Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,079)

Search Parameters:
Keywords = soil water dynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9318 KB  
Article
Investigation on Ground Collapse Due to Exfiltration of Shallowly Buried Water-Supply Pipeline
by Fenghao Bai, Ye Lu and Xiuying Lu
Appl. Sci. 2025, 15(19), 10736; https://doi.org/10.3390/app151910736 (registering DOI) - 5 Oct 2025
Abstract
Pipeline exfiltration from damaged water-supply systems frequently causes soil erosion and ground subsidence, which jeopardizes the safety of pedestrians and vehicles and even causes casualties. Despite the severe consequences, it is difficult for engineers to give reliable assessments of pipeline exfiltration hazards. In [...] Read more.
Pipeline exfiltration from damaged water-supply systems frequently causes soil erosion and ground subsidence, which jeopardizes the safety of pedestrians and vehicles and even causes casualties. Despite the severe consequences, it is difficult for engineers to give reliable assessments of pipeline exfiltration hazards. In this study, erosion processes were explored using model tests and coupled computational fluid dynamics–discrete element method (CFD-DEM) simulations. It was discovered that the erosion zone can be divided into two zones—the exfiltration zone and the seepage diffusion zone. When water pressure reached 2.412 × 10−2 MPa, local porosity approached 1.0, indicating there were no soil particles remaining. As pipeline pressure increased from 2.122 × 10−3 MPa to 2.412 × 10−2 MPa, ground failure transitioned from downward settlement to upward bulge, and the ground failure duration of the fractured prototype pipe was reduced by 22–28% (from 125 s to 98 s), with a standard deviation of less than 5. The established exponential decay model (v(t)=v0e(αt),R2>0.89) enabled prediction of erosion duration. Based on the erosion height curve, the erosion duration and erosion area in similar engineering environments can be estimated, providing a reference for evaluating the risk of ground collapse due to pipe exfiltration. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

