Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (909)

Search Parameters:
Keywords = sol-gel technique

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4347 KB  
Article
Carbon Quantum Dot-Embedded SiO2: PMMA Hybrid as a Blue-Emitting Plastic Scintillator for Cosmic Ray Detection
by Lorena Cruz León, Martin Rodolfo Palomino Merino, José Eduardo Espinosa Rosales, Samuel Tehuacanero Cuapa, Benito de Celis Alonso, Oscar Mario Martínez Bravo, Oliver Isac Ruiz-Hernandez, José Gerardo Suárez García, Miller Toledo-Solano and Jesús Eduardo Lugo Arce
Photonics 2025, 12(9), 854; https://doi.org/10.3390/photonics12090854 - 26 Aug 2025
Abstract
This work reports the synthesis and characterization of Carbon Quantum Dots (CQDs) embedded in an organic–inorganic hybrid SiO2: PMMA matrix, designed as a novel plastic scintillator material. The CQDs were synthesized through a solvo-hydrothermal method and incorporated using a sol–gel polymerization [...] Read more.
This work reports the synthesis and characterization of Carbon Quantum Dots (CQDs) embedded in an organic–inorganic hybrid SiO2: PMMA matrix, designed as a novel plastic scintillator material. The CQDs were synthesized through a solvo-hydrothermal method and incorporated using a sol–gel polymerization process, resulting in a mechanically durable and optically active hybrid. Structural analysis with X-ray diffraction and TEM confirmed crystalline quantum dots approximately 10 nm in size. Extensive optical characterization, including band gap measurement, photoluminescence under 325 nm UV excitation, lifetime evaluations, and quantum yield measurement, revealed a blue emission centered at 426 nm with a decay time of 3–3.6 ns. The hybrid scintillator was integrated into a compact cosmic ray detector using a photomultiplier tube optimized for 420 nm detection. The system effectively detected secondary atmospheric muons produced by low-energy cosmic rays, validated through the vertical equivalent muon (VEM) technique. These findings highlight the potential of CQD-based hybrid materials for advanced optical sensing and scintillation applications in complex environments, supporting the development of compact and sensitive detection systems. Full article
Show Figures

Figure 1

15 pages, 6388 KB  
Article
Properties of ZnO Prepared by Polymeric Citrate Amorphous Precursor Method: Influence of Cobalt Concentration
by Jailes J. Beltrán, Luis A. Flórez and Luis C. Sánchez
Materials 2025, 18(17), 3991; https://doi.org/10.3390/ma18173991 - 26 Aug 2025
Abstract
This study aims to investigate the vibrational, structural, morphological, optical, and magnetic properties of Zn1−xCoxO with 0.00 ≤ x ≤ 0.05 prepared by the sol–gel method via an amorphous citrate precursor. FTIR spectroscopy was used to follow the thermal [...] Read more.
This study aims to investigate the vibrational, structural, morphological, optical, and magnetic properties of Zn1−xCoxO with 0.00 ≤ x ≤ 0.05 prepared by the sol–gel method via an amorphous citrate precursor. FTIR spectroscopy was used to follow the thermal decomposition process of the ZnO precursor, identifying acetate zinc as the intermediate main component. XRD and FTIR-ATR techniques showed only the single wurtzite crystalline phase with the presence of oxygen deficiency and/or vacancies, and secondary phases were not detected. SEM micrographs showed agglomerated particles of irregular shape and size with a high distribution and evidenced particles of nanometric size with a morphology change for x = 0.05. We detected high–spin Co2+ ions located in the tetrahedral core and pseudo–octahedral surface sites, substituting Zn2+ ions. The energy band gap of the ZnO semiconductor decreased gradually when the Co doping concentration was increased. M vs. H for undoped ZnO nanoparticles exhibited a diamagnetic signal overlapped with a weak ferromagnetic signal at room temperature. Interestingly, temperature-dependent magnetization showed superparamagnetic behavior with a blocked state in the low temperature range. The Co–doped ZnO samples evidenced a weak ferromagnetic signal and a paramagnetic component, which increased with x. The saturation magnetization increased until x = 0.03 and then decreased for x = 0.05, while the coercive field gradually decreased. Full article
Show Figures

