—landfill), but recycling greatly reduced these effects (−3.08 × 105 Pt). Terrestrial ecosystems were negatively impacted by the turbines’ water consumption (8.94 × 105 Pt—landfill), which was lessened in the recycling scenario. The water and soil environment was greatly impacted by released pollutants, such as zinc and chlorinated hydrocarbons, whose emissions were greatly decreased by material recovery. Particularly detrimental was sulfur dioxide (SO2), which is the cause of PM 2.5 particle matter, which is dangerous to the public’s health. Recycling has helped to lower these pollutants and enhance the quality of the air. Reducing methane and other greenhouse gas emissions can help reduce CO2 emissions, which were the most significant factor in the context of climate change (1.91 × 104 Pt—landfilling). Recycling lessened these impacts and decreased the need to acquire virgin raw materials, but landfilling was linked to soil acidification and the depletion of mineral resources. According to the findings, even “green” technology, like photovoltaics, can have detrimental effects on the environment if they are not properly handled at the end of their useful lives. Recycling is turning out to be a crucial instrument for lowering negative effects on the environment, increasing resource efficiency, and safeguarding public health. Full article
(This article belongs to the Special Issue Energy Management and Life Cycle Assessment for Sustainable Energy)
Show Figures

Figure 1

Back to TopTop