23 pages, 1218 KB  
Review
Beyond the Resistome: Molecular Insights, Emerging Therapies, and Environmental Drivers of Antibiotic Resistance
by Nada M. Nass and Kawther A. Zaher
Antibiotics 2025, 14(10), 995; https://doi.org/10.3390/antibiotics14100995 (registering DOI) - 4 Oct 2025
Abstract
Antibiotic resistance remains one of the most formidable challenges to modern medicine, threatening to outpace therapeutic innovation and undermine decades of clinical progress. While resistance was once viewed narrowly as a clinical phenomenon, it is now understood as the outcome of complex ecological [...] Read more.
Antibiotic resistance remains one of the most formidable challenges to modern medicine, threatening to outpace therapeutic innovation and undermine decades of clinical progress. While resistance was once viewed narrowly as a clinical phenomenon, it is now understood as the outcome of complex ecological and molecular interactions that span soil, water, agriculture, animals, and humans. Environmental reservoirs act as silent incubators of resistance genes, with horizontal gene transfer and stress-induced mutagenesis fueling their evolution and dissemination. At the molecular level, advances in genomics, structural biology, and systems microbiology have revealed intricate networks involving plasmid-mediated resistance, efflux pump regulation, integron dynamics, and CRISPR-Cas interactions, providing new insights into the adaptability of pathogens. Simultaneously, the environmental dimensions of resistance, from wastewater treatment plants and aquaculture to airborne dissemination, highlight the urgency of adopting a One Health framework. Yet, alongside this growing threat, novel therapeutic avenues are emerging. Innovative β-lactamase inhibitors, bacteriophage-based therapies, engineered lysins, antimicrobial peptides, and CRISPR-driven antimicrobials are redefining what constitutes an “antibiotic” in the twenty-first century. Furthermore, artificial intelligence and machine learning now accelerate drug discovery and resistance prediction, raising the possibility of precision-guided antimicrobial stewardship. This review synthesizes molecular insights, environmental drivers, and therapeutic innovations to present a comprehensive landscape of antibiotic resistance. By bridging ecological microbiology, molecular biology, and translational medicine, it outlines a roadmap for surveillance, prevention, and drug development while emphasizing the need for integrative policies to safeguard global health. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Environmental Health, 2nd Edition)
15 pages, 2125 KB  
Article
Surface Mapping by RPAs for Ballast Optimization and Slip Reduction in Plowing Operations
by Lucas Santos Santana, Lucas Gabryel Maciel do Santos, Josiane Maria da Silva, Aldir Carpes Marques Filho, Francesco Toscano, Enio Farias de França e Silva, Alexandre Maniçoba da Rosa Ferraz Jardim, Thieres George Freire da Silva and Marco Antonio Zanella
AgriEngineering 2025, 7(10), 332; https://doi.org/10.3390/agriengineering7100332 - 3 Oct 2025
Abstract
Driving wheel slippage in agricultural tractors is influenced by soil moisture, density, and penetration resistance. These surface variations reflect post-tillage composition, enabling dynamic mapping via Remotely Piloted Aircraft (RPAs). This study evaluated ballast recommendations based on soil surface data and slippage percentages, correlating [...] Read more.
Driving wheel slippage in agricultural tractors is influenced by soil moisture, density, and penetration resistance. These surface variations reflect post-tillage composition, enabling dynamic mapping via Remotely Piloted Aircraft (RPAs). This study evaluated ballast recommendations based on soil surface data and slippage percentages, correlating added wheel weights at different speeds for a tractor-reversible plow system. Six 94.5 m2 quadrants were analyzed for slippage monitored by RPA (Mavic3M-RTK) pre- and post-agricultural operation overflights and soil sampling (moisture, density, penetration resistance). A 2 × 2 factorial scheme (F-test) assessed soil-surface attribute correlations and slippage under varying ballasts (52.5–57.5 kg/hp) and speeds. Results showed slippage ranged from 4.06% (52.5 kg/hp, fourth reduced gear) to 11.32% (57.5 kg/hp, same gear), with liquid ballast and gear selection significantly impacting performance in friable clayey soil. Digital Elevation Model (DEM) and spectral indices derived from RPA imagery, including Normalized Difference Red Edge (NDRE), Normalized Difference Water Index (NDWI), Bare Soil Index (BSI), Green–Red Vegetation Index (GRVI), Visible Atmospherically Resistant Index (VARI), and Slope, proved effective. The approach reduced tractor slippage from 11.32% (heavy ballast, 4th gear) to 4.06% (moderate ballast, 4th gear), showing clear improvement in traction performance. The integration of indices and slope metrics supported ballast adjustment strategies, particularly for secondary plowing operations, contributing to improved traction performance and overall operational efficiency. Full article
(This article belongs to the Special Issue Utilization and Development of Tractors in Agriculture)
Show Figures

Figure 1

31 pages, 1093 KB  
Article
Sustainable Intensification of Olive Agroecosystems via Barley, Triticale, and Pea Intercropping
by Andreas Michalitsis, Paschalis Papakaloudis, Chrysanthi Pankou, Anastasios Lithourgidis and Christos Dordas
Agronomy 2025, 15(10), 2333; https://doi.org/10.3390/agronomy15102333 - 2 Oct 2025
Abstract
In the Mediterranean basin, olive cultivation occupies the largest share of agricultural land, due to the region’s favorable soil and climatic conditions. However, the intensification of farming systems has had negative environmental impacts, for which diversified approaches such as agroforestry offer a potential [...] Read more.
In the Mediterranean basin, olive cultivation occupies the largest share of agricultural land, due to the region’s favorable soil and climatic conditions. However, the intensification of farming systems has had negative environmental impacts, for which diversified approaches such as agroforestry offer a potential solution. The objective of the present study was to determine the growth of barley, triticale, and pea as cover crops, as well as the respective intercrops in olive orchards and their productivity. The results showed that the intercropping of pea with barley and triticale had the highest yields in dry biomass compared to the other treatments, while barley monoculture recorded the highest yield in terms of grain. The findings demonstrated that intercropping enhances resource-use efficiency, particularly in terms of land productivity, Radiation-Use Efficiency, and Water-Use Efficiency. However, competitive dynamics varied significantly between species and across years, with pea often exhibiting dominance in biomass production, while cereals showed trade-offs in seed yield components due to shading and interspecific competition. These findings can be used for sustainable intensification strategies, ensuring higher productivity while minimizing external inputs in climate-vulnerable regions. Full article
Show Figures