Graphical abstract

28 pages, 4385 KB  
Review
Sustainable Recycling of Lithium-Ion Battery Cathodes: Life Cycle Assessment, Technologies, and Economic Insights
by Dongjie Pang, Haoyu Wang, Yimin Zeng, Xue Han and Ying Zheng
Nanomaterials 2025, 15(16), 1283; https://doi.org/10.3390/nano15161283 - 20 Aug 2025
Viewed by 623
Abstract
Rapid growth of electric vehicles has increased demand for lithium-ion batteries (LIBs), raising concerns regarding their end-of-life management. This study comprehensively evaluates the closed-loop recycling of cathode materials from spent LIBs by integrating life cycle assessment (LCA), technoeconomic analysis, and technological comparison. Typical [...] Read more.
Rapid growth of electric vehicles has increased demand for lithium-ion batteries (LIBs), raising concerns regarding their end-of-life management. This study comprehensively evaluates the closed-loop recycling of cathode materials from spent LIBs by integrating life cycle assessment (LCA), technoeconomic analysis, and technological comparison. Typical approaches—including pyrometallurgy, hydrometallurgy, and other processes such as organic acid leaching and in situ reduction roasting—are systematically reviewed. While pyrometallurgy offers scalability, it is hindered by high energy consumption and excessive greenhouse gas emissions. Hydrometallurgy achieves higher metal recovery rates with better environmental performance but requires complex chemical and wastewater management. Emerging methods and regeneration techniques such as co-precipitation and sol–gel synthesis demonstrate potential for high-purity material recovery and circular manufacturing. LCA results confirm that recycling significantly reduces GHG emissions, especially for high-nickel cathode chemistry. However, the environmental benefits are affected by upstream factors such as collection, disassembly, and logistics. Technoeconomic simulations show that profitability is strongly influenced by battery composition, regional cost structures, and collection rates. The study highlights the necessity of harmonized LCA boundaries, process optimization, and supportive policy frameworks to scale environmentally and economically sustainable LIB recycling, ensuring long-term supply security for critical battery materials. Full article
Show Figures

Graphical abstract

25 pages, 745 KB  
Review
Design and Application of Superhydrophobic Magnetic Nanomaterials for Efficient Oil–Water Separation: A Critical Review
by Rabiga M. Kudaibergenova, Elvira A. Baibazarova, Didara T. Balpanova, Gulnar K. Sugurbekova, Aizhan M. Serikbayeva, Marzhan S. Kalmakhanova, Nazgul S. Murzakasymova, Arman A. Kabdushev and Seitzhan A. Orynbayev
Molecules 2025, 30(15), 3313; https://doi.org/10.3390/molecules30153313 - 7 Aug 2025
Viewed by 659
Abstract
Superhydrophobic magnetic nanomaterials (SHMNMs) are emerging as multifunctional platforms for efficient oil–water separation due to their combination of extreme water repellency, strong oil affinity, and external magnetic responsiveness. This review presents a comprehensive analysis of recent advances in the design, synthesis, and environmental [...] Read more.
Superhydrophobic magnetic nanomaterials (SHMNMs) are emerging as multifunctional platforms for efficient oil–water separation due to their combination of extreme water repellency, strong oil affinity, and external magnetic responsiveness. This review presents a comprehensive analysis of recent advances in the design, synthesis, and environmental application of SHMNMs. The theoretical foundations of superhydrophobicity and the physicochemical behavior of magnetic nanoparticles are first outlined, followed by discussion of their synergistic integration. Key fabrication techniques—such as sol–gel synthesis, electrospinning, dip-coating, laser-assisted processing, and the use of biomass-derived precursors—are critically assessed in terms of their ability to tailor surface morphology, chemical functionality, and long-term durability. The review further explores the mechanisms of oil adsorption, magnetic separation, and material reusability under realistic environmental conditions. Special attention is paid to the scalability, mechanical resilience, and environmental compatibility of SHMNMs in the context of water treatment technologies. Current limitations, including reduced efficiency in harsh media, potential environmental risks, and challenges in material regeneration, are discussed. This work provides a structured overview that could support the rational development of next-generation superhydrophobic materials tailored for sustainable and high-performance separation of oil and organic pollutants from water. Full article
(This article belongs to the Special Issue Recent Advances in Superhydrophobic Materials and Their Application)
Show Figures