Figure 1

25 pages, 4589 KB  
Review
Soil Properties, Processes, Ecological Services and Management Practices of Mediterranean Riparian Systems
by Pasquale Napoletano, Noureddine Guezgouz, Lorenza Parato, Rosa Maisto, Imen Benradia, Sarra Benredjem, Teresa Rosaria Verde and Anna De Marco
Sustainability 2025, 17(19), 8843; https://doi.org/10.3390/su17198843 - 2 Oct 2025
Abstract
Riparian zones, located at the interface between terrestrial and aquatic systems, are among the most dynamic and ecologically valuable landscapes. These transitional areas play a pivotal role in maintaining environmental health by supporting biodiversity, regulating hydrological processes, filtering pollutants, and stabilizing streambanks. At [...] Read more.
Riparian zones, located at the interface between terrestrial and aquatic systems, are among the most dynamic and ecologically valuable landscapes. These transitional areas play a pivotal role in maintaining environmental health by supporting biodiversity, regulating hydrological processes, filtering pollutants, and stabilizing streambanks. At the core of these functions lie the unique characteristics of riparian soils, which result from complex interactions between water dynamics, sedimentation, vegetation, and microbial activity. This paper provides a comprehensive overview of the origin, structure, and functioning of riparian soils, with particular attention being paid to their physical, chemical, and biological properties and how these properties are shaped by periodic flooding and vegetation patterns. Special emphasis is placed on Mediterranean riparian environments, where marked seasonality, alternating wet–dry cycles, and increasing climate variability enhance both the importance and fragility of riparian systems. A bibliographic study, covering 25 years (2000–2025), was carried out through Scopus and Web of Science. The results highlight that riparian areas are key for carbon sequestration, nutrient retention, and ecosystem connectivity in water-limited regions, yet they are increasingly threatened by land use change, water abstraction, pollution, and biological invasions. Climate change exacerbates these pressures, altering hydrological regimes and reducing soil resilience. Conservation requires integrated strategies that maintain hydrological connectivity, promote native vegetation, and limit anthropogenic impacts. Preserving riparian soils is therefore fundamental to sustain ecosystem services, improve water quality, and enhance landscape resilience in vulnerable Mediterranean contexts. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
23 pages, 7845 KB  
Article
Projected Runoff Changes and Their Effects on Water Levels in the Lake Qinghai Basin Under Climate Change Scenarios
by Pengfei Hou, Jun Du, Shike Qiu, Jingxu Wang, Chao Wang, Zheng Wang, Xiang Jia and Hucai Zhang
Hydrology 2025, 12(10), 259; https://doi.org/10.3390/hydrology12100259 - 2 Oct 2025
Abstract
Lake Qinghai, the largest closed-basin lake on the Qinghai–Tibet Plateau, plays a crucial role in maintaining regional ecological stability through its hydrological functions. In recent decades, the lake has exhibited a continuous rise in water level and lake area expansion, sparking growing interest [...] Read more.
Lake Qinghai, the largest closed-basin lake on the Qinghai–Tibet Plateau, plays a crucial role in maintaining regional ecological stability through its hydrological functions. In recent decades, the lake has exhibited a continuous rise in water level and lake area expansion, sparking growing interest in the mechanisms driving these changes and their future evolution. This study integrates the Soil and Water Assessment Tool (SWAT), simulations under future Shared Socioeconomic Pathways (SSPs) and statistical analysis methods, to assess runoff dynamics and lake level responses in the Lake Qinghai Basin over the next 30 years. The model was developed using a combination of meteorological, hydrological, topographic, land use, soil, and socio-economic datasets, and was calibrated with the sequential uncertainty fitting Ver-2 (SUFI-2) algorithm within the SWAT calibration and uncertainty procedure (SWAT–CUP) platform. Sensitivity and uncertainty analyses confirmed robust model performance, with monthly R2 values of 0.78 and 0.79. Correlation analysis revealed that runoff variability is more closely associated with precipitation than temperature in the basin. Under SSP 1-2.6, SSP 3-7.0, and SSP 5-8.5 scenarios, projected annual precipitation increases by 14.4%, 18.9%, and 11.1%, respectively, accompanied by temperature rises varying with emissions scenario. Model simulations indicate a significant increase in runoff in the Buha River Basin, peaking around 2047. These findings provide scientific insight into the hydrological response of plateau lakes to future climate change and offer a valuable reference for regional water resource management and ecological conservation strategies. Full article
(This article belongs to the Special Issue Runoff Modelling under Climate Change)
Show Figures

Figure 1

26 pages, 7079 KB  
Article
Hydrological Response Analysis Using Remote Sensing and Cloud Computing: Insights from the Chalakudy River Basin, Kerala
by Gudihalli Munivenkatappa Rajesh, Sajeena Shaharudeen, Fahdah Falah Ben Hasher and Mohamed Zhran
Water 2025, 17(19), 2869; https://doi.org/10.3390/w17192869 - 1 Oct 2025
Abstract
Hydrological modeling is critical for assessing water availability and guiding sustainable resource management, particularly in monsoon-dependent, data-scarce basins such as the Chalakudy River Basin (CRB) in Kerala, India. This study integrated the Soil Conservation Service Curve Number (SCS-CN) method within the Google Earth [...] Read more.
Hydrological modeling is critical for assessing water availability and guiding sustainable resource management, particularly in monsoon-dependent, data-scarce basins such as the Chalakudy River Basin (CRB) in Kerala, India. This study integrated the Soil Conservation Service Curve Number (SCS-CN) method within the Google Earth Engine (GEE) platform, making novel use of multi-source, open access datasets (CHIRPS precipitation, MODIS land cover and evapotranspiration, and OpenLand soil data) to estimate spatially distributed long-term runoff (2001–2023). Model calibration against observed runoff showed strong performance (NSE = 0.86, KGE = 0.81, R2 = 0.83, RMSE = 29.37 mm and ME = 13.48 mm), validating the approach. Over 75% of annual runoff occurs during the southwest monsoon (June–September), with July alone contributing 220.7 mm. Seasonal assessments highlighted monsoonal excesses and dry-season deficits, while water balance correlated strongly with rainfall (r = 0.93) and runoff (r = 0.94) but negatively with evapotranspiration (r = –0.87). Time-series analysis indicated a slight rise in rainfall, a decline in evapotranspiration, and a marginal improvement in water balance, implying gradual enhancement of regional water availability. Spatial analysis revealed a west–east gradient in precipitation, evapotranspiration, and water balance, producing surpluses in lowlands and deficits in highlands. These findings underscore the potential of cloud-based hydrological modeling to capture spatiotemporal dynamics of hydrological variables and support climate-resilient water management in monsoon-driven and data-scarce river basins. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

26 pages, 5001 KB  
Article
CO2 Dynamics and Transport Mechanisms Across Atmosphere–Soil–Cave Interfaces in Karst Critical Zones
by Yong Xiong, Zhongfa Zhou, Yi Huang, Shengjun Ding, Xiaoduo Wang, Jijuan Wang, Wei Zhang and Huijing Wei
Geosciences 2025, 15(10), 376; https://doi.org/10.3390/geosciences15100376 - 1 Oct 2025
Abstract
Cave systems serve as key interfaces connecting surface and underground carbon cycles, and research on their carbon dynamics provides a unique perspective for revealing the mechanisms of carbon transport and transformation in karst critical zones. In this study, we established a multi-factor monitoring [...] Read more.
Cave systems serve as key interfaces connecting surface and underground carbon cycles, and research on their carbon dynamics provides a unique perspective for revealing the mechanisms of carbon transport and transformation in karst critical zones. In this study, we established a multi-factor monitoring framework spanning the atmosphere–soil–cave continuum and associated meteorological conditions, continuously recorded cave microclimate parameters (temperature, relative humidity, atmospheric pressure, and cave winds) and CO2 concentrations across atmospheric–soil–cave interfaces, and employed stable carbon isotope (δ13C) tracing in Mahuang Cave, a typical karst cave in southwestern China, from 2019 to 2023. The results show that the seasonal amplitude of atmospheric CO2 and its δ13C is small, while soil–cave CO2 and δ13C fluctuate synchronously, exhibiting “high concentration-light isotope” signatures during the rainy season and the opposite pattern during the dry season. Cave CO2 concentrations drop by about 29.8% every November. Soil CO2 production rates are jointly controlled by soil temperature and volumetric water content, showing a threshold effect. The δ13C response exhibits nonlinear behavior due to the combined effects of land-use type, vegetation cover, and soil texture. Quantitative analysis establishes atmospheric CO2 as the dominant source in cave systems (66%), significantly exceeding soil-derived contributions (34%). At diurnal, seasonal, and annual scales, carbon-source composition, temperature and precipitation patterns, ventilation effects, and cave structure interact to control the rhythmic dynamics and spatial gradients of cave microclimate, CO2 levels, and δ13C signals. Our findings enhance the understanding of carbon transfer processes across the karst critical zone. Full article
Show Figures