Figure 1

14 pages, 4013 KB  
Review
Crystallization Studies of Poly(Trimethylene Terephthalate) Nanocomposites—A Review
by Nadarajah Vasanthan
J. Compos. Sci. 2025, 9(8), 417; https://doi.org/10.3390/jcs9080417 - 5 Aug 2025
Viewed by 627
Abstract
Poly(trimethylene terephthalate) (PTT) is a thermoplastic polyester with a unique structure due to having three methylene groups in the glycol unit. PTT competes with poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) in carpets, textiles, and thermoplastic materials, primarily due to the development of [...] Read more.
Poly(trimethylene terephthalate) (PTT) is a thermoplastic polyester with a unique structure due to having three methylene groups in the glycol unit. PTT competes with poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) in carpets, textiles, and thermoplastic materials, primarily due to the development of economically efficient synthesis methods. PTT is widely utilized in textiles, carpets, and engineering plastics because of its advantageous properties, including quick-drying capabilities and wrinkle resistance. However, its low melting point, resistance to chemicals, and brittleness compared to PET, have limited its applications. To address some of these limitations for targeted applications, PTT nanocomposites incorporating clay, carbon nanotube, silica, and ZnO have been developed. The distribution of nanoparticles within the PTT matrix remains a significant challenge for its potential applications. Several techniques, including sol–gel blending, melt blending, in situ polymerization, and in situ forming methods have been developed to obtain better dispersion. This review discusses advancements in the synthesis of various PTT nanocomposites and the effects of nanoparticles on the isothermal and nonisothermal crystallization of PTT. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

19 pages, 4549 KB  
Article
Synthesis, Structure, and Magnetic Properties of (Co/Eu) Co-Doped ZnO Nanoparticles
by Adil Guler
Coatings 2025, 15(8), 884; https://doi.org/10.3390/coatings15080884 - 29 Jul 2025
Viewed by 412
Abstract
Transition-metal and rare-earth element co-doped ZnO nanoparticles have attracted significant attention due to their potential applications in spintronics and optoelectronics. In this study, Zn0.95Co0.01EuxO (x = 0.01–0.05) nanoparticles were synthesized using the sol–gel technique. The estimated stress, strain, and [...] Read more.
Transition-metal and rare-earth element co-doped ZnO nanoparticles have attracted significant attention due to their potential applications in spintronics and optoelectronics. In this study, Zn0.95Co0.01EuxO (x = 0.01–0.05) nanoparticles were synthesized using the sol–gel technique. The estimated stress, strain, and crystallite sizes of the synthesized Co/Eu co-doped ZnO nanoparticles were calculated using the Williamson–Hall method, and their electron spin resonance (ESR) properties were investigated to examine the effect on their magnetic and structural properties. X-ray diffraction (XRD) analysis confirmed the presence of a single-phase structure. Surface morphology, elemental composition, crystal quality, defect types, density, and magnetic behavior were characterized using scanning electron microscope (SEM), electron-dispersive spectroscopy (EDS), and ESR techniques, respectively. The effect of Eu concentration on the linewidth (ΔBpp) and g-factor in the ESR spectra was studied. By correlating ESR results with the obtained structural properties, room-temperature ferromagnetic behavior was identified. Full article
Show Figures

Figure 1

14 pages, 1884 KB  
Article
Ag/ZrO2 Hybrid Coating for Tribological and Corrosion Protection of Ti45Nb Alloy in Biomedical Environments
by Mevra Aslan Çakir
Metals 2025, 15(8), 831; https://doi.org/10.3390/met15080831 - 24 Jul 2025
Viewed by 330
Abstract
In this study, a Ag/ZrO2 hybrid coating prepared by the sol–gel method on a β-type Ti45Nb alloy was applied by the spin coating technique, and the microstructural, mechanical, electrochemical, and tribological properties of the surface were evaluated in a multi-dimensional manner. The [...] Read more.
In this study, a Ag/ZrO2 hybrid coating prepared by the sol–gel method on a β-type Ti45Nb alloy was applied by the spin coating technique, and the microstructural, mechanical, electrochemical, and tribological properties of the surface were evaluated in a multi-dimensional manner. The hybrid solution was prepared using zirconium propoxide and silver nitrate and stabilized through a low-temperature two-stage annealing protocol. The crystal structure of the coating was determined by XRD, and the presence of dense tetragonal ZrO2 phase and crystalline Ag phases was confirmed. SEM-EDS analyses revealed a compact coating structure of approximately 1.8 µm thickness with homogeneously distributed Ag nanoparticles on the surface. As a result of the electrochemical corrosion tests, it was determined that the open circuit potential shifted to more noble values, the corrosion current density decreased, and the corrosion rate decreased by more than 70% on the surfaces where the Ag/ZrO2 coating was applied. In the tribological tests, a decrease in the coefficient of friction, narrowing of wear marks, and significant reduction in surface damage were observed in dry and physiological (HBSS) environments. The findings revealed that the Ag/ZrO2 hybrid coating significantly improved the surface performance of the Ti45Nb alloy both mechanically and electrochemically and offers high potential for biomedical implant applications. Full article
(This article belongs to the Special Issue Corrosion Behavior and Surface Engineering of Metallic Materials)
Show Figures

Figure 1

20 pages, 7386 KB  
Article
Exploring Synthesis Methods of CdS/TiO2 Photocatalysts for Enhanced Hydrogen Production Under Visible Light
by Jesús Herrera-Ramos, Socorro Oros-Ruíz, Angela G. Romero-Villegas, J. Edgar Carrera-Crespo, Raúl Pérez-Hernández, Jaime S. Valente and Francisco Tzompantzi
Catalysts 2025, 15(8), 699; https://doi.org/10.3390/catal15080699 - 22 Jul 2025
Viewed by 670
Abstract
TiO2 was synthesized via the sol–gel method and employed as a support material for the deposition of CdS nanofibers using two novel techniques: impregnation and photodeposition. XRD characterization shows that crystallite size decreases when CdS is incorporated into TiO2. UV-Vis [...] Read more.
TiO2 was synthesized via the sol–gel method and employed as a support material for the deposition of CdS nanofibers using two novel techniques: impregnation and photodeposition. XRD characterization shows that crystallite size decreases when CdS is incorporated into TiO2. UV-Vis spectroscopy showed that the bandgap of the CdS/TiO2 heterostructured nanocomposites decreases compared to the raw TiO2 support, making them very appropriate for photocatalytic applications in the visible region. The photocatalysts were tested for hydrogen production in methanol–water solutions under visible light conditions. It was observed that the TiC20 photocatalyst prepared by the impregnation method improved the photocatalytic activity compared with photodeposition technique (TiC20FD), achieving a maximum hydrogen production of 570.5 µmol H2 gcat1 h−1, while the latter attained 383.4 µmol H2 gcat1 h−1. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation)
Show Figures

Graphical abstract

20 pages, 1106 KB  
Article
Synchrotron-Based Structural Analysis of Nanosized Gd2(Ti1−xZrx)2O7 for Radioactive Waste Management
by Marco Pinna, Andrea Trapletti, Claudio Minelli, Armando di Biase, Federico Bianconi, Michele Clemente, Alessandro Minguzzi, Carlo Castellano and Marco Scavini
Nanomaterials 2025, 15(14), 1134; https://doi.org/10.3390/nano15141134 - 21 Jul 2025
Viewed by 428
Abstract
Complex oxides with the general formula Gd2(Ti1−xZrx)2O7 are promising candidates for radioactive waste immobilization due to their capacity to withstand radiation by dissipating part of the free energy driving defect creation and phase transitions. [...] Read more.
Complex oxides with the general formula Gd2(Ti1−xZrx)2O7 are promising candidates for radioactive waste immobilization due to their capacity to withstand radiation by dissipating part of the free energy driving defect creation and phase transitions. In this study, samples with varying zirconium content (xZr = 0.00, 0.15, 0.25, 0.375, 0.56, 0.75, 0.85, 1.00) were synthesized via the sol–gel method and thermally treated at 500 °C to obtain nanosized powders mimicking the defective structure of irradiated materials. Synchrotron-based techniques were employed to investigate their structural properties: High-Resolution X-ray Powder Diffraction (HR-XRPD) was used to assess long-range structure, while Pair Distribution Function (PDF) analysis and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy provided insights into the local structure. HR-XRPD data revealed that samples with low Zr content (xZr ≤ 0.25) are amorphous. Increasing Zr concentration led to the emergence of a crystalline phase identified as defective fluorite (xZr = 0.375, 0.56). Samples with the highest Zr content (xZr ≥ 0.75) were fully crystalline and exhibited only the fluorite phase. The experimental G(r) functions of the fully crystalline samples in the low r range are suitably fitted by the Weberite structure, mapping the relaxations induced by structural disorder in defective fluorite. These structural insights informed the subsequent EXAFS analysis at the Zr-K and Gd-L3 edges, confirming the splitting of the cation–cation distances associated with different metal species. Moreover, EXAFS provided a local structural description of the amorphous phases, identifying a consistent Gd-O distance across all compositions. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Graphical abstract