Figure 1

22 pages, 4578 KB  
Article
Effects of Plastic Film and Gravel-Sand Mulching on Soil Moisture and Yield of Wolfberry Under Ridge-Furrow Planting in an Arid Desert Region of China’s Loess Plateau
by Xiaojuan Ma, Zhi Wang, Bo Ma, Luyao Zhang, Juncang Tian and Jinyu He
Agronomy 2025, 15(10), 2312; https://doi.org/10.3390/agronomy15102312 - 30 Sep 2025
Abstract
In arid areas, the combined use of plastic sheeting under gravel-sand mulch on ridge-furrow planting systems is an emerging practice to minimize soil water evaporation and micro-plastic pollution. In this study, we conducted a two-year field experiment near Gobi-Tengger Desert in Ningxia, China, [...] Read more.
In arid areas, the combined use of plastic sheeting under gravel-sand mulch on ridge-furrow planting systems is an emerging practice to minimize soil water evaporation and micro-plastic pollution. In this study, we conducted a two-year field experiment near Gobi-Tengger Desert in Ningxia, China, to evaluate the effects of a plastic film underneath a layer of pure sand (MS1), pure gravel (MS2) and mixed gravel-and-sand (MS3) mulch on the soil hydrothermal properties, water use efficiency, yield, and fruit quality of wolfberry, compared to bare soil (CK). The results showed that mulching significantly increased soil temperature and water content in the 0–20 cm surface layer, though the effects varied with soil depth and water availability between a supplemental irrigated year (2022) and a rain-fed year (2023). Mulching markedly altered soil water dynamics, enhancing the capture and retention of light-to-heavy rainfall events. Consequently, all mulches significantly increased seasonal water consumption (ET) and water use efficiency (WUE) compared to CK. The MS1 treatment consistently achieved the highest yield and WUE, and the highest accumulation of beneficial fruit compounds like polysaccharides and flavonoids. However, this treatment also resulted in elevated soil salinity. Our findings demonstrate that combined mulching, especially MS1, is a highly effective strategy for optimizing soil conditions, water productivity, and fruit quality in wolfberry cultivation, although long-term salinity management requires attention. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

17 pages, 2324 KB  
Article
Laboratory Experiments Unravel the Mechanisms of Snowmelt Erosion in Northeast China’s Black Soil: The Key Role of Supersaturation-Driven and Layered Moisture Migration
by Songshi Zhao, Haoming Fan and Maosen Lin
Sustainability 2025, 17(19), 8737; https://doi.org/10.3390/su17198737 - 29 Sep 2025
Abstract
Snowmelt runoff is a major soil erosion trigger in mid-to-high latitude and altitude regions. Through runoff plot observations and simulations in the northeastern black soil region, this study reveals the key regulatory mechanism of water migration on snowmelt erosion. Results demonstrate that the [...] Read more.
Snowmelt runoff is a major soil erosion trigger in mid-to-high latitude and altitude regions. Through runoff plot observations and simulations in the northeastern black soil region, this study reveals the key regulatory mechanism of water migration on snowmelt erosion. Results demonstrate that the interaction between thawed upper and frozen lower soil layers creates a significant hydraulic gradient during snowmelt. Impermeability of the frozen layer causes meltwater accumulation and moisture supersaturation (>47%, exceeding field capacity) in the upper layer. Freeze–thaw action accelerates vertical moisture migration and redistributes shallow moisture by increasing porosity. This process causes soils with high initial moisture to reach supersaturation faster, triggering earlier and more frequent erosion. Gray correlation analysis shows that soil moisture migration’s contribution to erosion intensity is layered: migration in shallow soil (0–10 cm) correlates most strongly with surface erosion; migration in deep soil (10–15 cm) exhibits a U-shaped contribution due to freeze–thaw front boundary effects. A regression model identified key controlling factors (VIP > 1.0): changes in bulk density, porosity, and permeability of deep soil significantly regulate erosion intensity. The nonlinear relationship between erosion intensity and moisture content (R2 = 0.82) confirms supersaturation dominance. Physical structure and mechanical properties of unfrozen layers regulate erosion dynamics via moisture migration. These findings clarify the key mechanism of moisture migration governing snowmelt erosion, providing a critical scientific foundation for developing targeted soil conservation strategies and advancing regional prediction models essential for sustainable land management under changing winter climates. Full article
Show Figures

Figure 1

22 pages, 7292 KB  
Article
Revealing Nonlinear Relationships and Thresholds of Human Activities and Climate Change on Ecosystem Services in Anhui Province Based on the XGBoost–SHAP Model
by Lei Zhang, Xinmu Zhang, Shengwei Gao and Xinchen Gu
Sustainability 2025, 17(19), 8728; https://doi.org/10.3390/su17198728 - 28 Sep 2025
Abstract
Under the combined influence of global climate change and intensified human activities, ecosystem services (ESs) are undergoing substantial transformations. Identifying their nonlinear driving mechanisms is crucial for promoting regional sustainable development. Taking Anhui Province as a case study, this research evaluates the spatial [...] Read more.
Under the combined influence of global climate change and intensified human activities, ecosystem services (ESs) are undergoing substantial transformations. Identifying their nonlinear driving mechanisms is crucial for promoting regional sustainable development. Taking Anhui Province as a case study, this research evaluates the spatial patterns and temporal dynamics of six key ecosystem services from 2000 to 2020—namely, biodiversity maintenance (BM), carbon fixation (CF), crop production (CP), net primary productivity (NPP), soil retention (SR), and water yield (WY). The InVEST and CASA models were employed to quantify service values, and the XGBoost–SHAP framework was used to reveal the nonlinear response paths and threshold effects of dominant drivers. Results show a distinct “high in the south, low in the north” spatial gradient of ES across Anhui. Regulatory services such as BM, NPP, and WY are concentrated in the southern mountainous areas (high-value zones > 0.7), while CP is prominent in the northern and central agricultural zones (>0.8), indicating a clear spatial complementarity of service types. Over the two-decade period, areas with significant increases in NPP and CP accounted for 50% and 64%, respectively, suggesting notable achievements in ecological restoration and agricultural modernization. CF remained stable across 98.3% of the region, while SR and WY exhibited strong sensitivity to topography and precipitation. Temporal trend analysis indicated that NPP rose from 395.83 in 2000 to 537.59 in 2020; SR increased from 150.02 to 243.28; and CP rose from 203.18 to 283.78, reflecting an overall enhancement in ecosystem productivity and regulatory functions. Driver analysis identified precipitation (PRE) as the most influential factor for most services, while elevation (DEM) was particularly important for CF and NPP. Temperature (TEM) and potential evapotranspiration (PET) affected biomass formation and hydrothermal balance. SHAP analysis revealed key threshold effects, such as the peak positive contribution of PRE to NPP occurring near 1247 mm, and the optimal temperature for BM at approximately 15.5 °C. The human footprint index (HFI) exerted negative impacts on both BM and NPP, highlighting the suppressive effect of intensive anthropogenic disturbances on ecosystem functioning. Anhui’s ES exhibit a trend of multifunctional synergy, governed by the nonlinear coupling of climatic, hydrological, topographic, and anthropogenic drivers. This study provides both a modeling toolkit and quantitative evidence to support ecosystem restoration and service optimization in similar transitional regions. Full article
Show Figures