16 pages, 8156 KB  
Article
The Development of Ni-Al Aerogel-Based Catalysts via Supercritical CO2 Drying for Photocatalytic CO2 Methanation
by Daniel Estevez, Haritz Etxeberria and Victoria Laura Barrio
Catalysts 2025, 15(7), 686; https://doi.org/10.3390/catal15070686 - 16 Jul 2025
Viewed by 666
Abstract
The conversion of CO2 into CH4 through the Sabatier reaction is one of the key processes that can reduce CO2 emissions into the atmosphere. This work aims to develop Ni-Al aerogel-based thermo-photocatalysts with large specific surface areas prepared using a [...] Read more.
The conversion of CO2 into CH4 through the Sabatier reaction is one of the key processes that can reduce CO2 emissions into the atmosphere. This work aims to develop Ni-Al aerogel-based thermo-photocatalysts with large specific surface areas prepared using a sol–gel method and subsequent supercritical drying in CO2. Different Al/Ni molar ratios were selected for the development of the catalysts, characterized using ICP-OES, N2 adsorption–desorption isotherms, XRD, H2-TPR, TEM, UV-Vis DRS, and XPS techniques. Thermo-photocatalytic activity tests were performed in a photoreactor with two different light sources (λ = 365 nm, λ = 470 nm) at a temperature range from 300 °C to 450 °C and a pressure of 10 bar. The catalyst with the highest Ni loading (AG 1/3) produced the best catalytic results, reaching CO2 conversion and CH4 selectivity levels of 82% and 100%, respectively, under visible light at 450 °C. In contrast, the catalysts with the lowest nickel loading produced the lowest results, most likely due to their low amounts of active Ni. These results suggest that supercritical drying is an efficient method for developing active thermo-photocatalysts with high Ni dispersion, suitable for Sabatier reactions under mild reaction conditions. Full article
(This article belongs to the Special Issue Advancements in Photocatalysis for Environmental Applications)
Show Figures

Graphical abstract

22 pages, 4979 KB  
Article
Optical, Photocatalytic, and Antibacterial Properties of Sol-Gel Derived Fe Doped SrTiO3 Powders
by Stefani Petrova, Kalina Ivanova, Iliana Ivanova and Albena Bachvarova-Nedelcheva
Water 2025, 17(14), 2072; https://doi.org/10.3390/w17142072 - 11 Jul 2025
Viewed by 439
Abstract
In this study, Fe-doped SrTiO3 powders have been synthesized using the sol-gel approach. The effect of the Fe3+ doping on the degradation efficiency of SrTiO3 toward specific pollutants was studied. The obtained samples were characterized using the following techniques: XRD, [...] Read more.
In this study, Fe-doped SrTiO3 powders have been synthesized using the sol-gel approach. The effect of the Fe3+ doping on the degradation efficiency of SrTiO3 toward specific pollutants was studied. The obtained samples were characterized using the following techniques: XRD, SEM-EDS, FTIR, UV-Vis, and BET. Subsequently, the samples were tested for degradation of two organic pollutants—tetracycline hydrochloride and Malachite green in distilled water under different light sources—UV light and visible light. The investigated powders exhibited good photocatalytic degradation efficiency against both pollutants. A comparison of the photocatalytic abilities of the samples under different lights has been made, which emphasizes the paper’s novelty. Undoped SrTiO3 exhibited better photocatalytic activity for TCH both under UV and visible light irradiation in comparison to the Fe-doped. The SrTi0.15Fe0.85O3 shows superior photocatalytic activity under visible light irradiation for the degradation of MG dye. The antibacterial activity has been tested against two bacterial strains, E. coli ATCC 25922 and P. aeruginosa ATCC 27853. It has been found that the antibacterial efficiency of the Fe-doped sample is greater than compared of the undoped one. Full article
Show Figures