Figure 1

29 pages, 3932 KB  
Article
Dynamic Spatiotemporal Evolution of Ecological Environment in the Yellow River Basin in 2000–2024 and the Driving Mechanisms
by Yinan Wang, Lu Yuan, Yanli Zhou and Xiangchao Qin
Land 2025, 14(10), 1958; https://doi.org/10.3390/land14101958 - 28 Sep 2025
Abstract
The Yellow River Basin (YRB), a pivotal ecoregion in China, has long been plagued by a range of ecological problems, including water loss, soil erosion, and ecological degradation. Despite previous reports on the ecological environment of YRB, systematic studies on the multi-factor driving [...] Read more.
The Yellow River Basin (YRB), a pivotal ecoregion in China, has long been plagued by a range of ecological problems, including water loss, soil erosion, and ecological degradation. Despite previous reports on the ecological environment of YRB, systematic studies on the multi-factor driving mechanism and the coupling between the ecological and hydrological systems remain scarce. In this study, with multi-source remote-sensing imagery and measured hydrological data, the random forest (RF) model and the geographical detector (GD) technique were employed to quantify the dynamic spatiotemporal changes in the ecological environment of YRB in 2000–2024 and identify the driving factors. The variables analyzed in this study included gross primary productivity (GPP), fractional vegetation cover (FVC), land use and cover change (LUCC), meteorological statistics, as well as runoff and sediment data measured at hydrological stations in YRB. The main findings are as follows: first, the GPP and FVC increased significantly by 37.9% and 18.0%, respectively, in YRB in 2000–2024; second, LUCC was the strongest driver of spatiotemporal changes in the ecological environment of YRB; third, precipitation and runoff contributed positively to vegetation growth, whereas the sediment played a contrary role, and the response of ecological variables to the hydrological processes exhibited a time lag of 1–2 years. This study is expected to provide scientific insights into ecological conservation and water resources management in YRB, and offer a decision-making basis for the design of sustainability policies and eco-restoration initiatives. Full article
Show Figures

Figure 1

29 pages, 3536 KB  
Article
Water Demand and Conservation in Arid Urban Environments: Numerical Analysis of Evapotranspiration in Arizona
by Jaden Lu and Zbigniew J. Kabala
Water 2025, 17(19), 2835; https://doi.org/10.3390/w17192835 - 27 Sep 2025
Abstract
Water management in arid regions, such as Arizona, is critical due to increasing demands from the urban, agricultural, and recreational sectors. In this study, Finite element analysis software COMSOL Multiphysics (COMSOL 6.3) is used to quantify water demands in Chandler, Arizona. Evapotranspiration from [...] Read more.
Water management in arid regions, such as Arizona, is critical due to increasing demands from the urban, agricultural, and recreational sectors. In this study, Finite element analysis software COMSOL Multiphysics (COMSOL 6.3) is used to quantify water demands in Chandler, Arizona. Evapotranspiration from vegetation and pools is studied. Factors are divided into environmental (temperature, humidity, wind speed) and soil-related properties (moisture content, hydraulic conductivity), which are modeled and used to estimate annual water losses. This study represents the first comprehensive investigation of the usage across several main categories at Arizona. Results indicate that pools contribute 61% of surface water evaporation. Annual water demand in Chandler for 2024 peaks at 425,000 m3 in June, with irrigation for vegetation dominating consumption. Validation against experimental data confirms model accuracy. This simulation work aims to provide scalable insights for water management in arid urban environments. Based on the simulation, various solutions were proposed to reduce water consumption and minimize water loss. Some active measures include the optimization of irrigation time and frequency based on dynamic and real-time environmental conditions. The proposed solution can help minimize the water consumption while maintaining the water demands for plant life sustenance. Other passive measures include the modification of localized environmental conditions to reduce water evaporation. In particular, it was found that fence installation can significantly change the water vapor flow and distribution close to the water surface and suppress the water evaporation by simply lowering the wind speed right above the water surface. A logical takeaway is that evaporation would also decrease when pools are built with deeper water surfaces. Full article
Show Figures

Figure 1

38 pages, 6865 KB  
Article
Land Use and Land Cover Change Patterns from Orbital Remote Sensing Products: Spatial Dynamics and Trend Analysis in Northeastern Brazil
by Jhon Lennon Bezerra da Silva, Marcos Vinícius da Silva, Pabrício Marcos Oliveira Lopes, Rodrigo Couto Santos, Ailton Alves de Carvalho, Geber Barbosa de Albuquerque Moura, Thieres George Freire da Silva, Alan Cézar Bezerra, Alexandre Maniçoba da Rosa Ferraz Jardim, Maria Beatriz Ferreira, Patrícia Costa Silva, Josef Augusto Oberdan Souza Silva, Marcio Mesquita, Pedro Henrique Dias Batista, Rodrigo Aparecido Jordan and Henrique Fonseca Elias de Oliveira
Land 2025, 14(10), 1954; https://doi.org/10.3390/land14101954 - 26 Sep 2025
Abstract
Environmental degradation and soil desertification are among the most severe environmental issues of recent decades worldwide. Over time, these processes have led to increasingly extreme and highly dynamic climatic conditions. In Brazil, the Northeast Region is characterized by semi-arid and arid areas that [...] Read more.
Environmental degradation and soil desertification are among the most severe environmental issues of recent decades worldwide. Over time, these processes have led to increasingly extreme and highly dynamic climatic conditions. In Brazil, the Northeast Region is characterized by semi-arid and arid areas that exhibit high climatic variability and are extremely vulnerable to environmental changes and pressures from human activities. The application of geotechnologies and geographic information system (GIS) modeling is essential to mitigate the impacts and pressures on the various ecosystems of Northeastern Brazil (NEB), where the Caatinga biome is predominant and critically threatened by these factors. In this context, the objective was to map and assess the spatiotemporal patterns of land use and land cover (LULC), detecting significant trends of loss and gain, based on surface reflectance data and precipitation data over two decades (2000–2019). Remote sensing datasets were utilized, including Landsat satellite data (LULC data), MODIS sensor data (surface reflectance product) and TRMM data (precipitation data). The Google Earth Engine (GEE) software was used to process orbital images and determine surface albedo and acquisition of the LULC dataset. Satellite data were subjected to multivariate analysis, descriptive statistics, dispersion and variability assessments. The results indicated a significant loss trend over the time series (2000–2019) for forest areas (ZMK = −5.872; Tau = −0.958; p < 0.01) with an annual loss of −3705.853 km2 and a total loss of −74,117.06 km2. Conversely, farming areas (agriculture and pasture) exhibited a significant gain trend (ZMK = 5.807; Tau = 0.947; p < 0.01), with an annual gain of +3978.898 km2 and a total gain of +79,577.96 km2, indicating a substantial expansion of these areas over time. However, it is important to emphasize that deforestation of the region’s native vegetation contributes to reduced water production and availability. The trend analysis identified an increase in environmental degradation due to the rapid expansion of land use. LULC and albedo data confirmed the intensification of deforestation in the Northern, Northwestern, Southern and Southeastern regions of NEB. The Northwestern region was the most directly impacted by this increase due to anthropogenic pressures. Over two decades (2000–2019), forested areas in the NEB lost approximately 80.000 km2. Principal component analysis (PCA) identified a significant cumulative variance of 87.15%. It is concluded, then, that the spatiotemporal relationship between biophysical conditions and regional climate helps us to understand and evaluate the impacts and environmental dynamics, especially of the vegetation cover of the NEB. Full article
Show Figures

Figure 1

22 pages, 5366 KB  
Article
Influence of Water Level Change on Vibration Response and Isolation of Saturated Soil Under Moving Loads
by Jinbao Yao, Yueyue Chen and Longhua Dong
Appl. Sci. 2025, 15(19), 10461; https://doi.org/10.3390/app151910461 - 26 Sep 2025
Abstract
This paper investigates the influence of groundwater level fluctuations on the vibration response and isolation performance of saturated soil foundations under moving loads. A coupled model consisting of an overlying elastic layer and a saturated half-space is established, with water level variation simulated [...] Read more.
This paper investigates the influence of groundwater level fluctuations on the vibration response and isolation performance of saturated soil foundations under moving loads. A coupled model consisting of an overlying elastic layer and a saturated half-space is established, with water level variation simulated by adjusting the elastic layer thickness. Using Biot’s theory and Fourier transforms, the dynamic response is solved analytically and validated numerically via COMSOL6.0 simulations with perfectly matched layers. Results indicate that the groundwater level significantly affects wave propagation: deeper water levels lead to responses resembling an elastic half-space, while rising water levels amplify surface displacement due to wave reflection at the saturation interface. As water levels approach the surface, behavior converges to that of a fully saturated foundation. P-wave resonance at certain water levels reduces isolation effectiveness. Furthermore, isolation performance is sensitive to load frequency, soil permeability, and trench dimensions. These findings offer valuable insights for designing vibration mitigation measures in environments with variable groundwater conditions. Full article
Show Figures

Figure 1

Back to TopTop