Figure 1

22 pages, 6102 KB  
Review
Current Developments in Ozone Catalyst Preparation Techniques and Their Catalytic Oxidation Performance
by Jiajia Gao, Siqi Chen, Yun Gao, Wenquan Sun, Jun Zhou, Kinjal J. Shah and Yongjun Sun
Catalysts 2025, 15(7), 671; https://doi.org/10.3390/catal15070671 - 10 Jul 2025
Viewed by 518
Abstract
Through the use of heterogeneous catalysts, catalytic ozone oxidation technology, an effective and eco-friendly advanced oxidation process (AOP), facilitates the breakdown of ozone into reactive oxygen species (like ·OH) and greatly increases the mineralization efficiency of pollutants. This study examines the development of [...] Read more.
Through the use of heterogeneous catalysts, catalytic ozone oxidation technology, an effective and eco-friendly advanced oxidation process (AOP), facilitates the breakdown of ozone into reactive oxygen species (like ·OH) and greatly increases the mineralization efficiency of pollutants. This study examines the development of heterogeneous ozone catalysts through a critical evaluation of the five primary preparation techniques: ion exchange, sol–gel, coprecipitation, impregnation, and hydrothermal synthesis. Each preparation method’s inherent qualities, benefits, drawbacks, and performance variations are methodically investigated, with an emphasis on how they affect the breakdown of different resistant organic compounds. Even though heterogeneous catalysts are more stable and reusable than homogeneous catalysts, they continue to face issues like active component leaching, restricted mass transfer, and ambiguous mechanisms. In order to determine the key paths for catalyst selection in catalytic ozone treatment going forward, the main goal of this review is to provide an overview of the accomplishments in the field of the heterogeneous ozone catalyst treatment of wastewater that is difficult to degrade. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

11 pages, 2099 KB  
Article
Biocompatible Composite Protective Thin Layer Containing Cellulose Fibers and Silica Cryogel
by Marius Horvath and Katalin Sinkó
Gels 2025, 11(7), 522; https://doi.org/10.3390/gels11070522 - 5 Jul 2025
Viewed by 333
Abstract
The aim of the present research was to synthesize protective composite layers from biodegradable cellulose and biocompatible, sol–gel-derived silica cryogel. An important task in the present work was to achieve good applicability on distinct (smooth and rough) surfaces of various materials (from metallic [...] Read more.
The aim of the present research was to synthesize protective composite layers from biodegradable cellulose and biocompatible, sol–gel-derived silica cryogel. An important task in the present work was to achieve good applicability on distinct (smooth and rough) surfaces of various materials (from metallic to ceramic). The aim was to utilize the composite layers as thermal and electric insulation coating. The investigation put some effort into the enhancement of mechanical strength and the elasticity of the thin layer as well as a reduction in its water solubility. The removal of the alkali content leads successfully to a significant reduction in water solubility (97 wt% → 1–3 wt%). Adhesion properties were measured using a specialized measurement technique developed in our laboratory. Treatments of the substrate surface, such as alkaline or acidic etching (i.e., Na2CO3, HF, water glass), mechanical roughening, or the application of a thin alkali-containing primer layer, strongly increase adhesion. SEM analyses revealed the interactions between the matrix and the reinforcement phase and their morphology. Full article
(This article belongs to the Special Issue Advances and Current Applications in Gel-Based Membranes)
Show Figures

Figure 1

25 pages, 4500 KB  
Article
Cost-Effective Bimetallic Catalysts for Green H2 Production in Anion Exchange Membrane Water Electrolyzers
by Sabrina Campagna Zignani, Marta Fazio, Mariarosaria Pascale, Chiara Alessandrello, Claudia Triolo, Maria Grazia Musolino and Saveria Santangelo
Nanomaterials 2025, 15(13), 1042; https://doi.org/10.3390/nano15131042 - 4 Jul 2025
Viewed by 577
Abstract
Green hydrogen production from water electrolysis (WE) is one of the most promising technologies to realize a decarbonized future and efficiently utilize intermittent renewable energy. Among the various WE technologies, the emerging anion exchange membrane (AEMWE) technology shows the greatest potential for producing [...] Read more.
Green hydrogen production from water electrolysis (WE) is one of the most promising technologies to realize a decarbonized future and efficiently utilize intermittent renewable energy. Among the various WE technologies, the emerging anion exchange membrane (AEMWE) technology shows the greatest potential for producing green hydrogen at a competitive price. To achieve this goal, simple methods for the large-scale synthesis of efficient and low-cost electrocatalysts are needed. This paper proposes a very simple and scalable process for the synthesis of nanostructured NiCo- and NiFe-based electrode materials for a zero-gap AEMWE full cell. For the preparation of the cell anode, oxides with different Ni molar fractions (0.50 or 0.85) are synthesized by the sol–gel method, followed by calcination in air at different temperatures (400 or 800 °C). To fabricate the cell cathode, the oxides are reduced in a H2/Ar atmosphere. Electrochemical testing reveals that phase purity and average crystal size significantly influence cell performance. Highly pure and finely grained electrocatalysts yield higher current densities at lower overpotentials. The best performing membrane electrode assembly exhibits a current density of 1 A cm−2 at 2.15 V during a steady-state 150 h long stability test with 1 M KOH recirculating through the cell, the lowest series resistance at any cell potential (1.8 or 2.0 V), and the highest current density at the cut-off voltage (2.2 V) both at the beginning (1 A cm−2) and end of tests (1.78 A cm−2). The presented results pave the way to obtain, via simple and scalable techniques, cost-effective catalysts for the production of green hydrogen aimed at a wider market penetration by AEMWE. Full article
Show Figures

Figure 1

48 pages, 9186 KB  
Review
A Review on Design, Synthesis and Application of Composite Materials Based on MnO2 for Energy Storage
by Loukia Plakia and Ioannis A. Kartsonakis
Energies 2025, 18(13), 3455; https://doi.org/10.3390/en18133455 - 1 Jul 2025
Viewed by 627
Abstract
The design, synthesis, and application of composite materials based on manganese dioxide (MnO2) for energy storage are pivotal in advancing efficient, sustainable, and high-performance energy storage systems. The MnO2 is widely recognized for its abundance, low cost, environmental friendliness, and [...] Read more.
The design, synthesis, and application of composite materials based on manganese dioxide (MnO2) for energy storage are pivotal in advancing efficient, sustainable, and high-performance energy storage systems. The MnO2 is widely recognized for its abundance, low cost, environmental friendliness, and excellent electrochemical properties, making it a promising candidate for use in supercapacitors, batteries, fuel cells, and other energy storage systems. This study offers a comprehensive overview of how various materials influence the performance of MnO2 as an energy storage medium. Specifically, the design of composite materials is examined with respect to morphological control, integration with conductive additives, doping strategies, and structural engineering, all of which impact the final material properties. Additionally, the influence of diverse synthetic techniques—including hydrothermal synthesis, electrochemical deposition, sol–gel processing, co-precipitation, and templating methods—is evaluated. The latest attempts through which the developed composites showcase improved structural stability, inherent conductivity, and electron mobility compared to the original first material are presented in this review article. The presented results have been quite promising for the synthesis of great-performing materials with improved electrochemical data compared to that of MnO2 alone, competing with other significant energy storage materials. This review highlights future prospects for the development of state-of-the-art devices, large-scale production applications, and the use of environmentally friendly materials and methods. It is anticipated that this research will provide valuable insights to facilitate further improvements in performance and broaden the scope of practical applications in this rapidly evolving field of composite materials. Full article
(This article belongs to the Special Issue Advances in Electrochemical Power Sources: Systems and Applications)
Show Figures

Figure 1

Back to TopTop